首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding and unbinding constants describing interaction of ω-CTx-GVIA with N-type Ca2+ channels were calculated based on the time course of the blocking action of the toxin. The experiments were carried out on pyramidal neurons freshly dissociated from theCA3 region of the rat hippocampus using a “concentration-clamp” technique and a patch-clamp technique in the whole-cell configuration. The bindingk 1 and unbindingk −1 constants were evaluated as 0.32 (μM·sec)−1 and 0.004 sec−1, respectively. The dissociation constantK D kinetically derived from the ratiok −1/k 1 was 0.012 μM. These values allow us to interpret the apparent “irreversibility” of the toxin action.  相似文献   

2.
The objective of this article is to study the effect of 5-aminolevulinic acid (ALA) and enhanced chlorophyll content, antioxidative enzymes and photosynthesis rate by foliar application of ALA. We evaluated three concentrations (control-distilled water, T1-50 mg l−1, T2-150 mg l−1, T3-250 mg l−1) of ALA and seven cultivars, “Sanchidaye” (Sa-1), “Lichuandasuomian” (Li-1), “Aijiaohuang” (Ai-1), “Qingyou” No. 4 (Qi-1), “Aikang” No. 5 (Ak-1), “Hanxiao” (Ha-1) and “Shulv” (Sl-1). “Ak-1” showed strongest response of POD (peroxidase) enzyme activity (0.4 U g−1 min−1) in 250 mg l−1 ALA solution. The highest CAT (catalase) activity (0.8 U g−1 min−1) after administration of 250 mg l−1 ALA was observed in “Li-1”. Meanwhile, highest (1.42 mg l−1) total chlorophyll content was also observed in “Ak-1”, when leaves were treated in 50 mg l−1 ALA, “Li-1” and “Ai-1” showed strongest response of specific activity of superoxide dismutase (SOD) in 50 mg l−1 and 50 mg l−1 ALA. Two hundred and fifty milligram per milliliter of ALA-treatment significantly improved the net photosynthetic rate.  相似文献   

3.
We recorded spike activity of noradrenergic neurons of zone A5 (n = 89) in the brain of anesthetized rats under conditions of hypoxic stimulation (breathing with pure N2, 10 sec), thermonociceptive stimulation (tail-flick test), and reversible hypothermal blocking of the central respiratory activity. Hypoxic stimulation of peripheral O2-sensitive chemoreceptors considerably increased the discharge frequency in all the examined neurons and induced tachypnea and a hypotensive reaction. Sixty-nine (77.5%) neurons of the studied group were tested using nociceptive stimulation (thermal stimulation of the tail); such stimulation resulted in a multifold increase in their discharge frequency. This was accompanied by tachypnea and a hypertensive response. Thus, we first demonstrated the role of nociception in the control of activity of noradrenergic neurons in zone A5 and the role of nociceptive afferent signals in the modulation of functions of the respiratory and cardiovascular systems mediated by neurons of the above zone. Under conditions of blocking of the central respiratory activity, we examined 36 (40.4%) neurons of zone A5 and first observed the effect of strong activation of a significant proportion of these cells upon switching off of respiration. This fact shows that there is an activating “respiratory” drive on neurons of zone A5 (probably, from the side of an expiratory neuronal population of the respiratory center) and allows us to hypothesize on the genesis of “respiratory” modulation of these cells. The activity of 16 (18.0%) cells was recorded under conditions of consecutive applications of the above stimuli; all the neurons were activated by the respective afferent influences. The simultaneously induced effects of hypoxic and nociceptive stimulations on the activity of neurons of zone A5 were additive. Thus, we first obtained proofs in favor of the multimodality of noradrenergic neurons of the above zone. This feature is a significant factor providing integrative interaction between the respiratory and cardiovascular systems and the system of nociception. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 305–313, July–August, 2006.  相似文献   

