首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The role of Asn-linked oligosaccharide in the functional properties of both human tissue-type plasminogen activator (t-PA) and a genetic variant of t-PA was studied. Nonglycosylated and glycosylated wild-type t-PA were produced in mammalian cells which express recombinant t-PA. These proteins were compared in fibrin binding and 125I-labeled fibrin clot lysis assays, using purified components. The nonglycosylated form showed higher fibrin binding, as well as higher fibrinolytic potency than the glycosylated form. Subsequently, prevention of glycosylation of a t-PA variant which lacked the finger and epidermal growth factor domains (delta FE), was carried out in an attempt to enhance its fibrinolytic activity. Glycosylation was prevented by changing Asn to Gln; at Asn-117 to produce delta FE1X t-PA, and at Asn-117, -184, and -448 to produce delta FE3X t-PA. All variants were similar to wild-type t-PA in their catalytic dependence on fibrinogen fragments, fibrinolytic activity in fibrin autography analysis, and plasminogen activator activity. In a clot lysis assay, using citrated human plasma, the fibrinolytic potency of the variants were comparable to that of wild-type t-PA at activator concentrations of 17-51 nM (approximately 1-3 micrograms/ml). At 0.5-5.1 nM (approximately 0.03-0.3 micrograms/ml), however, the variant proteins had lower fibrinolytic potency than wild-type t-PA. Fifty percent lysis in 1.5 h for wild-type, delta FE, delta FE1X, and delta FE3X t-PA, required 2.5, 10, 7.5, and 5.5 nM t-PA, respectively. The fibrinogenolytic activity in human plasma was measured for wild-type, delta FE, delta FE1X, and delta FE3X t-PA, and showed significant fibrinogen depletion after 3 h of incubation at 51 nM, decreasing to 11, 11, 50, and 72% of basal levels, respectively. These data indicate that partial or total nonglycosylated t-PA variants have a higher fibrinolytic versus fibrinogenolytic ratio than their fully glycosylated counterparts.  相似文献   

2.
Human tissue-type plasminogen activator (t-PA) catalyses the conversion of inactive plasminogen into active plasmin, the main fibrinolytic enzyme. This process is confined to the fibrin surface by specific binding of t-PA to fibrin and stimulation of its activity by fibrin. Tissue-type plasminogen activator contains five domains designated finger, growth factor, kringle 1, kringle 2 and protease. The involvement of the domains in fibrin specificity was investigated with a set of variant proteins lacking one or more domains. Variant proteins were produced by expression in Chinese hamster ovary cells of plasmids containing part of the coding sequence for the activator. It was found that kringle 2 domain only is involved in stimulation of activity by fibrin. In the absence of plasminogen and at low concentration of fibrin, binding of t-PA is mainly due to the finger domain, while at high fibrin concentrations also kringle 2 is involved in fibrin binding. In the presence of plasminogen, fibrin binding of the kringle 2 region of t-PA also becomes important at low fibrin concentrations.  相似文献   

3.
Five cDNA encoding human tissue-type plasminogen activator (t-PA) variants with deletion and/or duplication of structural/functional domains were cloned and expressed in Chinese hamster ovary cells. The mutants included: rt-PA-delta FE (where r represents recombinant), with deletion of the finger (F) and growth factor (E) domains; rt-PA-delta K1 delta K2, with replacement of kringle 1 (K1) by a second copy of kringle 2 (K2); and rt-PA-delta FK1 delta K2, rt-PA-delta EK1 delta K2, and rt-PA-delta FEK1 delta K2, with deletions in rt-PA-delta K1 delta K2 of the finger or growth factor domain or both, respectively. The variant rt-PAs, purified to homogeneity, were obtained essentially as single-chain molecules. CNBr-digested fibrinogen enhanced plasminogen activation between 110-fold with rt-PA-delta EK1 delta K2 and 150-fold with rt-PA-delta FEK1 delta K2 as compared to 140-fold with rt-PA. All rt-PA moieties showed a comparable concentration-dependent binding to fibrin, except rt-PA-delta FE, which had significantly reduced binding that was, however, partially restored by additional replacement of K1 with K2. All the rt-PA variants with two copies of K2 showed increased binding to lysine-Sepharose as compared to rt-PA, whereas rt-PA-delta FE had reduced binding. All rt-PA moieties induced a similar time- and concentration-dependent lysis of a 125I-fibrin-labeled plasma clot immersed in human plasma. Equally effective concentrations (causing 50% clot lysis in 2 h) ranged between 1.0 microgram/ml for rt-PA-delta K1 delta K2 and 1.6 micrograms/ml for rt-PA-delta FE as compared to 0.5 microgram/ml for rt-PA. Thus, replacement in rt-PA of K1 by a second copy of K2, which is known to contain a lysine-binding site, significantly enhances its affinity for lysine, with maintenance of its affinity for intact fibrin. Deletion of the finger and growth factor domains results in decreased fibrin affinity and fibrinolytic potency in a plasma milieu, which are partially restored by replacement of K1 by K2.  相似文献   

