首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The world-famous ‘Orsten’ Konservat-Lagerstätte has yielded detailed information about Cambrian arthropods and their morphology. Internal organs or soft tissues have, however, rarely been reported, an obvious palaeobiological drawback. In this study, we employed synchrotron radiation X-ray tomographic microscopy (SRXTM) to study microscopic ‘Orsten’ arthropods from the Cambrian of Sweden: Skara minuta and two phosphatocopine species, Hesslandona sp. and Hesslandona trituberculata. This exceptionally high-resolution technique reveals internal organs or soft tissues that allow detailed comparison with equivalent structures in extant crustaceans and functional inferences to be made. The S. minuta specimen shows the digestive system and muscles that extend to the extremities. The slanting anterior portion of the head and anterior position of the mouth with a straight oesophagus suggest a primarily brushing and scraping way of feeding. The prominent head appendage muscles indicate muscle strength and good capacity for food manipulation. In the phosphatocopines the bulbous labrum is one of the most prominent morphological structures of the body. All specimens analysed reveal pairs of muscle bundles within the labrum. Based on comparisons with extant crustacean relatives, these muscles would fulfil the function of moving the labrum up and down in order to open the buccal cavity. The results of this pilot study demonstrate that there is still much to be learned about the ‘Orsten’ taxa.  相似文献   

2.
Abstract: Making the link between evolutionary processes and development in extinct organisms is usually hampered by the lack of preservation of ontogenetic stages in the fossil record. Planktic foraminifers, which grow by adding chambers, are an ideal target organism for such studies as their test incorporates all prior developmental stages. Previously, studies of development in these organisms were limited by the small size of their early chambers. Here, we describe the application of synchrotron radiation X‐ray tomographic microscopy (SRXTM) to document the ontogenetic history of the foraminifers Globigerinoides sacculifer and Globorotalia menardii. Our SRXTM scans permit resolution at submicrometre scale, thereby displaying additional internal structures such as pores, dissolution patterns and complexity of the wall growth. Our methods provide a powerful tool to pick apart the developmental history of these microfossils and subsequently assist in inferring phylogenetic relationships and evolutionary processes.  相似文献   

3.
The Oocystaceae family is generally considered to contain common freshwater eukaryotic microalgae, and few are reported living in semi‐saline habitats. Our latest ecological survey in Qinghai Lake and Angzicuo Lake, both large, closed, high‐altitude, semi‐saline lakes located on the Qinghai‐Tibet plateau in China, revealed Oocystaceae species as a dominant group among plankton. Since limited knowledge exists about semi‐saline species in the Oocystaceae family, a taxonomical study was carried out using morphological and phylogenetic methods. Using this approach, four new strains of Oocystaceae were identified and successfully cultured in the lab. Molecular results correlated with morphological characters and resolved these species into at least three genera. A new genus, Euchlorocystis, with type species Euchlorocystis subsalina, is described here as having the distinctive morphology of multiple pyrenoids per chloroplast among Oocystaceae, and an independent phylogenetic position at the base of the Oocystaceae. Similarly, the genus Densicystis, with type species Densicystis glomerata, is newly proposed here as having a unique colony morphology of dozens or hundreds of little cells tightly embedded in ellipsoid to round mucilage masses. Oocystis marina, originally described from the Baltic Sea, was also identified in Qinghai Lake and Angzicuo Lake and phylogenetically positioned in the semi‐saline clade of the Oocystaceae. The result that a marine species was detected in the closed inland lakes implies a further need to reevaluate the origins of these species.  相似文献   

4.
TLC‐DPPH guided fractionation of a sponge‐associated fungus Truncatella angustata with a solid culture resulted in the isolation of five new α‐pyrone‐based analogues namely angupyrones A – E ( 1  –  5 ), and 3‐ethyl‐4‐hydroxy‐6‐methyl‐2‐pyrone. Their structures were determined on the basis of extensive spectroscopic analyses, including the modified Mosher's method, bulkiness rule, and specific rotation for the configurational assignments. Angupyrones A – E exhibited moderate antioxidant response element activation in HepG2C8 cells, while the preliminary structure‐activity relationship was discussed.  相似文献   

