首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Reciprocal probing has been used to identify a cDNA clone (xh8H11) representing a gene preferentially expressed in striated muscle. The gene maps close to DXS7101 31.9 cM from the short arm telomere of the X-chromosome at Xp22.1. On searching expressed and genomic databases, 21 expressed sequence tags were found that allowed the assignment of a human extended consensus sequence of 887 bp, suggesting a completely expressed gene symbolized as SMPX. By using the human consensus sequence, the orthologous mouse Smpx and rat SMPX genes could be aligned and confirmed by complete sequencing of additional SMPX-related clones obtained by library screening. An open reading frame was identified encoding a peptide of 88-86 and 85 amino acids in human and rodents, respectively. The predicted peptide had no significant homologies to known structural elements. The human consensus cDNA sequence was used to define the genomic structure of the human SMPX that had been missed by a previous large scale sequencing approach. The gene consists of five exons (> or =172, 57, 84, 148, > or =422 bp) and four introns (3639, 10410, 6052, 31134 bp) comprising together 52.1 kb and is preferentially and abundantly expressed in heart and skeletal muscle. Thus, a novel human gene encoding a small muscular protein that maps to Xp22.1 (SMPX) has been identified and structurally characterized as a basis for further functional analysis.  相似文献   

4.
The IL-4 gene maps to chromosome 11, near the gene encoding IL-3   总被引:3,自引:0,他引:3  
IL-4/B cell stimulatory factor 1 (IL-4) is a potent mediator of the growth and differentiation of cells of most hemopoietic lineages. IL-4 is one of a number of lymphokines produced by T cells after activation with Ag or mitogen. In order to map the chromosomal location of the IL-4 gene, Chinese hamster-mouse somatic cell hybrids were used in Southern blot analyses with an IL-4 cDNA probe. These results suggested that the IL-4 gene was located on chromosome 11. In contrast, the gene encoding IL-2 was localized to either chromosome 1 or 3. The identification of a strain-specific Bgl II restriction enzyme polymorphism in the IL-4 gene was used to map the IL-4 gene to a position on mouse chromosome 11 within 1 centimorgan of the gene encoding IL-3.  相似文献   

5.
6.
In yeasts, the peroxin Pex3p was identified as a peroxisomal integral membrane protein that presumably plays a role in the early steps of peroxisomal assembly. In humans, defects of peroxins cause peroxisomal biogenesis disorders such as Zellweger syndrome. We previously reported data on the human PEX3 cDNA and its protein, which in addition to the peroxisomal targeting sequence contains a putative endoplasmic reticulum targeting signal. Here we report the genomic organization, sequencing of the putative promoter region, chromosomal localization, and physical mapping of the human PEX3 gene. The gene is composed of 12 exons and 11 introns spanning a region of approximately 40 kb. The highly conserved putative promoter region is very GC rich, lacks typical TATA and CCAAT boxes, and contains potential Sp1, AP1, and AP2 binding sites. The gene was localized to chromosome 6q23-24 and D6S279 was identified to be the closest positional marker. As yeast mutants deficient in PEX3 have been shown to lack peroxisomes as well as any peroxisomal remnant structures, human PEX3 is a candidate gene for peroxisomal assembly disorders. Mutation analysis of the human PEX3 gene was therefore performed in fibroblasts from patients suffering from peroxisome biogenesis disorders. Complementation groups 1, 4, 7, 8, and 9 according to the numbering system of Kennedy Krieger Institute were analyzed but no difference to the wild-type sequence was detected. PEX3 mutations were therefore excluded as the molecular basis of the peroxisomal defect in these complementation groups.  相似文献   

7.
8.
9.
10.
11.
Holoprosencephaly (HPE) is the most common developmental defect of the brain and face in humans. Here we report the analysis of the human ortholog of dkk-1 as a candidate gene for HPE. We determined the genomic structure of the human gene DKK1 and mapped it to chromosome 10q11.2. Functional analysis of four missense mutations identified in HPE patients revealed preserved activity in head induction assays in frogs suggesting a limited role for this gene in HPE pathogenesis.  相似文献   

12.
The gene encoding the mouse analogue of the human complement regulator CD59 was cloned using a combination of long range PCR and genomic library screening. Sequence obtained showed that its genomic structure closely resembled that of the human CD59 gene, comprising 4 exons, each separated by a long intron region. The sizes of introns and exons were comparable to those of the human gene with the exception of the third intron which is 2.5 kb in the mouse compared to 7 kb in the human gene. All exon/intron boundaries conformed to the GT-AG rules for splicing. Radiation hybrid mapping localised mouse Cd59 between D2Mit333 and D2Mit127 on chromosome 2, a region homologous with human chromosome 11p13 where the human CD59 gene is localised. These data have permitted the construction of a gene targeting vector for the generation of transgenic mice deficient in CD59.  相似文献   

13.
Reoviruses contain a genome composed of 10 double-stranded RNA gene segments. A reovirus reassortant, 8B, derived from type 1 Lang (T1L) and type 3 Dearing (T3D), displayed a phenotype unlike that of either of its parents in that it efficiently induced numerous macroscopic external cardiac lesions in neonatal mice (B. Sherry, F. J. Schoen, E. Wenske, and B. N. Fields, J. Virol. 63:4840-4849, 1989). A panel of T1L/T3D reassortants and a panel of reassortants derived from 8B were used to determine whether novel T1L/T3D gene associations in 8B were responsible for its myocarditic phenotype. The results eliminated the possibility that any T1L/T3D gene combination found in 8B, from 2 genes to all 10 genes, was the explanation for its induction of cardiac lesions. This suggested that a mutation(s) in an 8B gene(s) might be responsible for induction of the myocarditis. Statistical analysis of experiments with 31 reassortants derived from 8B revealed a highly significant association (P = 0.002) of the 8B M1 gene with induction of cardiac lesions. The reovirus M1 gene encodes a viral core protein of unknown function, although evidence suggests a potential role in core structure and/or viral RNA synthesis. This represents the first report of the association of a viral gene with induction of myocarditis.  相似文献   