4.
Human tissue-type plasminogen activator (t-PA) is a glycoprotein used currently in thrombolytic therapy for patients with acute myocardial infarction. Due to its rapid rate of clearance from the circulation, continuous intravenous administration of approximately 100 mg over 3 h is recommended. We have previously characterized novel thrombolytic variant forms of t-PA which offer the potential of administration by bolus injection and reduced dosage due to their slower rates of clearance, relative to t-PA. This study was undertaken to quantitatively compare the pharmacokinetics, thrombolytic activity, and hemostatic effects of two of these variant forms, called delta FE1X and delta FE3X plasminogen activator (PA), with commercially available recombinant t-PA (Activase). These evaluations were performed in rabbits after bolus intravenous injection of the proteins. Following injection of 0.25 mg of protein/kg of body weight, the rates of clearance for delta FE3X and delta FE1X PA antigen were decreased approximately 9- and 18-fold, respectively, relative to Activase. Plasma plasminogen activator activity was also measured and the rates of clearance of delta FE3X and delta FE1X PA activity were similarly decreased by approximately 9- and 22-fold, respectively, relative to Activase. To quantitate thrombolytic activity we used the rabbit jugular vein thrombosis model and demonstrated that approximately 50% thrombolysis was achieved with delta FE1X and delta FE3X PA at approximately an 8.6- and 3-fold lower dose than Activase, respectively. No major differences in fibrinogen and alpha 2-antiplasmin depletion were observed among the agents at doses required to produce 50% thrombolysis, indicating similarities in fibrin specificities among these agents. These results demonstrate a reciprocal relationship between thrombolysis and rate of clearance for these thrombolytic proteins. The 8.6-fold increase in potency of delta FE1X PA relative to Activase supports the future clinical testing of this novel engineered protein as a thrombolytic agent.  相似文献   

5.
Lipoprotein(a) [Lp(a)], but not low-density lipoprotein (LDL), was previously shown to impair the generation of fibrin-bound plasmin [Rouy et al. (1991) Arterioscler. Thromb. 11, 629-638] by a mechanism involving binding of Lp(a) to fibrin. It was therefore suggested that the binding was mediated by apolipoprotein(a) [apo(a)], a glycoprotein absent from LDL which has a high degree of homology with plasminogen, the precursor of the fibrinolytic enzyme plasmin. Here we have evaluated this hypothesis by performing comparative fibrin binding studies using a recombinant form of apo(a) containing 17 copies of the apo(a) domain resembling kringle 4 of plasminogen, native Lp(a), and Glu-plasminogen (Glu1-Asn791). Attempts were also made to identify the kringle domains involved in such interactions using isolated elastase-derived plasminogen fragments. The binding experiments were performed using a well-characterized model of an intact and of a plasmin-digested fibrin surface as described by Fleury and Anglés-Cano [(1991) Biochemistry 30, 7630-7638]. Binding of r-apo(a) to the fibrin surfaces was of high affinity (Kd = 26 +/- 8.4 nM for intact fibrin and 7.7 +/- 4.6 nM for plasmin-degraded fibrin) and obeyed the Langmuir equation for adsorption at interfaces. The binding to both surfaces was inhibited by the lysine analogue AMCHA and was completely abolished upon treatment of the degraded surface with carboxypeptidase B, indicating that r-apo(a) binds to both the intrachain lysines of intact fibrin and the carboxy-terminal lysines of degraded fibrin. As expected from these results, both r-apo(a) and native Lp(a) inhibited the binding of Glu-plasminogen to the fibrin surfaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The heavy chain of tissue plasminogen activator (t-PA) consists of four domains [finger, epidermal-growth-factor (EGF)-like, kringle 1 and kringle 2] that are homologous to similar domains present in other proteins. To assess the contribution of each of the domains to the biological properties of the enzyme, site-directed mutagenesis was used to generate a set of mutants lacking sequences corresponding to the axons encoding the individual structural domains. The mutant proteins were assayed for their ability to hydrolyze artificial and natural substrates in the presence and absence of fibrin, to bind to lysine-Sepharose and to be inhibited by plasminogen activator inhibitor-1. All the deletion mutants exhibit levels of basal enzymatic activity very similar to that of wild-type t-PA assayed in the absence of fibrin. A mutant protein lacking the finger domain has a 2-fold higher affinity for plasminogen than wild-type t-PA, while the mutant that lacks both finger and EGF-like domains is less active at low concentrations of plasminogen. Mutants lacking both kringles neither bind to lysine-Sepharose nor are stimulated by fibrin. However, mutants containing only one kringle (either kringle 1 or kringle 2) behave indistinguishably from one another and from the wild-type protein. We conclude that kringle 1 and kringle 2 are equivalent in their ability to mediate stimulation of catalytic activity by fibrin.  相似文献   