5.
The trace fossil Zoophycos characterized by complex, three‐dimensional morphology with systematic internal structures occurs throughout the Phanerozoic marine sediments. The specimens of Zoophycos examined herein consist of a downward and helical spreite and are a product of the excretory behaviour of endobenthic detritus feeders. They are divided into two basic types: pre‐Jurassic and post‐Cretaceous types on the basis of whorls of spreiten in a single specimen. The pre‐Jurassic type has fewer than four whorls. In contrast, most of the post‐Cretaceous specimens exhibit spreite with multiple coils more than ten whorls. The abrupt increase in whorl number during the Cretaceous suggests that the sedentary lifestyle of the producer should change from a short‐term stay to long‐term or permanent occupation of the same burrow. Timing of the lifestyle change the Zoophycos producers seems to be closely related to the deep‐seaward migration of their habitats. The change in lifestyle and migration of Zoophycos‐producing animals during the Cretaceous might be attributable to the establishment of eutrophic bottom conditions in the deep sea. These changes seem to be associated with the flux of large amounts of phytodetrital food produced by phytoplankton, which experienced an explosive increase in species diversity during the Late Jurassic to the Late Cretaceous. The series of changes in lifestyle and habitat of the Zoophycos animals during the Late Mesozoic can serve as one piece of geological evidence for the ‘benthic‐pelagic coupling model’.  相似文献   

6.
Phylogenetic relationships of Oceanian staple yams (species of Dioscorea section Enantiophyllum) were investigated using plastid trnL‐F and rpl32‐trnL(UAG) sequences and nine nuclear co‐dominant microsatellites. Analysis of herbarium specimens, used as taxonomic references, allowed the comparison with samples collected in the field. It appears that D. alata, D. transversa and D. hastifolia are closely related species. This study does not support a direct ancestry from D. nummularia to D. alata as previously hypothesized. The dichotomy in D. nummularia previously described by farmers in semi‐perennial and annual types was reflected by molecular markers, but the genetic structure of D. nummularia appears more complex. Dioscorea nummularia displayed two haplotypes, each corresponding to a different genetic group. One, including a D. nummularia voucher from New Guinea, is closer to D. tranversa, D. alata and D. hastifolia and encompasses only semi‐perennial types. The second group is composed of semi‐perennial and annual yams. However, some of these annual yams also displayed D. alata haplotypes. Nuclear markers revealed that some annual yams shared alleles with D. alata and semi‐perennial D. nummularia, suggesting a hybrid origin, which may explain their intermediate morphotypes and the difficulty met in classifying them.  相似文献   

7.
Micro‐computed tomography (μCT) scanning now represents a standard tool for non‐destructive study of internal or concealed structure in fossils. Here we report on otoliths found in situ during routine μCT scanning of three‐dimensionally preserved skulls of Palaeogene and Cretaceous fishes. Comparisons are made with isolated otolith‐based taxa to attempt correlations between the body fossil and otolith fossil records. In situ otoliths previously extracted mechanically from specimens of Apogon macrolepis and Dentex laekeniensis match our μCT models. In some cases, we find a high degree of congruence between previously independent taxonomic placements for otolith and skeletal remains (Rhinocephalus, Osmeroides, Hoplopteryx). Unexpectedly, in situ otoliths of the aulopiform Apateodus match isolated otoliths of Late Cretaceous age previously interpreted as belonging to gempylids, a group of percomorph fishes that do not appear in the body fossil record until the Palaeogene. This striking example of convergence suggests constraints on otolith geometry in pelagic predators. The otoliths of Apateodus show a primitive geometry for aulopiforms and lack the derived features of Alepisauroidea, the lizardfish clade to which the genus is often attributed. In situ otoliths of Early Cretaceous fishes (Apsopelix and an unidentified taxon) are not well preserved, and we are unable to identify clear correlations with isolated otolith morphologies. We conclude that the preservation of otoliths suitable for μCT scanning appears to be intimately connected with the taphonomic history, lithological characteristics of surrounding matrix, and syn‐ and postdepositional diagenetic effects.  相似文献   

