首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unusual phosphatic casts of the ammonites Mortoniceras (Subschloenbachia) sp. and Stoliczkaia sp. from the upper Albian condensed phosphorite bed at Annopol, Poland, are discussed in terms of their taphonomic history. These specimens are interpreted as ‘secondary’ external casts of ammonite replicas preserved originally as attachment scars on oyster shells. The following genetic history is suggested for this previously undocumented mode of ammonite preservation: (1) settling of shells of dead ammonites on the seafloor; (2) colonization of these shells by oysters and formation of ammonite replicas on left valves of oysters; (3) dissolution of ammonite shells; (4) reworking and fragmentation of oyster shells; (5) casting of ammonite replicas by phosphatic material; and (6) separation of ammonite casts from oyster shells, either through mechanical disintegration or dissolution of the latter. The specimens studied were formed after dissolution of the ammonite conchs, not prior to this event as in the case of typical ammonite steinkerns (internal moulds). Therefore, they are here referred to as ‘pseudo‐steinkerns’. The time interval between loss of the original ammonite shells and the formation of oyster‐mediated pseudo‐steinkerns may be very extensive. Therefore, the pseudo‐steinkerns may potentially mislead in biostratigraphic dating of condensed phosphorite deposits.  相似文献   

2.
Ornithuromorpha is the most derived avian group in the Early Cretaceous, advanced members of which encompass all living birds (Neornithes). Here we report on a new basal ornithuromorph bird, Bellulia rectusunguis gen. et sp. nov., represented by a nearly complete skeleton from the Early Cretaceous Jehol Biota in northeastern China. A comprehensive phylogenetic analysis resolved the new taxon in a basal position that is only more derived than Archaeorhynchus and Jianchangornis among ornithuromorphs, increasing the morphological diversity of basal ornithuromorphs. The new specimen has a V‐shaped furcula with a short hypocleidium, a feature otherwise known only in Schizooura among Cretaceous ornithuromorphs. We discuss the implications of the new taxon on the evolution of morphology of primitive ornithuromorphs, particularly of pectoral girdle, sternum and limb proportion pertaining to powered flight. The preserved gastroliths and pedal morphology indicate herbivory and lakeshore adaption for this new species. © 2015 The Linnean Society of London  相似文献   

3.
The heteromorph ammonite Pravitoceras sigmoidale from the Upper Cretaceous Seidan Formation (Izumi Group) in south‐west Japan is frequently encrusted by sessile anomiid bivalves. Fossils of P. sigmoidale with anomiids are often concentrated at the top of or just above turbidite sandstones. Projecting retroversal hooks and apertures of P. sigmoidale are usually intact, and some individuals are associated with jaw apparatuses near apertures. Anomiids are found on both sides and ventral peripheries of P. sigmoidale conchs, attached predominantly to body chambers. These modes of occurrence suggest that the encrustation by anomiids occurred not on post‐mortem floating or sunken carcasses but on live conchs and that these organisms were rapidly buried by turbidity current deposits shortly after death. Attachment to both flanks and ventral peripheries of the retroversal hooks may indicate that at least adult individuals of P. sigmoidale did not lie on the sea floor and did not drag their body chambers. It is suggested that fully mature individuals of this ammonite species lived for a long period of time after having formed the retroversal hook because a few generations of anomiids have colonized a single body chamber. Such colonization by anomiids is also observed on Didymoceras awajiense, which is considered to be the closely related ancestral species of P. sigmoidale. This anomiid–heteromorph ammonite commensal relationship might continue to persist in descendants during the course of evolution of these heteromorph ammonites.  相似文献   

4.
Knowledge of the Early Cretaceous ammonoids of the NW‐Himalayas was poor until recent discoveries. Intense sampling from the Giumal Formation exposed near the village of Chikkim (Spiti Valley, Himachal Pradesh, India) led to the recognition of a new Early Cretaceous ammonoid fauna. The succession consists of arenitic sandstone interbedded with shale that was deposited by turbidity currents on an unstable shelf in the Early Cretaceous. Ammonoids have been obtained only from sandstone beds in the lower one‐third and close to the top of the c. 350‐m‐thick section. Eight new ammonoid taxa (1 genus and 7 species) are described: Sinzovia franki sp. nov. (rare), Giumaliceras giumaliense gen. et sp. nov. (abundant), Giumaliceras bhargavai gen. et sp. nov. (rare), Neocomites (Eristavites) platycostatiformis sp. nov. (rare), Cleoniceras oberhauseri sp. nov. (abundant), Australiceras himalayense sp. nov. (rare) and Deshayesites fuchsi sp. nov. (rare). Sinzovia and Deshayesites are reported for the first time from the Tethyan Himalaya. According to the biostratigraphic relevance of some ammonoid taxa described here, the age of the Giumal Formation can be constrained from Berriasian (Giumaliceras assemblage) to Aptian (Cleoniceras assemblage). The discovery of the new fauna substantiates the significance of the Giumal Formation around Chikkim and facilitates comparison with faunal assemblages from other regions in the Tethys Ocean and beyond.  相似文献   