7.
Human tissue-type plasminogen activator (t-PA) consists of five domains designated (starting from the N-terminus) finger, growth factor, kringle 1, kringle 2, and protease. The binding of t-PA to lysine-Sepharose and aminohexyl-Sepharose was found to require kringle 2. The affinity for binding the lysine derivatives 6-aminohexanoic acid and N-acetyllysine methyl ester was about equal, suggesting that t-PA does not prefer C-terminal lysine residues for binding. Intact t-PA and a variant consisting only of kringle 2 and protease domains were found to bind to fibrin fragment FCB-2, the very fragment that also binds plasminogen and acts as a stimulator of t-PA-catalyzed plasminogen activation. In both cases, binding could completely be inhibited by 6-aminohexanoic acid, pointing to the involvement of a lysine binding site in this interaction. Furthermore, the second site in t-PA involved in interaction with fibrin, presumably the finger, appears to interact with a part of fibrin, different from FCB-2.  相似文献   

8.
Transformation of fibrinogen into fibrin with consequent formation of the fibrin clot trimeric structure is one of the final steps in the blood coagulation system. The plasminogen activation by the tissue plasminogen activator (t-PA) is one of the fibrinolysis system key reactions. The effect of different factors on transformation of plasminogen into plasmin is capable to change essentially the equilibrium between coagulation and fibrinolytic sections of haemostasis system. We have studied the plasminogen activation by tissue plasminogen activator on fibrin clots surface formed on the interface between two phases and in presence of one phase. The t-PA plasminogen activation rate on fibrin clots both with film and without it the latter has been analyzed. These data allow to assume that the changes of fibrin clot structure depend on its formations, as well as are capable to influence essentially on plasminogen activation process by means of its tissue activating agent.  相似文献   

9.
Mechanisms of plasminogen activation by mammalian plasminogen activators   总被引:4,自引:0,他引:4  
H R Lijnen  D Collen 《Enzyme》1988,40(2-3):90-96
Plasminogen activators convert the proenzyme plasminogen to the active serine protease plasmin by hydrolysis of the Arg560-Val561 peptide bond. Physiological plasminogen activation is however regulated by several additional molecular interactions resulting in fibrin-specific clot lysis. Tissue-type plasminogen activator (t-PA) binds to fibrin and thereby acquires a high affinity for plasminogen, resulting in efficient plasmin generation at the fibrin surface. Single-chain urokinase-type plasminogen activator (scu-PA) activates plasminogen directly but with a catalytic efficiency which is about 20 times lower than that of urokinase. In plasma, however, it is inactive in the absence of fibrin. Chimeric plasminogen activators consisting of the NH2-terminal region of t-PA (containing the fibrin-binding domains) and the COOH-terminal region of scu-PA (containing the active site), combine the mechanisms of fibrin specificity of both plasminogen activators. Combination of t-PA and scu-PA infusion in animal models of thrombosis and in patients with coronary artery thrombosis results in a synergic effect on thrombolysis, allowing a reduction of the therapeutic dose and elimination of side effects on the hemostatic system.  相似文献   

