首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microglia are the principal immune cells of the brain. In Alzheimer disease, these brain mononuclear phagocytes are recruited from the blood and accumulate in senile plaques. However, the role of microglia in Alzheimer disease has not been resolved. Microglia may be neuroprotective by phagocytosing amyloid-beta (Abeta), but their activation and the secretion of neurotoxins may also cause neurodegeneration. Ccr2 is a chemokine receptor expressed on microglia, which mediates the accumulation of mononuclear phagocytes at sites of inflammation. Here we show that Ccr2 deficiency accelerates early disease progression and markedly impairs microglial accumulation in a transgenic mouse model of Alzheimer disease (Tg2576). Alzheimer disease mice deficient in Ccr2 accumulated Abeta earlier and died prematurely, in a manner that correlated with Ccr2 gene dosage, indicating that absence of early microglial accumulation leads to decreased Abeta clearance and increased mortality. Thus, Ccr2-dependent microglial accumulation plays a protective role in the early stages of Alzheimer disease by promoting Abeta clearance.  相似文献   

2.
Increased Abeta42 production has been linked to the development of Alzheimer disease. We now identify a number of compounds that raise Abeta42. Among the more potent Abeta42-raising agents identified are fenofibrate, an antilipidemic agent, and celecoxib, a COX-2-selective NSAID. Many COX-2-selective NSAIDs tested raised Abeta42, including multiple COX-2-selective derivatives of two Abeta42-lowering NSAIDs. Compounds devoid of COX activity and the endogenous isoprenoids FPP and GGPP also raised Abeta42. These compounds seem to target the gamma-secretase complex, increasing gamma-secretase-catalyzed production of Abeta42 in vitro. Short-term in vivo studies show that two Abeta42-raising compounds increase Abeta42 levels in the brains of mice. The elevations in Abeta42 by these compounds are comparable to the increases in Abeta42 induced by Alzheimer disease-causing mutations in the genes encoding amyloid beta protein precursor and presenilins, raising the possibility that exogenous compounds or naturally occurring isoprenoids might increase Abeta42 production in humans.  相似文献   

3.
Polymorphisms in the apolipoprotein E (APOE) gene affect the risk of Alzheimer disease and the amount of amyloid beta-protein (Abeta) deposited in the brain. The apoE protein reduces Abeta levels in conditioned media from cells in culture, possibly through Abeta clearance mechanisms. To explore this effect, we treated multiple neural and non-neural cell lines for 24 h with apoE at concentrations similar to those found in the cerebrospinal fluid (1-5 microg/mL). The apoE treatment reduced Abeta40 by 60-80% and Abeta42 to a lesser extent (20-30%) in the conditioned media. Surprisingly, apoE treatment resulted in an accumulation of amyloid precursor protein (APP)-C-terminal fragments in cell extracts and a marked reduction of APP intracellular domain-mediated signaling, consistent with diminished gamma-secretase processing of APP. All three isoforms of apoE, E2, E3 and E4, had similar effects on Abeta and APP-C-terminal fragments, and the effects were independent of the low-density lipoprotein receptor family. Apolipoprotein E had minimal effects on Notch cleavage and signaling in cell-based assays. These data suggest that apoE reduces gamma-secretase cleavage of APP, lowering secreted Abeta levels, with stronger effects on Abeta40. The apoE modulation of Abeta production and APP signaling is a potential mechanism affecting Alzheimer disease risk.  相似文献   

4.
Abnormal accumulation of the amyloid-beta peptide (Abeta) in the brain appears crucial to pathogenesis in all forms of Alzheimer disease (AD), but the underlying mechanisms in the sporadic forms of AD remain unknown. Transforming growth factor beta1 (TGF-beta1), a key regulator of the brain's responses to injury and inflammation, has been implicated in Abeta deposition in vivo. Here we demonstrate that a modest increase in astroglial TGF-beta1 production in aged transgenic mice expressing the human beta-amyloid precursor protein (hAPP) results in a three-fold reduction in the number of parenchymal amyloid plaques, a 50% reduction in the overall Abeta load in the hippocampus and neocortex, and a decrease in the number of dystrophic neurites. In mice expressing hAPP and TGF-beta1, Abeta accumulated substantially in cerebral blood vessels, but not in parenchymal plaques. In human cases of AD, Abeta immunoreactivity associated with parenchymal plaques was inversely correlated with Abeta in blood vessels and cortical TGF-beta1 mRNA levels. The reduction of parenchymal plaques in hAPP/TGF-beta1 mice was associated with a strong activation of microglia and an increase in inflammatory mediators. Recombinant TGF-beta1 stimulated Abeta clearance in microglial cell cultures. These results demonstrate that TGF-beta1 is an important modifier of amyloid deposition in vivo and indicate that TGF-beta1 might promote microglial processes that inhibit the accumulation of Abeta in the brain parenchyma.  相似文献   