5.
A cladistic analysis of 23 extant species of the deep‐sea pedunculate cirripede family Scalpellidae was undertaken, based on 61 shell plate characters, and taking the Jurassic–Cretaceous scalpellomorph genus Cretiscalpellum as an out‐group. The consensus tree shows progressive morphological change from basal to more derived taxa, but a derived group is marked by major morphological innovation, including 27 character state changes that permit subdivision of the family into two sharply demarcated clades – the more basal group is here placed within a redefined Scalpellinae (Arcoscalpellum, A rcuatoscalpellum gen. nov. , D iotascalpellum gen. nov. , Graviscalpellum, R egioscalpellum gen. nov. , and Scalpellum), and a more derived group named A migdoscalpellinae subfam. nov. that shows numerous progressive trends in morphology, permitting the recognition of three genera (Amigdoscalpellum, Catherinum, and Weltnerium). The phylogeny is independently supported by a recently published multiple DNA marker‐based molecular phylogeny. The more basal Scalpellinae appeared in the Aptian (Early Cretaceous, 120 Mya), and derived Amigdoscalpellinae were already present by the Campanian (Late Cretaceous, 78 Mya), represented by C atherinum anglicum sp. nov. and Amigdoscalpellum bellulum from the UK Chalk. Specialized receptacles to accommodate dwarf males in the apical interior of the scutum evolved at least three times during the history of the scalpellids. © 2015 The Linnean Society of London  相似文献   

6.
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype‐environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large‐scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.  相似文献   

7.
The trace fossil Zoophycos characterized by complex, three‐dimensional morphology with systematic internal structures occurs throughout the Phanerozoic marine sediments. The specimens of Zoophycos examined herein consist of a downward and helical spreite and are a product of the excretory behaviour of endobenthic detritus feeders. They are divided into two basic types: pre‐Jurassic and post‐Cretaceous types on the basis of whorls of spreiten in a single specimen. The pre‐Jurassic type has fewer than four whorls. In contrast, most of the post‐Cretaceous specimens exhibit spreite with multiple coils more than ten whorls. The abrupt increase in whorl number during the Cretaceous suggests that the sedentary lifestyle of the producer should change from a short‐term stay to long‐term or permanent occupation of the same burrow. Timing of the lifestyle change the Zoophycos producers seems to be closely related to the deep‐seaward migration of their habitats. The change in lifestyle and migration of Zoophycos‐producing animals during the Cretaceous might be attributable to the establishment of eutrophic bottom conditions in the deep sea. These changes seem to be associated with the flux of large amounts of phytodetrital food produced by phytoplankton, which experienced an explosive increase in species diversity during the Late Jurassic to the Late Cretaceous. The series of changes in lifestyle and habitat of the Zoophycos animals during the Late Mesozoic can serve as one piece of geological evidence for the ‘benthic‐pelagic coupling model’.  相似文献   