10.
Trinitrobenzyl alkylation of poly(D-lysine) provides a novel powerful stimulator of tissue-type plasminogen activator. Its stimulatory effect on plasminogen activation is far greater than that of the original poly(D-lysine), and even surpasses that of fibrin. Its effect on plasmin-catalysed modification of both tissue-type plasminogen activator (t-PA) and native (Glu-1-) plasminogen are also investigated. Cleavage of one-chain t-PA to its two-chain form is monitored by measuring the increase in amidolytic activity which accompanies this transformation. Presupposing apparent first-order reaction kinetics, a theory is developed by which the rate constant, kcat/Km = 1.0 X 10(6) M-1 X s-1 of plasmin cleavage of one-chain t-PA can be calculated. Plasmin-catalysed transformation of 125I-labelled Glu-1- to Lys-77-plasminogen is quantified following separation by polyacrylamide gel electrophoresis at pH 3.2. A rate constant, kcat/Km = 4.4 X 10(3) M-1 X s-1 is obtained for the reaction between plasmin and Glu-1-plasminogen in the presence of 1 mM trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Both of the above plasmin-catalysed reactions are strongly enhanced by trinitrobenzoylated poly(D-lysine). The mechanism of action of this stimulator is elucidated by studying its binding to both activator and plasmin(ogen), and by direct comparison of the results with measurements of plasminogen activation kinetics in the presence of the stimulator. Binding studies are performed exploiting the observation that an insoluble yellow complex is formed between plasminogen and modified poly(D-lysine). Protein-polymer interactions are also studied with solubilised components in an aqueous two-phase partition system containing dextran and poly(ethylene glycol). The rate enhancement of plasminogen activation is found to be closely correlated to the association of plasminogen to the stimulator. It is proposed that the stimulator effects of this simple polymer on the enzymatic activities of both plasminogen activator and plasmin are brought about by association of the proteinase and its substrate to a common matrix. Similarities between the action of the artificial and the natural stimulator (fibrin) are stressed. These properties of trinitrobenzoylated poly(D-lysine) makes it useful as a model for the study of the regulatory mechanism of the fibrinolytic process at the molecular level.  相似文献   

11.
Photoaffinity labeling of human plasmin using 4-azidobenzoylglycyl-L-lysine inhibits clot lysis activity, while the activity toward the active-site titrant, p-nitrophenyl-p'-guanidinobenzoate, or alpha-casein are maintained. Photoaffinity labeling of native Glu-plasminogen with the same reagent causes incorporation of approximately 1.5 mol label per mol plasminogen. This labeled plasminogen can be activated to plasmin by either urokinase or streptokinase. The resulting plasmin has full clot lysis activity and can be subsequently photoaffinity labeled with a loss of clot lysis activity. The rate of activation of labeled plasminogen by urokinase is increased relative to that of native plasminogen. epsilon-Aminocaproic acid blocks incorporation of photoaffinity label into both plasminogen and plasmin, indicating that the labeling is specific to the lysine-binding sites. The labels are located in the kringle 1+2+3 fragment in either photoaffinity-labeled plasminogen or plasmin. These results indicate that the specific lysine-binding site blocked in plasmin acts in concert with the active-site in binding and using fibrin as a substrate. This clot lysis regulating site is not available for labeling in plasminogen, but is exposed or changed upon activation to plasmin. The different lysine-binding sites labeled in plasminogen may regulate the conformation of the molecule as evidence by an enhanced rate of activation to plasmin.  相似文献   