4.
Low voltage-activated (LVA) Ca2+ conductances were characterized in the neurons of the associative laterodorsal (LD) thalamic nucleus in rat brain slices and in enzymatically isolated thalamic units using electrophysiological techniques. Voltage dependence, kinetics of inactivation, pharmacology, and selectivity of the LVA current in the thalamic neurons from animals older than 14 postnatal days were consistent with the existence of two, “fast” and “slow,” subtypes of LVA Ca2+ channels. “Slow” LVA current in enzymatically isolated thalamic neurons was much less prominent, compared with that in slice neurons, suggesting that respective channels are predominatly located on the distal dendrites. “Fast” Ca2+ channels were sensitive to nifedipine (K d−2.6 μM) and La3+ (K d−1.0 mM), whereas “slow” Ca2+ channels were sensitive to Ni2+ (25 μM). Selectivity of the “fast” Ca2+ channels was similar to that found for the LVA Ca2+ channels in other preparations (I Ca:I Sr:I Ba−1.0: 1.23: 0.94), while selectivity of the “slow” Ca2+ channels more resembled selectivity of the HVA Ca2+ channels (I Ca:I Sr:I Ba−1.0: 2.5: 3.4).  相似文献   

5.
The estuarine red alga,Bostrychia radicans, was subjected to osmotic stresses ranging from hypo-osmotic (9.9‰) to hyperosmotic conditions (37.4‰). The growth rate decreased with increasing salinities and showed a maximum in a mesohaline medium, while the photosynthetic rate and the chlorophyll a content increased under hyper-osmotic conditions. The rate of respiration remained constant over the salinity range tested.B. radicans revealed typical characteristics of “shade plants” having a low light compensation point at 3–4 μE m−2 s−1 correlated with a low photon flux density of 70–100 μE m−2 s−1 for saturation of photosynthesis. These physiological properties may explain the success ofB. radicans in estuarine habitats.  相似文献   

6.
Chronic constriction injury (CCI) of the rat sciatic nerve increases the dorsal horn excitability. This “central sensitization” leads to behavioral manifestations analogous to those related to human neuropathic pain. We found, using whole-cell recording from acutely isolated spinal cord slices, that 7-to 10-day-long CCI increases excitatory synaptic drive to putative excitatory “delay”-firing neurons in the substantia gelatinosa but attenuates that to putative inhibitory “tonic”-firing neurons. A defined-medium organotypic culture (DMOTC) system was used to investigate the long-term actions of brain-derived neurotrophic factor (BDNF) as a possible instigator of these changes. When all five neuronal types found in the substantia gelatinosa were considered, BDNF and CCI produced similar patterns, or “footprints,” of changes across the whole population. This pattern was not seen with another putative “pain mediator,” interleukin 1β. Thus, BDNF decreased synaptic drive to “tonic” neurons and increased synaptic drive to “delay” neurons. Actions of BDNF on “delay” neurons were presynaptic and involved increased mEPSC frequency and amplitude without changes in the function of postsynaptic AMPA receptors. By contrast, BDNF exerted both pre-and post-synaptic actions on “ tonic” cells to reduce the mEPSC frequency and amplitude. These differential actions of BDNF on excitatory and inhibitory neurons contributed to a global increase in the dorsal horn network excitability as assessed by the amplitude of depolarization-induced increases in the intracellular [Ca2+]. Experiments with the BDNF-binding protein TrkB-d5 provided additional evidence for BDNF as a harbinger of neuropathic pain. Thus, the cellular processes altered by BDNF likely contribute to “central sensitization” and hence to the onset of neuropathic pain. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 315–326, July–October, 2007.  相似文献   