5.
Accumulation of the amyloid-beta peptide (Abeta) in the brain is crucial for development of Alzheimer's disease. Expression of transforming growth factor-beta1 (TGF-beta1), an immunosuppressive cytokine, has been correlated in vivo with Abeta accumulation in transgenic mice and recently with Abeta clearance by activated microglia. Here, we demonstrate that TGF-beta1 drives the production of Abeta40/42 by astrocytes leading to Abeta production in TGF-beta1 transgenic mice. First, TGF-beta1 induces the overexpression of the amyloid precursor protein (APP) in astrocytes but not in neurons, involving a highly conserved TGF-beta1-responsive element in the 5'-untranslated region (+54/+74) of the APP promoter. Second, we demonstrated an increased release of soluble APP-beta which led to TGF-beta1-induced Abeta generation in both murine and human astrocytes. These results demonstrate that TGF-beta1 potentiates Abeta production in human astrocytes and may enhance the formation of plaques burden in the brain of Alzheimer's disease patients.  相似文献   

6.
Intraneuronal accumulation of hyperphosphorylated protein tau in paired helical filaments together with amyloid-beta peptide (Abeta) deposits confirm the clinical diagnosis of Alzheimer disease. A common cellular mechanism leading to the production of these potent toxins remains elusive. Here we show that, in cultured neurons, membrane depolarization induced a calcium-mediated transient phosphorylation of both microtubule-associated protein tau and amyloid precursor protein (APP), followed by a dephosphorylation of these proteins. Phosphorylation was mediated by glycogen synthase kinase 3 and cyclin-dependent kinase 5 protein kinases, while calcineurin was responsible for dephosphorylation. Following the transient phosphorylation of APP, intraneuronal Abeta accumulated and induced neurotoxicity. Phosphorylation of APP on Thr-668 was indispensable for intraneuronal accumulation of Abeta. Our data demonstrate that an increase in cytosolic calcium concentration induces modifications of neuronal metabolism of APP and tau, similar to those found in Alzheimer disease.  相似文献   

7.
8.
beta-Amyloid peptides (Abeta) that form the senile plaques of Alzheimer disease consist mainly of 40- and 42-amino acid (Abeta 40 and Abeta 42) peptides generated from the cleavage of the amyloid precursor protein (APP). Generation of Abeta involves beta-secretase and gamma-secretase activities and is regulated by membrane trafficking of the proteins involved in Abeta production. Here we describe a new small molecule, EHT 1864, which blocks the Rac1 signaling pathways. In vitro, EHT 1864 blocks Abeta 40 and Abeta 42 production but does not impact sAPPalpha levels and does not inhibit beta-secretase. Rather, EHT 1864 modulates APP processing at the level of gamma-secretase to prevent Abeta 40 and Abeta 42 generation. This effect does not result from a direct inhibition of the gamma-secretase activity and is specific for APP cleavage, since EHT 1864 does not affect Notch cleavage. In vivo, EHT 1864 significantly reduces Abeta 40 and Abeta 42 levels in guinea pig brains at a threshold that is compatible with delaying plaque accumulation and/or clearing the existing plaque in brain. EHT 1864 is the first derivative of a new chemical series that consists of candidates for inhibiting Abeta formation in the brain of AD patients. Our findings represent the first pharmacological validation of Rac1 signaling as a target for developing novel therapies for Alzheimer disease.  相似文献   