12.
Structure and function of human tissue-type plasminogen activator (t-PA)   总被引:5,自引:0,他引:5  
Full-length tissue-type plasminogen activator (t-PA) cDNA served to construct deletion mutants within the N-terminal "heavy" (H)-chain of the t-PA molecule. The H-chain cDNA consists of an array of structural domains homologous to domains present on other plasma proteins ("finger," "epidermal growth factor," "kringles"). These structural domains have been located on an exon or a set of exons. The endpoints of the deletions nearly coincide with exon-intron junctions of the chromosomal t-PA gene. Recombinant t-PA deletion mutant proteins were obtained after transient expression in mouse Ltk- cells, transfected with SV40-pBR322-derived t-PA cDNA plasmids. It is demonstrated that the serine protease moiety of t-PA and its substrate specificity for plasminogen is entirely contained within the C-terminal "light" (L)-chain of the protein. The presence of cDNA, encoding the t-PA signal peptide preceding the remaining portion of t-PA, suffices to achieve secretion of (mutant) t-PA into the medium. The stimulatory effect of fibrin on the plasminogen activator activity of t-PA was shown to be mediated by the kringle K2 domain and, to a lesser extent, by the finger domain. The other domains on the H-chain, kringle K1, and the epidermal growth-factor-like domain, do not contribute to this property of t-PA. These findings correlate well with the fibrin-binding properties of the rt-PA deletion-mutant proteins, indicating that stimulation of the activity is based on aligning of the substrate plasminogen and its enzyme t-PA on the fibrin matrix. The primary target for endothelial plasminogen activator inhibitor (PAI) is located within the L-chain of t-PA. Deleting specific segments of t-PA H-chain cDNA and subsequent transient expression in mouse Ltk- cells of t-PA deletion-mutant proteins did not affect the formation of a stable complex between mutant t-PA and PAI.  相似文献   

13.
Recent data from several studies have suggested that the non-protease domains in tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) determine their biological specificities, including binding to fibrin clots and survival in the circulatory system (Van Zonneveld, A.-J., Veerman, H., and Pannekoek, H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 4670-4674; Rijken, D. C., and Emeis, J. J. (1986) Biochem. J. 238, 643-646). Structural manipulations (e.g. deletions, additions, or substitutions) in these domains can thus be utilized to maximize the desired biological effects. Using recombinant DNA technology, we constructed a number of hybrid molecules from the t-PA and u-PA genes. In hybrid A, the epidermal growth factor and finger domains of t-PA (residues 1-91) were replaced by the epidermal growth factor and kringle of u-PA (residues 1-131). In hybrids B and C, the u-PA kringle (residues 50-131) was inserted either before (residue 92) or after (residue 261) the double-kringle region of t-PA. All these hybrid PAs containing three kringles were expressed in mouse fibroblast cells (C-127). The hybrid proteins were synthesized in predominantly a single-chain form with molecular weights of 70,000-80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were enzymatically active as assayed by the fibrin-agar plate method. In vitro studies on the binding of hybrid PAs to fibrin showed that hybrid B, like t-PA, possesses affinity toward fibrin, while hybrid A shows lower binding. This suggests that the finger domain, which is not present in hybrid A, plays a role in conferring fibrin affinity to the hybrid PAs. The enzymatic activities of the hybrids were compared with that of recombinant t-PA (rt-PA) expressed in the same vector/host system and found to be similar in activity toward a chromogenic peptide substrate. In addition, plasminogen activation with all the hybrid-PAs, as with rt-PA, was stimulated by fibrin, with the order of activity being rt-PA greater than or equal to hybrid B greater than hybrid C greater than hybrid A. This study shows the feasibility of shuffling functional domain(s) of known specificity in plasminogen activators which may lead to the design of a superior thrombolytic agent.  相似文献   

14.
There are two physiological plasminogen activators (PAs), tissue-type PA (t-PA) and urokinase (u-PA) which possess distinct immunological and biochemical characteristics. Using genetic engineering techniques a hybrid t:u-PA cDNA, comprised of amino acid (aa) sequences corresponding to the non-protease region (aa 1-261) of t-PA and the protease region (aa 132-411) of u-PA, was constructed. The t:u-PA gene after insertion into the SV40 expression vector was expressed in monkey Cos-1 cells. The 66-67 kDa t:u-PA was produced in an enzymatically active form. The fibrinolytic activity of the t:u-PA could be quenched by anti-urokinase as well as by anti-t-PA sera. Like urokinase, the t:u-PA showed a high intrinsic plasminogen activation. This activity, as in the case of t-PA, was stimulated by fibrin. The u-PA, on the other hand, stimulated plasminogen activation marginally in the presence of fibrin. Both the t:u-PA and t-PA showed binding affinity for fibrin clot. This study strongly suggests the autonomous nature of the structural domains in PA and also demonstrates the feasibility of shuffling these domains without loss of their functional activities.  相似文献   