8.
The current study focuses on four species from the primarily marine diatom genus Craspedostauros that were observed growing attached to numerous sea turtles and sea turtle‐associated barnacles from Croatia and South Africa. Three of the examined taxa, C. danayanus sp. nov., C. legouvelloanus sp. nov., and C. macewanii sp. nov., are described based on morphological and, whenever possible, molecular characteristics. The new taxa exhibit characters not previously observed in other members of the genus, such as the presence of more than two rows of cribrate areolae on the girdle bands, shallow perforated septa, and a complete reduction of the stauros. The fourth species, C. alatus, itself recently described from museum sea turtle specimens, is reported for the first time from loggerhead sea turtles rescued in Europe. A 3‐gene phylogenetic analysis including DNA sequence data for three sea turtle‐associated Craspedostauros species and other marine and epizoic diatom taxa indicated that Craspedostauros is monophyletic and sister to Achnanthes. This study, being based on a large number of samples and animal specimens analyzed and using different preservation and processing methods, provides new insights into the ecology and biogeography of the genus and sheds light on the level of intimacy and permanency in the host–epibiont interaction within the epizoic Craspedostauros species.  相似文献   

9.
10.
DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large‐scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next‐generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high‐target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next‐generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10‐mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full‐length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full‐length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next‐generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.  相似文献   

11.
The freshwater turtles of the genus Emys and some leech species of the family Glossiphoniidae are the only Palaearctic representatives of primarily Nearctic taxa, which jointly colonized Eurasia and the Maghreb during the Miocene. The strict trophic relationships occurring between the glossiphoniid parasite leech Placobdella costata and its host, the emydid Emys orbicularis, make them a prime example of host–parasite cophylogenetic evolution. In the light of the discovery of the Sicilian cryptic endemic species Emys trinacris, which is the sister species to the widespread Palaearctic E. orbicularis, the possible cophylogenetic divergence of the turtle hosts and their leech parasites was investigated. In spite of the deep divergence scored between the two pond turtle species and of their allopatric distribution, their leech parasites proved to be conspecific and indistinguishable based on the implemented molecular marker. This unexpected decoupling might likely be ascribed to the different dispersal abilities of the two taxa and/or to the recent, human‐mediated introduction of the leech parasites in Sicily. If this last scenario is confirmed, the long‐term effects of the introduced leech parasite on the endemic Sicilian pond turtle Emys trinacris should be carefully monitored. In the frame of this study, representatives of the widely spread predatory leech Helobdella stagnalis were observed on E. trinacris. Molecular analyses of their stomach content allowed to rule out the possibility of the existence of a trophic relationships between these two taxa, in contrast to what was previously suspected, and suggest that H. stagnalis specimens were rather attached to the turtles for non‐nutritional reasons.  相似文献   

12.
Phylogenetic relationships in the family Delphinidae have been widely debated. We examined 347 skulls of Tursiops, Stenella, Delphinus, Steno, Lagenodelphis, and Sousa in order to resolve the phylogenetic position of Australian species of Tursiops. Five Tursiops type specimens were included. Cranial morphology was described using 2‐dimensional (2‐D) and 3‐dimensional geometric morphometrics (3‐GM), counts and categorical data. Analyses showed a clear morphological separation of Tursiops, including type specimens, from other genera. The three Stenella species did not cluster together. Stenella attenuata clustered with Delphinus delphis, and Stenella coeruleoalba with Lagenodelphis hosei. Length and width of the skull and rostrum were important discriminators in both methods. For 3‐D data, round vs. angular posterior skull shape distinguished some genera. Taxa that overlapped in the multivariate analyses had different mean tooth counts. Our study challenges genetic studies that identified Tursiops as polyphyletic, with T. aduncus closer to S. attenuata.  相似文献   

13.
Peniculistoma mytili and Mytilophilus pacificae are placed in the pleuronematid scuticociliate family Peniculistomatidae based on morphology and ecological preference for the mantle cavity of mytiloid bivalves. We tested this placement with sequences of the small subunit rRNA (SSUrRNA) and cytochrome c oxidase subunit 1 (cox1) genes. These species are very closely related sister taxa with no distinct genetic difference in the SSUrRNA sequence but about 21% genetic difference for cox1, supporting their placement together but separation as distinct taxa. Using infection frequencies, M. pacificae, like its sister species P. mytili, does not interact with Ancistrum spp., co‐inhabitants of the mantle cavity. On the basis of these ecological similarities, the fossil record of host mussels, and features of morphology and stomatogenesis of these two ciliates, we argue that M. pacificae derived from a Peniculistoma‐like ancestor after divergence of the two host mussels. Our phylogenetic analyses of pleuronematid ciliates includes the SSUrRNA gene sequence of Sulcigera comosa, a Histiobalantium‐like ciliate from Lake Baikal. We conclude: (i) that the pleuronematids are a monophyletic group; (ii) that the genus Pleuronema is paraphyletic; and (iii) that S. comosa is a Histiobalantium species. We transfer S. comosa to Histiobalantium and propose a new combination Histiobalantium comosa n. comb.  相似文献   