8.
Deep‐sea lobsters previously assigned to the family Thaumastochelidae Bate, 1888, the thaumastocheliforms, have very distinctive, greatly unequal first chelipeds, with the right side extremely elongate and pectinate, and in having short, quadrate pleonal pleura. Despite interesting morphology and a long taxonomic history, the phylogeny of the group has received little detailed analysis. Here, we conduct a species‐level phylogenetic analysis of the thaumastocheliforms based on morphological and molecular data (three mitochondrial genes: COI, 16S rDNA and 12S rDNA; two nuclear protein‐coding genes: H3 and NaK) to robustly reconstruct their evolutionary history and estimate divergence times. Separate and combined analyses of all data sources support thaumastocheliform monophyly, but as a clade deeply nested within the Nephropidae supporting recent synonymy of Thaumastochelidae with Nephropidae. Combined and molecular‐only analyses support generic monophyly of all three thaumastocheliform genera and Dinochelus as sister to Thaumastochelopsis, fully corroborating the current, morphology‐based taxonomy. In contrast, Thaumastocheles is recovered as paraphyletic in morphology‐only analyses owing to minimal character support. The Cretaceous–Paleogene Oncopareia was recovered as a stem‐lineage thaumastocheliform. The fossil record indicates that the thaumastocheliforms once lived in shallow, continental shelf depths, but moved into deeper water in the Cenozoic where they occur today. The thaumastocheliforms originated in northern Europe during the Mid‐Late Cretaceous and later dispersed westwards to the south‐eastern Pacific through the western Atlantic and eastwards to the western Pacific through the Indian Ocean. Thaumastochelopsis can be considered the most derived thaumastocheliform genus based on the degree of structural reduction relative to other thaumastocheliforms, its remote geographical occurrence (Australia) from the hypothesised place of origin (northern Europe) and its more recent estimated divergence than other genera (28 Mya for the MRCA of extant species of the genus).  相似文献   

9.
10.
Summary An Early Cretaceous mass-occurrence of ammonites in the Ternberg Nappe of the Northern Calcareous Alps (Upper Austria) is described for the first time. The mass-occurrence (section KB1-B=Klausrieglerbach 1, section B) dominated by Karsteniceras ternbergense Lukeneder is of Early Barremian age (Moutoniceras moutonianum Zone). The Karsteniceras mass-occurrence comprises eight different genera, each apparently represented by a single species, of which four are identified to species level. About 300 specimens of K. ternbergense between 5 and 37 mm in diameter were investigated. Two groups showing thick main ribs but different maximum size are distinguishable. The latter parameters are suggested to reflect sexual dimorphism within K. ternbergense, a condition that is most probably applicable to the whole leptoceratoid group. The geochemical results indicate that the Karsteniceras mass-occurrence within the described Lower Cretaceous succession was deposited under intermittent oxygen-depleted conditions associated with stable, salinity-stratified water masses. The rhythmicity of laminated black-marly lime-stone layers and light-grey bioturbated, organic-poor lime-stones suggests that the oxic and dysoxic conditions underwent highly dynamic changes. The deposition of the limestones in this interval occurred in an unstable environment and was controlled by short- and long-term fluctuations in oxygen levels. Karsteniceras inhabited areas of stagnant water with low dissolved oxygen; it showed peak abundance during times of oxygen depletion, which partially hindered other invertebrates from settling in such environments. The autochthonous Karsteniceras mass-occurrence can be assigned to the deposition-type of ‘Konservat Lagerst?tte’, which is indicated by the preservation of phosphatic siphuncle structures and proved by the in situ preservation of aptychi within Karsteniceras ternbergense. Based on lithological and geochemical analysis combined with in vestigations of trace fossils, microfossils and macrofossils, an invasion of an opportunistic (r-strategist) Karsteniceras biocoenosis during nonfavorable conditions over the sea bed during the Lower Barremian is proposed for the KB1-B section.  相似文献   

11.
Abstract: Buchiid bivalves are geographically widespread in Upper Jurassic and Lower Cretaceous strata of the Northern Hemisphere. They are often abundant and their short stratigraphic ranges make them ideal biostratigraphic index fossils; these characteristics also render them useful for study of evolutionary patterns. We used multivariate methods to determine if we could discriminate between species of Buchia and examine how morphological characters change through time within the genus. Using ten morphological characters to describe shell shape and size, we tested for taxonomic differences and morphologic change in populations of buchiids collected from a single stratigraphic section on Grassy Island, located along the west coast of Vancouver Island, British Columbia. Morphometric analysis utilized traditional morphological metrics and techniques, including linear and angular measurements as well as Fourier (outline shape) analyses. Phenetic discrimination revealed considerable overlap among the recognized species in the morphospace, as well as a fairly low discriminatory power between species when compared as a group using a step‐wise canonical variate analysis. Step‐wise discriminant analyses between species pairs gave rise to much higher classification rates, suggesting that different characters are important for distinguishing between different species pairs. Our results also indicate that single individuals and small sample sizes of Buchia specimens are insufficient for biostratigraphic discrimination (unless other rarely preserved features such as the hinge and bysuss ear are available) and that a number of previously described species variants may not be taxonomically valid. A biolog using the multivariate axis that best discriminates between species (CV1) and a random walk‐based test using a Hurst estimate analysis indicate a gradualistic evolutionary mode for the Buchia species of Grassy Island. Shell shape and size of buchiids do not appear to be closely tied to lithofacies changes over the c. 10 myr time interval, suggesting that ecophenotypic variation (as it relates to substrate changes) probably had minimal influence on morphology.  相似文献   