14.
The gene encoding human protective protein (PPGB) is on chromosome 20   总被引:5,自引:0,他引:5  
Normal lymphocyte prometaphase chromosome spreads were hybridized in situ using single- and double-color fluorescence techniques. The results obtained with either the 1.8-kb protective protein cDNA or a 12-kb genomic fragment of the human protective protein gene as probe demonstrate that the PPGB gene is localized on the long arm of chromosome 20. This assignment was confirmed by hybridization with whole chromosome DNA libraries.  相似文献   

15.
The mouse gene Cebp, encoding the DNA-binding protein C/EBP, has been localized to the proximal region of chromosome 7 by determining the strain distribution patterns of a restriction fragment length polymorphism among the BXD and AKXL recombinant inbred mouse lines.  相似文献   

16.
A full-length cDNA clone encoding human beta-ureidopropionase was isolated. A 1152-nucleotide open reading frame which corresponds to a protein of 384 amino acids with a calculated molecular weight of 43? omitted?158 Da, surrounded by a 5'-untranslated region of 61 nucleotides and a 3'-untranslated region of 277 nucleotides was identified. The protein showed 91% similarity with the translation product of the rat beta-ureidopropionase cDNA. Expression of the human cDNA in an Escherichia coli and eukaryotic COS-7 expression system revealed a very high beta-ureidopropionase enzymatic activity, thus confirming the identity of the cDNA. Since human EST libraries from brain, liver, kidney and heart contained partial beta-ureidopropionase cDNAs, the enzyme seems to be expressed in these tissues, in agreement with the expression profile of this enzyme in rat. Using the human cDNA as a probe a genomic P1 clone could be isolated containing the complete human beta-ureidopropionase gene. The gene consist of 11 exons spanning approximately 20 kB of genomic DNA. Fluorescence in situ hydridization localized the human beta-ureidopropionase gene to 22q11.2.  相似文献   

17.
Chromatin rearrangements in the meiotic prophase are characterized by the assembly and disassembly of synaptonemal complexes (SC), a protein structure that stabilizes the pairing of homologous chromosomes in prophase. We report the identification of human and mouse cDNA coding for stromalin 3 (STAG3), a new mammalian stromalin member of the synaptonemal complex. The stromalins are a group of highly conserved proteins, represented in several organisms from yeast to humans. Stromalins are characterized by the stromalin conservative domain (SCD), a specific motif found in all proteins of the family described to date. STAG3 is expressed specifically in testis, and immunolocalization experiments show that STAG3 is associated to the synaptonemal complex. As the protein encoded by the homologous gene (Scc3p) in Saccharomyces cerevisiae was found to be a subunit of a cohesin complex that binds chromosomes until the onset of anaphase, our data suggest that STAG3 is involved in chromosome pairing and maintenance of synaptonemal complex structure during the pachytene phase of meiosis in a cohesin-like manner. We have mapped the human STAG3 gene to the 7q22 region of chromosome 7; six human STAG3-related genes have also been mapped: two at 7q22 near the functional gene, one at 7q11.22, and three at 7q11.23, two of them flanking the breakpoints commonly associated with the Williams-Beuren syndrome (WBS) deletion. Since the WBS deletion occurs as a consequence of unequal meiotic crossing over, we suggest that STAG3 duplications predispose to germline chromosomal rearrangement within this region.  相似文献   

18.
19.
cDNA cloning, genomic structure and polymorphism of the porcine FHL3 gene   总被引:2,自引:0,他引:2  
Zuo B  Xiong YZ  Deng CY  Su YH  Wang J  Lei MG  Li FE  Jiang SW  Zheng R 《Animal genetics》2004,35(3):230-233
LIM domain proteins are important regulators of the growth, determination and differentiation of cells. Four-and-a-half LIM-only protein 3 (FHL3) is a type of LIM-only protein that contains four tandemly repeated LIM motifs with an N-terminal single zinc finger (half LIM motif). In this study, we have determined the complete coding sequence of pig FHL3 which encodes a 280 amino acid protein. The coding region of the pig FHL3 gene is organized in five exons and spans an approximately 2.1-kb genomic region. Comparative sequencing of six pig breeds revealed three single nucleotide polymorphisms (SNPs) within exon 2 of which an A-->G substitution at position 313 changes a codon for arginine into a codon for glycine. The substitution was situated within a PstI recognition site and developed as a PCR-RFLP marker for further use in population variation investigations and association analysis. The A/G polymorphism was segregating only in Landrace pigs. Association studies of the FHL3 polymorphism with carcass traits provided preliminary evidence that the PstI PCR-restriction fragment length polymorphism (RFLP) genotype may be associated with variation in several carcass traits of interest for pig breeding. Further investigations in more Landrace pigs are needed to confirm this.  相似文献   

20.
The isolation and characterization of a cDNA clone from Zea mays coding for a novel glycine-rich protein (GRP) is described. The corresponding 1.4 kb mRNA accumulates exclusively in roots (primary, lateral seminal and crown roots) of young maize seedlings, following developmentally specific patterns. In agreement with previously described GRPs from other plant species the derived protein sequence exhibits a hydrophobic domain at the N-terminal region followed by repeated glycine-rich motifs. Genomic Southern analysis indicates that the zmGRP3 gene is present in the maize genome as one or two copies or at a low copy number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号