7.
Ten females (25–50 years of age) performed isometric shoulder flexions, holding the right arm straight and in a horizontal position. The subjects were able to see the rectified surface electromyogram (EMG) from either one of two electrode pairs above the upper trapezius muscle and were instructed to keep its amplitude constant for 15 min while gradually unloading the arm against a support. The EMG electrodes were placed at positions representing a “cranial” and a “caudal” region of the muscle suggested previously to possess different functional properties. During the two contractions, recordings were made of: (1) EMG root mean square-amplitude and zero crossing (ZC) frequency from both electrode pairs on the trapezius as well as from the anterior part of the deltoideus, (2) supportive force, (3) heart rate (HR) and mean arterial blood pressure (MAP), and (4) perceived fatigue. The median responses during the cranial isoelectric contraction were small as compared to those reported previously in the literature: changes in exerted glenohumeral torque and ZC rate of the isoelectric EMG signal of −2.81% · min−1 (P = 0.003) and 0.03% · min−1 (P= 0.54), respectively, and increases in HR and MAP of 0.14 beats · min−2 (P= 0.10) and 0.06 mmHg · min−1 (P= 0.33), respectively. During the contraction with constant caudal EMG amplitude, the corresponding median responses were −2.51% · min−1 (torque), 0.01% · min−1 (ZC rate), 0.31 beats · min−2 (HR), and 0.93 mmHg · min−1 (MAP); P=0.001, 0.69, 0.005, and 0.003, respectively. Considerable deviations from the “isoelectric” target amplitude were common for both contractions. Individuals differed markedly in response, and three distinct subgroups of subjects were identified using cluster analysis. These groups are suggested to represent different motor control scenarios, including differential engagement of subdivisions of the upper trapezius, alternating motor unit recruitment and, in one group, a gradual transition towards a greater involvement of type II motor units. The results indicate that prolonged low-level contractions of the shoulder muscles may in general be accomplished with a moderate metabolic stress, but also that neuromuscular adaptation strategies differ significantly between individuals. These results may help to explain why occupational shoulder-neck loads of long duration cause musculoskeletal disorders in some subjects but not in others. Accepted: 1 March 1997  相似文献   

8.
Three cassava clones (SOM-1, “05”, and “50”) were cultured in vitro on MS medium plus sucrose (30 g L−1) and myo-inositol (100 mg L−1) without plant growth regulators and with additions of 0 (control), 0.5, 1, 1.5, 2, 2.5, and 3 g L−1 NaCl to test their salt tolerance. The same cassava clones were cultivated in greenhouse conditions on a sandy soil substratum and irrigated with 20% strength Hoagland solution, and additions of 0, 4, and 8 g L−1 of NaCl. Salinity negatively affected the survival, development, leaf water content, and mineral composition (mainly by accumulation of Cl and Na) of both in vitro and ex vitro plants, but with different intensity in each clone. In both conditions of culture (in vitro and ex vitro) clone SOM-1, from a desert arid saline zone of Somalia, was the most tolerant and clone “05”, from a rainy region of Ivory Coast, the most sensitive. Clone “50” tolerance to in vitro salt treatments, although lower, was not significantly different from that of SOM-1 but the ex vitro response was similar to “05”. In general, there was a correlation between in vitro and ex vitro behavior of the cassava plant regarding salt tolerance, which would allow the in vitro culture method to be used for selection of salt-tolerant plants of this crop.  相似文献   