15.
The enzyme tissue-type plasminogen activator (t-PA) and its substrate Glu-plasminogen can both bind to fibrin. The assembly of these three components results in about a 1000-fold acceleration of the conversion of Glu-plasminogen into plasmin. Fibrin binding of t-PA is mediated both by its finger (F) domain and its kringle-2 domain. Fibrin binding of Glu-plasminogen involves its kringle structures (K1-K5). It has been suggested that particular kringles contain lysine-binding sites and/or aminohexyl-binding sites, exhibiting affinity for specific carboxyl-terminal lysines and intrachain lysines, respectively. We investigated the possibility that t-PA and Glu-plasminogen kringles share common binding sites in fibrin, limitedly digested with plasmin. For that purpose we performed competition experiments, using conditions that exclude plasmin formation, with Glu-plasminogen and either t-PA or two deletion mutants, lacking the F domain (t-PA del.F) or lacking the K2 domain (t-PA del.K2). Our data show that fibrin binding of t-PA, mediated by the F domain, is independent of Glu-plasminogen binding. In contrast, partial inhibition by Glu-plasminogen of t-PA K2 domain-mediated fibrin binding is observed that is dependent on carboxyl-terminal lysines, exposed in fibrin upon limited plasmin digestion. Half-maximal competition of fibrin binding of both t-PA and t-PA del.F is obtained at 3.3 microM Glu-plasminogen. The difference between this value and the apparent dissociation constant of Glu-plasminogen binding to limitedly digested fibrin (12.1 microM) under these conditions is attributed to multiple, simultaneous interactions, each having a separate affinity. It is concluded that t-PA and Glu-plasminogen can bind to the same carboxyl-terminal lysines in limitedly digested fibrin, whereas binding sites composed of intrachain lysines are unique both for the K2 domain of t-PA and the Glu-plasminogen kringles.  相似文献   

16.
Plasminogen is the proenzyme precursor of the primary fibrinolytic protease plasmin. Circulating plasminogen, which comprises a Pan-apple (PAp) domain, five kringle domains (KR1-5), and a serine protease (SP) domain, adopts a closed, activation-resistant conformation. The kringle domains mediate interactions with fibrin clots and cell-surface receptors. These interactions trigger plasminogen to adopt an open form that can be cleaved and converted to plasmin by tissue-type and urokinase-type plasminogen activators. Here, the structure of closed plasminogen reveals that the PAp and SP domains, together with chloride ions, maintain the closed conformation through interactions with the kringle array. Differences in glycosylation alter the position of KR3, although in all structures the loop cleaved by plasminogen activators is inaccessible. The ligand-binding site of KR1 is exposed and likely governs proenzyme recruitment to targets. Furthermore, analysis of our structure suggests that KR5 peeling away from the PAp domain may initiate plasminogen conformational change.  相似文献   

17.
A chimeric plasminogen activator (t-PA/scu-PA-s), consisting of amino acids 1-263 of tissue-type plasminogen activator (t-PA) and 144-411 of single-chain urokinase-type plasminogen activator (scu-PA), was previously shown to maintain the enzymatic properties of scu-PA but to have only partially acquired the fibrin affinity of t-PA, possibly as a result of steric interaction between the functional domains of t-PA and scu-PA (Nelles, L., Lijnen, H. R., Collen, D., and Holmes, W.E. (1987) J. Biol. Chem. 262, 10855-10862). Therefore, we now have constructed an extended chimeric t-PA/scu-PA protein, consisting of amino acids 1-274 of t-PA and 138-411 of scu-PA, which thus has an additional sequence of 17 residues in the region joining the two proteins. The highly purified extended chimeric protein (t-PA/scu-PA-e) was found to have similar specific activity on fibrin film (65,000 IU/mg), kinetic constants for the activation of plasminogen (Km = 1 microM, k2 = 0.0026 s-1), fibrin affinity (50% binding at a fibrin concentration of 3.3 g/liter), and fibrin specificity of clot lysis in a plasma environment (50% lysis in 2 h with 8 nM of the chimer) as the previously characterized chimeric protein (t-PA/scu-PA-s). Thus, unexpectedly, the fibrin affinity of t-PA is also only partially expressed in this extended chimeric protein. Therefore, the NH2-terminal chains (A-chains) of the plasmin-generated two-chain derivatives t-PA/tcu-PA-e, t-PA/tcu-PA-s, and of t-PA were isolated. These A-chain structures of the chimers were found to have lost most of their fibrin affinity, whereas the fibrin affinity of the A-chain of native t-PA was maintained. Differential reactivity of the A-chain structures of both chimeric molecules with monoclonal antibodies directed against the A-chain of t-PA suggested that they were conformationally altered. Sequential fibrin binding experiments with t-PA/scu-PA-e and t-PA/scu-PA-s yielded 45 +/- 8 (n = 11) and 43 +/- 5% (n = 8), respectively, binding in the first cycle and 44 +/- 7 (n = 11) and 27 +/- 10% (n = 8), respectively, binding in the second cycle. This suggests that the low affinity of the chimeric molecules for fibrin is not due to the occurrence of subpopulations of molecules with different fibrin affinity but, instead, to a uniformly decreased fibrin affinity in all molecules.  相似文献   