9.
Human genetic data have associated angiotensin-converting enzyme (ACE) with Alzheimer disease (AD), and purified ACE has been reported to cleave synthetic amyloid beta-protein (Abeta) in vitro. Whether deficiency in ACE activity, arising from genetic alteration or pharmacological inhibition, can decrease Abeta degradation and allow Abeta accumulation in intact cells is unknown. We cloned ACE from human neuroblastoma cells and showed that it had posttranslational processing and enzymatic activity typical of the endogenous protease. Cellular expression of ACE promoted degradation of naturally secreted Abeta40 and Abeta42, leading to significant clearance of both species. Using site-directed mutagenesis, we determined that both active sites within ACE contribute to Abeta clearance, and an ACE construct bearing mutations in each catalytic domain had no effect on Abeta levels. Pharmacological inhibition of ACE with a widely prescribed drug, captopril, promoted the accumulation of cell-derived Abeta in the media of beta-amyloid precursor-protein expressing cells. Together, these results show that ACE can lower the levels of secreted Abeta in living cells and that this effect is blocked by inhibiting the protease's activity with an ACE inhibitor. This work, combined with the genetic studies, supports the hypothesis that ACE may modulate the susceptibility to and progression of AD via degradation of Abeta. Our data encourage further analyses of the ACE gene for disease association and raise the question of whether currently prescribed ACE inhibitors could elevate cerebral Abeta levels in humans.  相似文献   

10.
Amyloid-beta peptides (Abeta) are widely presumed to play a causal role in Alzheimer disease. Release of Abeta from the amyloid precursor protein (APP) requires proteolysis by the beta-site APP-cleaving enzyme (BACE1). Although increased BACE1 activity in Alzheimer disease brains and human (h) BACE1 transgenic (tg) mice results in altered APP cleavage, the contribution of these molecular alterations to neurodegeneration is unclear. We therefore used the murine Thy1 promoter to express high levels of hBACE1, with or without hAPP, in neurons of tg mice. Compared with hAPP mice, hBACE1/hAPP doubly tg mice had increased levels of APP C-terminal fragments (C89, C83) and decreased levels of full-length APP and Abeta. In contrast to non-tg controls and hAPP mice, hBACE1 mice and hBACE1/hAPP mice showed degeneration of neurons in the neocortex and hippocampus and degradation of myelin. Neurological deficits were also more severe in hBACE1 and hBACE1/hAPP mice than in hAPP mice. These results demonstrate that high levels of BACE1 activity are sufficient to elicit neurodegeneration and neurological decline in vivo. This pathogenic pathway involves the accumulation of APP C-terminal fragments but does not depend on increased production of human Abeta. Thus, inhibiting BACE1 may block not only Abeta-dependent but also Abeta-independent pathogenic mechanisms.  相似文献   

11.
12.
Adult mouse astrocytes degrade amyloid-beta in vitro and in situ   总被引:17,自引:0,他引:17  
Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by excessive deposition of amyloid-beta (Abeta) peptides in the brain. One of the earliest neuropathological changes in AD is the accumulation of astrocytes at sites of Abeta deposition, but the cause or significance of this cellular response is unclear. Here we show that cultured adult mouse astrocytes migrate in response to monocyte chemoattractant protein-1 (MCP-1), a chemokine present in AD lesions, and cease migration upon interaction with immobilized Abeta(1-42). We also show that astrocytes bind and degrade Abeta(1-42). Astrocytes plated on Abeta-laden brain sections from a mouse model of AD associate with the Abeta deposits and reduce overall Abeta levels in these sections. Our results suggest a novel mechanism for the accumulation of astrocytes around Abeta deposits, indicate a direct role for astrocytes in degradation of Abeta and implicate deficits in astroglial clearance of Abeta in the pathogenesis of AD. Treatments that increase removal of Abeta by astrocytes may therefore be a critical mechanism to reduce the neurodegeneration associated with AD.  相似文献   

13.
Increased cerebral levels of Abeta(42) peptide, either as soluble or aggregated forms, are suggested to play a key role in the pathogenesis of Alzheimer's disease (AD). The identification of genetic defects in presenilins and beta-amyloid precursor protein (beta-APP) has led to the development of cellular and animal models that have helped in understanding aspects of the pathophysiology of the inherited early onset forms of AD. However, the majority of AD cases are sporadic with no clear or defined genetic basis. While genetic mutations are responsible for the accumulation of Abeta in early onset AD, the causative factors for accumulation of Abeta in the late onset AD forms are not known. This raises the possibility that Abeta accumulation in the absence of genetic mutations might result from abnormalities that indirectly affect Abeta production or its clearance. Currently, there is no consensus as to what are the mechanisms by which Abeta accumulates or as to which mechanisms underlie Abeta-induced neuronal death in AD. In this review, I will first describe the physiological role of endoplasmic reticulum in the cell and review some of the data supporting dysfunction of the endoplasmic reticulum as an early event leading to Abeta accumulation in familial AD. I will also discuss the possible role of oxidative stress and other factors as contributors in Abeta accumulation by reducing the clearance of Abeta from the endoplasmic reticulum. Finally, I will summarize data that show the endoplasmic reticulum stress as a mechanism underlying exogenous Abeta neurotoxicity.  相似文献   