9.
Mesozooplankton distribution and composition in the very shallow part of the Siberian Laptev Sea shelf were studied during the German-Russian expeditions “Transdrift I” (August/September 1993) and “Transdrift III” (October 1995). Maximum abundances were found close to the outflow of the Lena River (7,965 ind. m−3) and in the Yana river mouth (38,163 ind. m−3). Lowest abundances occurred in the northeast and west of the Laptev Sea (64–95 ind. m−3). Highest biomass values (104–146 mg DM m−3) were determined in the northern and northeastern part of the shallow Laptev Sea, as well as close to the river outflows, with a record biomass maximum in the Yana river mouth (270 mg DM m−3). Biomass minima were situated north of the Lena Delta and in the western part of the shallow Laptev Sea (0.3–1.0 mg DM m−3). Copepods dominated in terms of abundance and biomass. Cluster analyses separated four mesozooplankton assemblages: the assemblage “Lena/Yana” in the southern part, “Eastern-central” in the centre, “Kotelnyy” in the eastern part and “Taimyr” in the western part of the shallow Laptev Sea. The small-sized neritic and brackish-water copepods Drepanopus bungei, Limnocalanus grimaldii and Pseudocalanus major occurred in enormous numbers and made up the bulk of zooplankton abundance and biomass in the very shallow part of the Laptev Sea close to the rivers Lena and Yana. In the more northern and northeastern areas, Calanus glacialis, P. minutus and P. major were dominant copepod species, whereas Oithona similis and Acartia sp. became important in the western Laptev Sea. Appendicularians, as well as hydromedusae and the chaetognath Sagitta sp., contributed significantly to abundance and biomass, respectively, but not over the entire area studied. One can identify taxon-specific distribution patterns (e.g. Sagitta predominated the biomass in a zone between the area heavily influenced by Lena/Yana and the offshore area to the north), which differ from the patterns revealed by cluster analysis. Hydrographic features, especially the enormous freshwater inflow, apparently determine the occurrence and formation of zooplankton aggregations. Extremely high numbers of small-sized neritic and brackish-water copepods occurred locally, which were probably also supported by excellent feeding conditions.  相似文献   

10.
Using a stochastic model, we found that the steady-state temporal correlation between synaptic responses evoked by successive presynaptic spikes under conditions of high-frequency repetitive stimulation (50–100 sec−1) is always negative. Therefore, the sign of this correlation cannot be used as a criterion that allows one to distinguish the univesicular vs multivesicular modes of neurotransmitter release in an active zone or the univesicular releases with low vs high probabilities of vesicle release, as suggested earlier [7]. For lower stimulation frequencies (15–20 sec−1), positive correlation between release events evoked by consecutive stimuli is observed only in those cases where the number of ready-releasable vesicles and the time constant of recovery from depression are sufficiently large. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 412–415, September–December, 2006.  相似文献   

11.
The metabolic pathway of primary carbon fixation was studied in a peculiar pennate marine diatom, Haslea ostrearia (Bory) Simonsen, which synthesizes and accumulates a blue pigment known as “marennine”. Cells were cultured in a semi-continuous mode under saturating [350 μmol(photon) m−2 s−1] or non-saturating [25 μmol(photon) m−2 s−1] irradiance producing “blue” (BC) and “green” (GC) cells, characterized by high and low marennine accumulation, respectively. Growth, pigment contents (chlorophyll a and marennine), 14C accumulation in the metabolites, and the carbonic anhydrase (CA) activity of the cells were determined during the exponential growth phase. Growth rate and marennine content were closely linked to irradiance during growth: higher irradiance increased both growth rate and marennine content. On the other hand, the Chl a concentration was lower under saturating irradiance. The distribution between the Calvin-Benson (C3) and β-carboxylation (C4) pathways was very different depending on the irradiance during growth. Metabolites of the C3 cycle contained about 70 % of the total fixed radioactivity after 60 s of incorporation into cells cultured under the non-saturating irradiance (GC), but only 47 % under saturating irradiance (BC). At the same time, carbon fixation by β-carboxylation was 24 % in GC versus about 41 % in BC, becoming equal to that in the C3 fixation pathway in the latter. Internal CA activity remained constant, but the periplasmic CA activity was higher under low than high irradiance.  相似文献   