12.
Abstract: Radular teeth occur between the jaws in two specimens of the Late Cretaceous scaphitid ammonite Rhaeboceras halli (Meek and Hayden, 1856) from the Western Interior of the United States. The detailed morphology of the teeth has been revealed by propagation phase contrast X‐ray synchrotron microtomography. Each row of the radula of R. halli consists of a total of seven teeth (a central rachidian, two pairs of lateral and one pair of marginal teeth), as in other known ammonoid radulae, although the central tooth could not be confirmed in the specimens examined. The lateral teeth are multicuspid and robust, and the marginal teeth are long (4.6 mm) and slender. In overall morphology, the heterodont and ctenoglossan radula of R. halli is similar that of Jurassic and Cretaceous ammonites with the same aptychus‐type lower jaw, that is, the Aptychophora. This discovery reveals the range of variation in radular morphology, which could be related to ecological or phylogenetic factors. It also invalidates the hypothesis that the hook‐like structures in R. halli previously described are radular elements.  相似文献   

13.
The eastern Asian (EA)–eastern North American (ENA) floristic disjunction represents a major pattern of phytogeography of the Northern Hemisphere. Despite 20 years of studies dedicated to identification of taxa that display this disjunct pattern, its origin and evolution remain an open question, especially regarding post‐isolation evolution. The blue‐ or white‐fruited dogwoods (BW) are the most species‐rich among the four major clades of Cornus L., consisting of ~35 species divided into three subgenera (subg. Yinquania, subg. Mesomora, and subg. Kraniopsis). The BW group provides an excellent example of the EA–ENA floristic disjunction for biogeographic study due to its diversity distribution centered in eastern Asia and eastern North America, yet its species relationships and delineation have remained poorly understood. In this study, we combined genome‐wide markers from RAD‐seq, morphology, fossils, and climate data to understand species relationships, biogeographic history, and ecological niche and morphological evolution. Our phylogenomic analyses with RAxML and MrBayes recovered a strongly supported and well‐resolved phylogeny of the BW group with three intercontinental disjunct clades in EA and ENA or Eurasia and North America, of which two are newly identified within subg. Kraniopsis. These analyses also recovered a potential new species but failed to resolve relationships within the C. hemsleyiC. schindleri complex. In an effort to develop an approach to reduce computation time, analysis of different nodal age settings in treePL suggests setting a node's minimum age constraint to the lower bound of a fossil's age range to obtain similar ages to that of BEAST. Divergence time analyses with BEAST and treePL dated the BW stem back to the very Late Cretaceous and the divergence of the three subgenera in the Paleogene. By integrating fossil ages and morphology, a total evidence‐based dating approach was used in conjunction with time‐slice probabilities of dispersal under a DEC model to resolve ancestral ranges of each disjunct in the Miocene: Eurasia and ENA (disjunct 1), EA and western North America (disjunct 2), and EA (disjunct 3). The dated biogeographic history supports dispersal via the North Atlantic Land Bridge in the late Paleogene in disjunct 1 and dispersal via the Bering Land Bridge in the Miocene for disjuncts 2 and 3. Character mapping with a stochastic model in phytools and comparison of ecological niche, morphospace, and rate of evolution indicated differential divergence patterns in morphology, ecological niche, and molecules between disjunct sisters. Although morphological stasis was observed in most of the characters, evolutionary changes in growth habit and some features of leaf, flower, and fruit morphology occurred in one or both sister clades. A significant differentiation of ecological habitats in temperature, precipitation, and elevation between disjunct sisters was observed, suggesting a role of niche divergence in morphological evolution post‐isolation. The patterns of evolutionary rate between morphology and molecules varied among disjunct clades and were not always congruent between morphology and molecules, suggesting cases of non‐neutral morphological evolution driven by ecological selection. Our phylogenetic evidence and comparisons of evolutionary rate among disjunct lineages lend new insights into the formation of the diversity anomaly between EA and ENA, with particular support of an early diversification in EA. These findings, in conjunction with previous studies, again suggest that the EA–ENA disjunct floras are an assembly of lineages descended from the Mesophytic Forests that evolved from the early Paleogene “boreotropical flora” through varied evolutionary pathways across lineages.  相似文献   