14.
The existence of the platyhelminth clade Adiaphanida—an assemblage comprising the well‐studied order Tricladida as well as two lesser known taxa, Prolecithophora and the obligate parasitic Fecampiida—is among the more surprising results of flatworm molecular systematics. Each of these three clades is itself largely well‐defined from a morphological point of view, although Adiaphanida at large, despite its strong support in molecular phylogenetic analyses, lacks known morphological synapomorphies. However, one taxon, the genus Genostoma, a parasite of the leptostracan crustacean Nebalia, rests uneasily within its current classification within the fecampiid family Genostomatidae; ultrastructural investigations on this taxon have uncovered a spermatogenesis reminiscent of Kalyptorhynchia, and a dorsal syncytium resembling the neodermatan tegument. Here, we provide molecular sequence data (nearly complete 18S and 28S rRNA) from a representative of Genostoma, with which we test hypotheses on the phylogenetic position of this taxon within Platyhelminthes, expanding upon a recently published phylum‐wide analysis, and applying novel alignment algorithms and substitution models. These analyses unequivocally position Genostoma as the sister group of Prolecithophora. However, even in taxon‐rich analyses, support for the position of the root of Adiaphanida is lacking, highlighting the need for new data types to study the phylogeny of this clade. Interestingly, our analyses also do not recover the monophyly of several taxa previously proposed, notably Continenticola within Tricladida and Protomonotresidae within Prolecithophora. In light of this phylogeny and the distinctive morphology (especially, spermatogenesis) of Genostoma, we advocate for a redefinition of the family Genostomatidae, outside of both Fecampiida and Prolecithophora, to encompass the members of this unique genus of parasites. Within Fecampiida, the family Piscinquilinidae fam. nov. is erected to accommodate the vertebrate‐parasitic Piscinquilinus, formerly Genostomatidae.  相似文献   

15.
Using up to 2117 bp of mitochondrial DNA and up to 2012 bp of nuclear DNA, we analysed phylogeographic differentiation of six widely distributed species of African hinged terrapins (Pelusios spp.) representing different habitat types. Two taxa each live in savannahs or in forests and mesic savannahs, respectively, and the remaining two species occur in intermediate habitats. The species living in forests and mesic savannahs do not enter dry savannahs, whereas the savannah species may occur in dry and wet savannahs and even in semi‐arid steppe regions. We found no obvious correlation between habitat type and phylogeographic pattern: one savannah species (P. rhodesianus) shows phylogeographic structure, i.e. pronounced genetic differences among geographically distinct populations, and the other (P. nanus) not. One species inhabiting forests and mesic savannahs (P. carinatus) has phylogeographic structure, the other (P. gabonensis) not. The same pattern is true for the two ecologically intermediate species, with phylogeographic structure present in P. castaneus and absent in P. chapini. Nuclear evidence suggests that the latter two taxa with abutting and partially overlapping ranges are distinct, while mtDNA is only weakly differentiated. Pelusios castaneus shows pronounced phylogeographic structure, which could reflect Pleistocene range interruptions correlated with the fluctuating forest cover in West and Central Africa. Our results do not support the recognition of an extinct subspecies of P. castaneus for the Seychelles. Pelusios carinatus contains two well supported clades, which are separated by the Congo River. This species is closely related to P. rhodesianus, a taxon consisting of two deeply divergent mitochondrial clades. One of these clades is paraphyletic with respect to P. carinatus, but the two clades of P. rhodesianus are not differentiated in the studied nuclear markers and, again, paraphyletic with respect to P. carinatus. Using mtDNA sequences from the type material of P. rhodesianus, we were able to allocate this name to one of the two clades. However, owing to the confusing relationships of P. rhodesianus and P. carinatus, we refrain from taxonomic decisions.  相似文献   