12.
A method to produce transgenic plants of Vitis rotundifolia was developed. Embryogenic cultures were initiated from leaves of in vitro grown shoot cultures and used as target tissues for Agrobacterium-mediated genetic transformation. A green fluorescent protein/neomycin phosphotransferase II (gfp/nptII) fusion gene that allowed for simultaneous selection of transgenic cells based on GFP fluorescence and kanamycin resistance was used to optimize parameters influencing genetic transformation. It was determined that both proembryonal masses (PEM) and mid-cotyledonary stage somatic embryos (SE) were suitable target tissues for co-cultivation with Agrobacterium as evidenced by transient GFP expression. Kanamycin at 100 mg l−1 in the culture medium was effective in suppression of non-transformed tissue and permitting the growth and development of transgenic cells, compared to 50 or 75 mg l−1, which permitted the proliferation of more non-transformed cells. Transgenic plants of “Alachua” and “Carlos” were recovered after secondary somatic embryogenesis from primary SE explants co-cultivated with Agrobacterium. The presence and stable integration of transgenes in transgenic plants was confirmed by PCR and Southern blot hybridization. Transgenic plants exhibited uniform GFP expression in cells of all plant tissues and organs including leaves, stems, roots, inflorescences and the embryo and endosperm of developing berries.  相似文献   

13.
In experiments on the subpharyngeal complex of the Helix ganglia, we found an excitatory monosynaptic input to the pacemaker PPa2 neuron from an unidentified cell of the visceral ganglion and a polysynaptic inhibitory influence of another unidentified neuron of this ganglion on the PPa1 cell. In addition, we revealed three pairs of neurons synaptically connected with each other (excitatory connections) in the visceral ganglion. In the case where we used high-frequency (11 sec−1) stimulation of presynaptic elements, synaptic transmission to the PPa2 neuron demonstrated the greatest efficiency and stability. Neirofiziologiya/Neurophysiology, Vol. 39, No. 1, pp. 32–36, January–February, 2007.  相似文献   

14.
15.
In search of means to reduce the by-catch of juvenile flatfish in the shrimp fishery, vibrations and changes in current velocity caused by shrimp trawls were investigated in the field and in the laboratory. Buried as well as emerged shrimps (Crangon crangon) exhibit tailflips 5–10 cm before being touched by the rollers of a shrimp gear approaching them at a speed of 0.5 m·sec−1, as was revealed by slow motion video recordings in aquaria under artificial light. Hence, the signal effective in triggering escape must be attenuated strongly with increasing distance. Sediment vibration, commonly assumed to be an important signal in triggering escape of shrimps, was found to decrease by a factor 100·m−1. Signals from the rollers of a commercial shrimp gear in operation (towing speed 1 m·sec−1) were directly recorded with an accelerometer. Their frequency ranged from 50 to 500 Hz and reached an acceleration of 40 m·sec−2 on soft bottom or up to 100 m·sec−2 on hard substrate. Accelerometers, which had been buried right at the surface of a tidal sand flat during low tide, produced only one sharp signal of 100 Hz with an acceleration of 24 m·sec−2, when a shrimp gear swept them on the submerged tidal flats. However, in aquaria short sinusoidal signals (<5 m·sec−2; 20 to 300 Hz) made buried shrimps and flatfish (Pleuronectes platessa, Solea solea, Microstomus kitt) hide rather than flee. The vibrations recorded directly at the rollers and the underlying jolting movements of the rollers induce corresponding pulses in the water surrounding the rollers in a layer of approximately 10–15 cm. Similar water displacement of high acceleration was experimentally produced by a spring loaded transparent lucite piston (7 cm in diameter) fitted to an accelerometer. Accelerating this piston (12–116 m·sec−2, 50–200 Hz range) from 5 cm above towards the shrimp produced escape responses in up to 94% of the tests. Arthropods are known to perceive medium displacement rather than pressure. Hence, strong and rapidly rising water currents caused by the rollers rather than sediment vibration are assumed to mainly trigger the escape reaction, which makesCrangon accessible to the gear.  相似文献   

16.
Glutamate excretion due to amino acid starvation was investigated in “stringent” and “relaxed” strains ofEscherichia coli. The observed excretion process isrelA-dependent, carrier-mediated, and glutamate-specific. After induction, excretion was detected within less than 2 min and continued for more than 5h with a rate of 7–10 nmol (mg dry weight)−1 min−1. Using carbonyl cyanidem-chlorophenylhydrazone or polymyxin B nonapeptide, together with valinomycin, it was shown that glutamate excretion is driven by the membrane potential.  相似文献   