14.
Nemopteridae are a charismatic family of lacewings distinguished by specialization of morphology in both larvae and adults as well as in their biology and behaviour. The evolutionary history of Nemopteridae is largely unknown due to the scarcity of fossil records. Here we report a new genus and species of Nemopteridae (Cretocroce xiai gen. et sp.n.) based on an exquisitely preserved adult specimen in mid‐Cretaceous Burmese amber. We place the new genus in the subfamily Crocinae, which is characterized by filamentous hindwings with a sensory function as an adaptation to their cavernicolous habitats. The new genus represents the first nemopterid in amber and the oldest crocine known to date. The new fossil crocine is nearly morphologically unchanged over 99 Ma compared with its modern counterparts. Moreover, it is estimated to be closely related to some extant crocines endemic to South America based on morphological phylogenetic analysis. The new finding provides direct evidence to demonstrate the antiquity of Crocinae morphological innovation and related biology, such as pollenophagous habits, and further corroborates Gondwanan origin of the subfamily. The published work has been registered on ZooBank: http://zoobank.org/urn:lsid:zoobank.org:pub:3D29DE48‐DBD8‐4614‐8387‐D9FCF90B0640 .  相似文献   

15.
Lepidosirenidae is a clade of freshwater lungfishes that include the extant South American Lepidosiren paradoxa Fitzinger, 1837 and African species of the genus Protopterus. These genera have been geographically separated since the break‐up of Gondwana in the Early Cretaceous, but they display similar biology and morphology. Species were distinguished by a combination of features such as head‐to‐body ratios, the number of pairs of ribs, and the presence of external gills, but no discrete skeletal characters were identified, and no comparative studies including all extant species have been published. I used computed tomography (CT), X‐ray photography, and specimens from museum collections to describe the skeletal morphology of all species of lepidosirenid in a comparative context. I digitally disarticulated the bones in each specimen to compile a comparative atlas of the cranial and pectoral elements of all extant lungfishes, which has the potential to increase the correct identifications of specimens in museum collections. The morphology of the frontoparietal, parasphenoid, supraorbital, and suboperculum differ between species. I used those characters, along with molecular sequence data from the ribosomal RNA gene 16S, to run combined morphological and molecular phylogenetic analyses. Lepidosirenidae is monophyletic in all analyses, but the interrelationships of the species of Protopterus vary with the different sources of character data. © 2015 The Linnean Society of London  相似文献   

16.
17.
The deep sea has a high biodiversity and a characteristic bathyal fauna. Earlier evidence suggested that at least some shallow‐water species invaded the ecosystem followed by radiation leading to endemic deep‐sea lineages with a genetic and/or morphological similarity to their shallow‐water counterparts. The nematode Halomonhystera disjuncta has been reported from shallow‐water habitats and the deep sea [Håkon Mosby mud volcano (HMMV)], but the morphological features and the phylogenetic relationships between deep‐sea and shallow‐water representatives remain largely unknown. Furthermore, nothing is known about the genetic structure of the H. disjuncta population within the HMMV. This study is the first integrative approach in which the morphological and phylogenetic relationships between a deep‐sea and shallow‐water free‐living nematode species are investigated. To elucidate the phylogenetic relationships, we analysed the mitochondrial gene Cytochrome oxidase c subunit I (COI) and three nuclear ribosomal genes (Internal Transcribed Spacer region, 18S and the D2D3 region of 28S). Our results show that deep‐sea nematodes comprise an endemic lineage compared to the shallow‐water representatives with different morphometric features. COI genetic divergence between the deep‐sea and shallow‐water specimens ranges between 19.1% and 25.2%. Taking these findings into account, we conclude that the deep‐sea form is a new species. amova revealed no genetic structure across the HMMV, suggesting that nematodes are able to disperse efficiently in the mud volcano.  相似文献   