16.
DNA sequences from type material in the nongeniculate coralline genus Lithophyllum were used to unambiguously link some European species names to field‐collected specimens, thus providing a great advance over morpho‐anatomical identifi‐cation. In particular, sequence comparisons of rbcL, COI and psbA genes from field‐collected specimens allowed the following conclusion: the generitype species, L. incrustans, occurs mostly as subtidal rhodoliths and crusts on both Atlantic and Mediterranean coasts, and not as the common, NE Atlantic, epilithic, intertidal crust reported in the literature. The heterotypic type material of L. hibernicum was narrowed to one rhodolith belonging in Lithophyllum. As well as occurring as a subtidal rhodolith, L. hibernicum is a common, epilithic and epizoic crust in the intertidal zone from Ireland south to Mediterranean France. A set of four features distinguished L. incrustans from L. hibernicum, including epithallial cell diameter, pore canal shape of sporangial conceptacles and sporangium height and diameter. An rbcL sequence of the lectotype of Lithophyllum bathyporum, which was recently proposed to accommodate Atlantic intertidal collections of L. incrustans, corresponded to a distinct taxon hitherto known only from Brittany as the subtidal, bisporangial, lectotype, but also occurs intertidally in Atlantic Spain. Specimens from Ireland and France morpho‐anatomically identified as L. fasciculatum and a specimen from Cornwall likewise identified as L. duckerae were resolved as L. incrustans and L. hibernicum, respectively.  相似文献   

17.
18.
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome‐wide sequence information, independent data were obtained from genotyping‐by‐sequencing and a target‐enrichment experiment that returned 244 low‐copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent‐based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat‐group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat‐group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.  相似文献   

19.
The cloud forests of Mesoamerica are highly endangered habitats and the existence of narrowly distributed cryptic endemics will increase the number of taxa at potential risk of extinction. Here, we investigate genetic divergence between populations of the azure‐crowned hummingbird (Amazilia cyanocephala), a species complex of endemic hummingbirds to the montane forests of Mesoamerica, by analysing DNA sequences of four mitochondrial markers, morphological data and ecological niche modelling. Our results revealed the presence of two mtDNA lineages corresponding to subspecies A. c. cyanocephala distributed from Tamaulipas to Chiapas in Mexico and Amazilia c. guatemalensis distributed from southern Chiapas to Guatemala. The lineage split can be explained as a consequence of relative isolation of the populations in the different mountain ranges separated by the Motagua‐Polochic‐Jocotán fault system and corresponds to differences in morphology and to the lack of overlap in environmental space between subspecies. The divergence time estimates do not support the proposed model of a highly constrained temporal window at the end of the Pliocene as divergence at this barrier between cyanocephala and guatemalensis and splits of other bird taxa occurred during the Pleistocene.  相似文献   

20.
Members of the morphologically unusual cyanobacterial family Gomontiellaceae were studied using a polyphasic approach. Cultured strains of Hormoscilla pringsheimii, Starria zimbabweënsis, Crinalium magnum, and Crinalium epipsammum were thoroughly examined, and the type specimen of the family, Gomontiella subtubulosa, was investigated. The results of morphological observations using both light microscopy and transmission electron microscopy were consistent with previous reports and provided evidence for the unique morphological and ultrastructural traits of this family. Analysis of the 16S rRNA gene confirmed the monophyletic origin of non‐marine repre‐sentatives of genera traditionally classified into this family. The family was phylogenetically placed among other groups of filamentous cyanobacterial taxa. The presence of cellulose in the cell wall was analyzed and confirmed in all cultured Gomontiellaceae members using Fourier transform infrared spectroscopy and fluorescence microscopy. Evaluation of toxins produced by the studied strains revealed the hepatotoxin cylindrospermopsin (CYN) in available strains of the genus Hormoscilla. Production of this compound in both Hormoscilla strains was detected using high‐performance liquid chromatography in tandem with high resolution mass spectrometry and confirmed by positive PCR amplification of the cyrJ gene from the CYN biosynthetic cluster. To our knowledge, this is the first report of CYN production by soil cyanobacteria, establishing a previously unreported CYN‐producing lineage. This study indicates that cyanobacteria of the family Gomontiellaceae form a separate but coherent cluster defined by numerous intriguing morphological, ultrastructural, and biochemical features, and exhibiting a toxic potential worthy of further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号