14.
Ni Y  Zhao X  Bao G  Zou L  Teng L  Wang Z  Song M  Xiong J  Bai Y  Pei G 《Nature medicine》2006,12(12):1390-1396
Amyloid plaque is the hallmark and primary cause of Alzheimer disease. Mutations of presenilin-1, the gamma-secretase catalytic subunit, can affect amyloid-beta (Abeta) production and Alzheimer disease pathogenesis. However, it is largely unknown whether and how gamma-secretase activity and amyloid plaque formation are regulated by environmental factors such as stress, which is mediated by receptors including beta(2)-adrenergic receptor (beta(2)-AR). Here we report that activation of beta(2)-AR enhanced gamma-secretase activity and thus Abeta production. This enhancement involved the association of beta(2)-AR with presenilin-1 and required agonist-induced endocytosis of beta(2)-AR and subsequent trafficking of gamma-secretase to late endosomes and lysosomes, where Abeta production was elevated. Similar effects were observed after activation of delta-opioid receptor. Furthermore, chronic treatment with beta(2)-AR agonists increased cerebral amyloid plaques in an Alzheimer disease mouse model. Thus, beta(2)-AR activation can stimulate gamma-secretase activity and amyloid plaque formation, which suggests that abnormal activation of beta(2)-AR might contribute to Abeta accumulation in Alzheimer disease pathogenesis.  相似文献   

15.
In the brains of Alzheimer's disease (AD) patients, fibrillar amyloid-beta peptides (Abeta) are markedly accumulated and the microglia associate with the amyloid plaques. However, the regulation of Abeta clearance is still unclear. In the present study, we examined the effect of a chaperone protein BiP/GRP78 on the microglial function. Exogenous addition of recombinant BiP/GRP78 induced the production of cytokines such as interleukin-6 and tumor necrosis factor-alpha, but heat treatment of this protein abolished the activity. Although Abeta(1-42) did not induce cytokine production, it was taken up by the microglia. In addition, the amount of Abeta(1-42) uptake and the number of microglia that phagocytosed Abeta(1-42) were markedly increased by BiP/GRP78. Exogenous BiP/GRP78 also translocated to the endoplasmic reticulum (ER). These results suggest that BiP/GRP78 stimulates Abeta clearance in the microglia, and that dysfunction in the ER may cause the accumulation of extracellular Abeta(1-42).  相似文献   

16.
The accumulation of amyloid beta (Abeta) in the walls of small vessels in the cerebral cortex is associated with diseases characterized by dementia or stroke. These include Alzheimer's disease, Down syndrome, and sporadic and hereditary cerebral amyloid angiopathies (CAAs) related to mutations within the Abeta sequence. A higher tendency of Abeta to aggregate, a defective clearance to the systemic circulation, and insufficient proteolytic removal have been proposed as mechanisms that lead to Abeta accumulation in the brain. By using immunoprecipitation and mass spectrometry, we show that insulin-degrading enzyme (IDE) from isolated human brain microvessels was capable of degrading (125)I-insulin and cleaved Abeta-(1-40) wild type and the genetic variants Abeta A21G (Flemish), Abeta E22Q (Dutch), and Abeta E22K (Italian) at the predicted sites. In microvessels from Alzheimer's disease cases with CAA, IDE protein levels showed a 44% increase as determined by sandwich enzyme-linked immunosorbent assay and Western blot. However, the activity of IDE upon radiolabeled insulin was significantly reduced in CAA as compared with age-matched controls. These results support the notion that a defect in Abeta proteolysis by IDE contributes to the accumulation of this peptide in the cortical microvasculature. Moreover they raise the possibility that IDE inhibition or inactivation is a pathogenic mechanism that may open novel strategies for the treatment of cerebrovascular Abeta amyloidoses.  相似文献   

17.
When given orally to a transgenic mouse model of Alzheimer disease, cyclohexanehexol stereoisomers inhibit aggregation of amyloid beta peptide (Abeta) into high-molecular-weight oligomers in the brain and ameliorate several Alzheimer disease-like phenotypes in these mice, including impaired cognition, altered synaptic physiology, cerebral Abeta pathology and accelerated mortality. These therapeutic effects, which occur regardless of whether the compounds are given before or well after the onset of the Alzheimer disease-like phenotype, support the idea that the accumulation of Abeta oligomers has a central role in the pathogenesis of Alzheimer disease.  相似文献   