18.
Based on data derived from computed tomography, we demonstrate that integrating 2D and 3D morphological data from ammonoid shells represents an important new approach for investigating the palaeobiology of ammonoids. Characterization of ammonite morphology has long been constrained to 2D data, with only a few studies collecting ontogenetic data in 180° steps. Here we combine this traditional approach with 3D data collected from high‐resolution nano‐computed tomography. Ontogenetic morphological data on the hollow shell of a juvenile ammonite Kosmoceras (Jurassic, Callovian) was collected. 2D data was collected in 10° steps and show significant changes in shell morphology. Preserved hollow spines show multiple mineralized membranes never reported before, representing temporal changes in the ammonoid mantle tissue. 3D data show that chamber volumes do not always increase exponentially, as was generally assumed, but may represent a proxy for life events, such as stress phases. Furthermore, chamber volume cannot be simply derived from septal spacing in forms comparable to Kosmoceras. Vogel numbers represent a 3D parameter for chamber shape, and those for Kosmoceras are similar to other ammonoids (Arnsbergites, Amauroceras) and modern cephalopods (Nautilus, Spirula). Two methods to virtually document the suture line ontogeny, used to document phylogenetic relationships of larger taxonomic entities, were applied for the first time and present a promising alternative to hand drawings. The curvature of the chamber surfaces increases during ontogeny due to increasing strength of ornamentation and septal complexity. As this may allow for faster handling of cameral liquid, it could compensate for decreasing SA/V ratios through ontogeny.  相似文献   

19.
The viviparous sea snakes (Hydrophiinae) are a young radiation of at least 62 species that display spectacular morphological diversity and high levels of local sympatry. To shed light on the mechanisms underlying sea snake diversification, we investigated recent speciation and eco‐morphological differentiation in a clade of four nominal species with overlapping ranges in Southeast Asia and Australia. Analyses of morphology and stomach contents identified the presence of two distinct ecomorphs: a ‘macrocephalic’ ecomorph that reaches >2 m in length, has a large head and feeds on crevice‐dwelling eels and gobies; and a ‘microcephalic’ ecomorph that rarely exceeds 1 m in length, has a small head and narrow fore‐body and hunts snake eels in burrows. Mitochondrial sequences show a lack of reciprocal monophyly between ecomorphs and among putative species. However, individual assignment based on newly developed microsatellites separated co‐distributed specimens into four significantly differentiated clusters corresponding to morphological species designations, indicating limited recent gene flow and progress towards speciation. A coalescent species tree (based on mitochondrial and nuclear sequences) and isolation‐migration model (mitochondrial and microsatellite markers) suggest between one and three transitions between ecomorphs within the last approximately 1.2 million to approximately 840 000 years. In particular, the macrocephalic ‘eastern’ population of Hydrophis cyanocinctus and microcephalic H. melanocephalus appear to have diverged very recently and rapidly, resulting in major phenotypic differences and restriction of gene flow in sympatry. These results highlight the viviparous sea snakes as a promising system for speciation studies in the marine environment.  相似文献   

20.
Abstract

Using a morphology‐based approach, we explore the relationships between three poorly understood species of organic‐walled Foraminifera. Thalmann and Bermudez (1954) described Chitinosiphon rufescens as the type species of a new monotypic genus which they compared to the tubular agglutinated foraminiferan Bathysiphon. Loeblich and Tappan (1964), however, considered C. rufescens to be identical to Reophax membranacea Brady 1879, type species of another organic‐walled genus, Nodellum. Based on a re‐examination of the type specimens of both species, new material of C. rufescens from the Lost City hydrothermal field, and new material of N. membranacea from the NE Atlantic and Pacific Oceans, we show that these two deep‐sea species are distinguished by the following features. (1) Chitinosiphon rufescens lacks the distinct, regular constrictions that divide the tubular test of N. membranacea into a series of segments. (2) The proloculus is spindle‐shaped in C. rufescens but sub‐cylindrical in N. membranacea. (3) A distinctive, pocket‐like invagination is developed at the base (proximal end) of the proloculus in N. membranacea but not in C. rufescens. However, a series of undescribed species which occur in deep‐sea sediments blur the distinction between the two genera. We therefore adopt a conservative position and regard Chitinosiphon as a junior synonym of Nodellum. We also examined the holotype and new material of Nodellum moniliforme Resig, 1982, the type species of Resigella Loeblich and Tappan, 1984, in which the organic‐walled test comprises a series of bulbous chambers. This species exhibits a basal invagination, identical to the feature present in Nodellum membranacea. These three remarkable species are united by the basically tubular test and the nature of the test wall which is largely organic, brownish in colour, and exhibits no internal structure when broken sections are examined by SEM. The surface of the organic test of Nodellum rufescens from Lost City is strewn with tiny (≤1μm), needle‐shaped mineral particles, visible only by SEM. More equidimensional, micron‐sized particles are present in the other two species. We agree with Thalmann and Bermudez (1954) that N. rufescens is related to tubular agglutinated taxa such as Bathysiphon. Resigella may have similar affinities, although this needs to be tested using molecular approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号