17.
It was established in experiments on murine hippocampal slices that low-frequency (1 sec−1, 15 min) stimulation of the Schaffer collaterals applied 45 to 60 min after their high-frequency repetitive stimulation (60 sec−1, 0.5 sec) results, in 2/3 of the slices, in reduction of the amplitude of population EPSP recorded from pyramidal neurons of theCA1 area, almost to its level before high-frequency stimulation. Depotentiation was practically completely prevented by application of a non-competitive blocker of NMDA glutamate receptors (GR), ketamine (100 μM), was weakened by a blocker of voltage-dependent L-type Ca2+ channels, nifedipine (10 μM), and remained significant after a competitive blocker of the AMPA/kainate receptors, CNQX (10 μM), had been applied to the slices. Depotentiation was significantly reduced by 10 μM of a calmodulin inhibitor, trifluoroperazine, by an increase in the intracellular cAMP concentration caused by activation of A2-adenosine receptors and D5-dopamine receptors, but was resistant to the action of 50 μM of a protein kinase C (PKC) inhibitor, polymixin B. Nootropic compounds possessing anti-amnestic activity enhanced the depotentiation. It is suggested that depotentiation is due to an increase in the intracellular Ca2+ concentration, activation of protein phosphatases, and dephosphorylation of pre- and post-synaptic substrates involved in the expression of long-term post-tetanic potentiation of synaptic transmission, which result from cooperative activation of NMDA GR and metabotropic GR.  相似文献   

18.
19.
Animals swimming in tidal environments continuously interact with water currents which may either hinder or aid their movement. It is difficult to observe the orientation of an organism relative to the current when it is swimming in the wild without specialized telemetry; however, using the total recorded movement vector and the current vector, one can use vector analysis to calculate the actual movement of the animal. Here, we apply this method to six tracks of green sturgeon (Acipenser medirostris) in the San Francisco Estuary, using current vectors derived from a hydrodynamic model. Three movements were near the surface in deeper, high-current regions of the bay and three were near the bottom in shallow, low-current areas. The total displacement over ground was faster at the surface (0.9 m sec−1 versus 0.5 m sec−1) and occurred in stronger currents (0.7 m sec−1 versus 0.4 m sec−1), but the swimming speeds of the fish were similar between surface and bottom movements (0.5 m sec−1 versus 0.6 m sec−1). All surface movements were in the direction of the current, and two of the fish also oriented closely to the flow. In contrast, none of the three benthic movements were in the direction of the current, and two were oriented opposite to the flow. It seems plausible that green sturgeon orient to and make use of water currents to efficiently move through tidal habitats, riding the flow in high-current areas, and moving independently of, or even into, the flow in slower currents.  相似文献   

20.
The aim of the study was to examine the possibility of propagating in vitro four of the most common cultivars in Tuscany (central Italy): Terom, Violetto di Toscana, Chiusure and Empolese. The first three belong to the “Violetti” group, while cv Empolese belongs to the “Romaneschi” group. Explants were cultured on an induction medium (IM), which is a modified MS medium consisting of nitrate concentrations reduced by one quarter, 0.8 mg L−1 6-benzylaminopurine (BA) and 0.2 mg L−1 3-indole butyric acid (IBA). Explants were then transferred to a proliferation medium (PM) consisting of the same basal medium together with 0.03 mg L−1 BA and 0.05 mg L−1 gibberellic acid (GA3). A rooting double-phase was then established. The pre-rooting medium (PRM), consisting of a basal MS medium with half strength nitrate concentrations, 0.5 mg L−1 indole-3-acetic acid (IAA) and 1 mg L−1 paclobutrazol (PBZ) was used for two weeks. Over the next four weeks, a rooting medium (MR) was used, consisting of a basal MS medium with 2 mg L−1 β-cyclodextrin and 2 mg L−1 α-naphthaleneacetic acid sodium salt (NAA). The cv Empolese provided the highest number of proliferated explants and rooted plantlets using the method described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号