18.
The major molecular risk factor for Alzheimer disease so far identified is the amyloidogenic peptide Abeta(42). In addition, growing evidence suggests a role of cholesterol in Alzheimer disease pathology and Abeta generation. However, the cellular mechanism of lipid-dependent Abeta production remains unclear. Here we describe that the two enzymatic activities responsible for Abeta production, beta-secretase and gamma-secretase, are inhibited in parallel by cholesterol reduction. Importantly, our data indicate that cholesterol depletion within the cellular context inhibits both secretases additively and independently from each other. This is unexpected because the beta-secretase beta-site amyloid precursor protein cleaving enzyme and the presenilin-containing gamma-secretase complex are structurally different from each other, and these enzymes are apparently located in different subcellular compartments. The parallel and additive inhibition has obvious consequences for therapeutic research and may indicate an intrinsic cross-talk between Alzheimer disease-related amyloid precursor protein processing, amyloid precursor protein function, and lipid biology.  相似文献   

19.
The study of sporadic Alzheimer’s disease etiology, now more than ever, needs an infusion of new concepts. Despite ongoing interest in Alzheimer’s disease, the basis of this entity is not yet clear. At present, the best-established and accepted “culprit” in Alzheimer’s disease pathology by most scientists is the amyloid, as the main molecular factor responsible for neurodegeneration in this disease. Abnormal upregulation of amyloid production or a disturbed clearance mechanism may lead to pathological accumulation of amyloid in brain according to the “amyloid hypothesis.” We will critically review these observations and highlight inconsistencies between the predictions of the “amyloid hypothesis” and the published data. There is still controversy over the role of amyloid in the pathological process. A question arises whether amyloid is responsible for the neurodegeneration or if it accumulates because of the neurodegeneration. Recent evidence suggests that the pathophysiology and neuropathology of Alzheimer’s disease comprises more than amyloid accumulation, tau protein pathology and finally brain atrophy with dementia. Nowadays, a handful of researchers share a newly emerged view that the ischemic episodes of brain best describe the pathogenic cascade, which eventually leads to neuronal loss, especially in hippocampus, with amyloid accumulation, tau protein pathology and irreversible dementia of Alzheimer type. The most persuasive evidences come from investigations of ischemically damaged brains of patients and from experimental ischemic brain studies that mimic Alzheimer-type dementia. This review attempts to depict what we know and do not know about the triggering factor of the Alzheimer’s disease, focusing on the possibility that the initial pathological trigger involves ischemic episodes and ischemia-induced gene dysregulation. The resulting brain ischemia dysregulates additionally expression of amyloid precursor protein and amyloid-processing enzyme genes that, in addition, ultimately compromise brain functions, leading over time to the complex alterations that characterize advanced sporadic Alzheimer’s disease. The identification of the genes involved in Alzheimer’s disease induced by ischemia will enable to further define the events leading to sporadic Alzheimer’s disease-related abnormalities. Additionally, knowledge gained from the above investigations should facilitate the elaboration of the effective treatment and/or prevention of Alzheimer’s disease.  相似文献   

20.
One of the most clinically advanced forms of experimental disease-modifying treatment for Alzheimer disease is immunization against the amyloid beta protein (Abeta), but how this may prevent cognitive impairment is unclear. We hypothesized that antibodies to Abeta could exert a beneficial action by directly neutralizing potentially synaptotoxic soluble Abeta species in the brain. Intracerebroventricular injection of naturally secreted human Abeta inhibited long-term potentiation (LTP), a correlate of learning and memory, in rat hippocampus in vivo but a monoclonal antibody to Abeta completely prevented the inhibition of LTP when injected after Abeta. Size fractionation showed that Abeta oligomers, not monomers or fibrils, were responsible for inhibiting LTP, and an Abeta antibody again prevented such inhibition. Active immunization against Abeta was partially effective, and the effects correlated positively with levels of antibodies to Abeta oligomers. The ability of exogenous and endogenous antibodies to rapidly neutralize soluble Abeta oligomers that disrupt synaptic plasticity in vivo suggests that treatment with such antibodies might show reversible cognitive deficits in early Alzheimer disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号