18.
Heparin has been shown recently to stimulate the activity of human tissue-type plasminogen activator (t-PA). To investigate this effect further, mutant proteins lacking various domains of t-PA were screened for the ability to be stimulated by heparin. Those mutants harboring either the finger domain or the 2nd kringle were found to have enhanced enzymatic activity in the presence of heparin. Only mutants containing these structures would bind to heparin-agarose beads; monoclonal antibodies directed against these domains blocked binding. The stimulatory effect of heparin was more pronounced in finger-containing mutants than kringle-2 proteins. Earlier results had localized the fibrin-binding domains to the same two structures. Unlike heparin, the 2nd kringle was shown to be more important than the finger for fibrin stimulation. Our results have implications for producing recombinant t-PA variants for use in thrombolytic therapy.  相似文献   

19.
When thrombin-mediated fibrin formation and tissue plasminogen activator (t-PA)-mediated fibrinolysis proceed in dynamic interaction, desA-(desB beta 1-42)-fragment X polymers are shown to be the predominant fibrin derivatives present during the rapid second phase of Glu1- and Lys78-plasminogen activation. To further investigate the effect of this intermediate, a method was developed for the production and purification of fibrinogen-derived desA-(desB beta 1-42)-fragment X, deprived of both COOH-terminal A alpha-chains, but still capable of thrombin-mediated polymerization. DesA-(desB beta 1-42)-fragment X polymer was compared to intact fibrin with regard to its stimulatory effect on Glu1-, Lys78-, and Val443-plasminogen activation, and its binding of Glu1- and Lys78-plasminogen. Pure fragment X polymer gave rise to a biphasic activation pattern like that of fibrin, demonstrating similar kinetics of rapid phase activation. The dissociation constant for the binding of plasminogen to the effector decreases by a factor of 14, and the stoichiometry increases by a factor of 2 upon plasmin-catalyzed cleavage of both native Glu1- to Lys78-plasminogen, and fibrin to fragment X polymer. We conclude that desA-fibrin protofibril formation is sufficient to initiate fibrin enhancement of t-PA-catalyzed plasminogen activation, and that optimal stimulation depends on further plasmin-mediated modification of the fibrin effector to desA-fragment X-related moieties. Optimal stimulation is dependent on the presence of the kringle 1-4 domains of plasminogen and probably results from altered and increased binding of both plasminogen and t-PA to the modified effector.  相似文献   

20.
The activity of tissue plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) is stimulated by heparin. Heparin binds tightly to t-PA, u-PA, and plasminogen and decreases the usual stimulatory effect of fibrin on t-PA activity. In the present study we have found that low molecular weight heparin (LMW-heparin) preparations obtained by nitrous acid depolymerization or heparinase treatment of standard heparin have different properties with respect to their interaction with the fibrinolytic system. LMW-heparin prepared by either method does not stimulate plasmin formation by t-PA. However, these preparations of heparin still efficiently accelerate the inhibition of thrombin by antithrombin III. Binding data show that LMW-heparin does not bind t-PA and Glu-plasminogen and only binds very weakly to Lys-plasminogen. These results illustrate that it is possible to selectively destroy the fibrinolytic stimulating properties of heparin while leaving the classical anticoagulant characteristics intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号