首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total gas pressure in the pleural space is more subatmospheric than that in the alveolar cavity. This pressure difference minus elastic recoil pressure of the lung was termed stress pressure. We investigated the relationship between stress pressure and a force that would hold the lung against the chest wall to prevent accumulation of liquid. The condition was a pleural space with an enlarged pleural surface pressure. Dogs anesthetized with pentobarbital sodium were placed in a box maintained subatmospherically at approximately -30 cmH2O and breathed atmospheric air for 4 h. Liquid volume in the pleural space of the dogs was measured under conditions of thoracotomy. In the normal group, the volume of the pleural liquid was within the normal range of approximately 2.0 ml and the visceral and the parietal pleura made contact. In the pneumothorax group, established by injecting 50 ml of air into the pleural space, the liquid increased significantly in all cases by a mean value of approximately 12 ml. Thus pleural stress pressure seems to be an important force holding the lung against the chest wall and aiding in the control of accumulation of liquid in a more subatmospheric pleural space.  相似文献   

2.
Abdominal distension (AD) occurs in pregnancy and is also commonly seen in patients with ascites from various causes. Because the abdomen forms part of the "chest wall," the purpose of this study was to clarify the effects of AD on ventilatory mechanics. Airway pressure, four (vertical) regional pleural pressures, and abdominal pressure were measured in five anesthetized, paralyzed, and ventilated upright pigs. The effects of AD on the lung and chest wall were studied by inflating a liquid-filled balloon placed in the abdominal cavity. Respiratory system, chest wall, and lung pressure-volume (PV) relationships were measured on deflation from total lung capacity to residual volume, as well as in the tidal breathing range, before and 15 min after abdominal pressure was raised. Increasing abdominal pressure from 3 to 15 cmH2O decreased total lung capacity and functional residual capacity by approximately 40% and shifted the respiratory system and chest wall PV curves downward and to the right. Much smaller downward shifts in lung deflation curves were seen, with no change in the transdiaphragmatic PV relationship. All regional pleural pressures increased (became less negative) and, in the dependent region, approached 0 cmH2O at functional residual capacity. Tidal compliances of the respiratory system, chest wall, and lung were decreased 43, 42, and 48%, respectively. AD markedly alters respiratory system mechanics primarily by "stiffening" the diaphragm/abdomen part of the chest wall and secondarily by restricting lung expansion, thus shifting the lung PV curve as seen after chest strapping. The less negative pleural pressures in the dependent lung regions suggest that nonuniformities of ventilation could also be accentuated and gas exchange impaired by AD.  相似文献   

3.
Pleural pressure was measured at end expiration in spontaneously breathing anesthetized rabbits. A liquid-filled capsule was implanted into a rib to measure pleural liquid pressure with minimal distortion of the pleural space. Capsule position relative to lung height was measured from thoracic radiographs. Measurements were made when the rabbits were in the prone, supine, right lateral, and left lateral positions. Average lung heights in the prone and supine positions were 4.21 +/- 0.58 and 4.42 +/- 0.51 (SD) cm, respectively (n = 7). Pleural pressure was -2.60 +/- 1.87 (SD) cmH2O at 50.2 +/- 7.75% lung height in the prone position and -3.10 +/- 1.22 cmH2O at 51.4 +/- 6.75% lung height in the supine position. There was no difference between the values recorded in the prone and supine positions. Placement of the capsule into the right or left chest had no effect on the magnitude of the pleural pressure recorded in rabbits in right and left lateral recumbency (n = 12). Measurements over the nondependent lung were repeatable when rabbits were turned between the right and left lateral positions. Lung height in laterally recumbent rabbits averaged 4.55 +/- 0.52 (SD) cm.  相似文献   

4.
To investigate the influence of positive end-expiratory pressure (PEEP) on hemodynamic measurements we examined the transmission of airway pressure to the pleural space during varying conditions of lung and chest wall compliance. Eight ventilated anesthetized dogs were studied in the supine position with the chest closed. Increases in pleural pressure were similar for both small and large PEEP increments (5-20 cmH2O), whether measured in the esophagus (Pes) or in the juxtacardiac space by a wafer sensor (Pj). Increments in Pj exceeded the increments in Pes at all levels of PEEP and under each condition of altered lung and chest wall compliance. When chest wall compliance was reduced by thoracic and abdominal binding, the fraction of PEEP sensed in the pleural space increased as theoretically predicted. Acute edematous lung injury produced by oleic acid (OA) did not alter the deflation limb pressure-volume characteristics of the lung, provided that end-inspiratory volume was adequate. With the chest and abdomen restricted OA was associated with less than normal transmission of airway pressure to the pleural space, most likely because the end-inspiratory volume required to restore normal deflation characteristics was not attained. Together these results indicate that the influence of acute edematous lung injury on the transmission of airway pressure to the pleural space depends importantly on the peak volume achieved during inspiration.  相似文献   

5.
Pleural space width was measured by four morphological approaches using either frozen hydrated or freeze-substituted blocks of chest wall and lung. Anesthetized sheep were held in the lateral (n = 2), sternal recumbent (n = 2), or vertical (head-up; n = 2) position for 30 min. The ribs and intercostal muscles were excised along a 20-cm vertical distance of the chest wall region, which was sprayed with liquid Freon 22, cooled with liquid nitrogen, to facilitate the fastest possible freezing of the visceral and parietal pleura. We measured pleural space width in frozen hydrated blocks by reflected-light and low-temperature scanning electron microscopy and in freeze-substituted, fixed, and embedded tissue blocks by light and transmission electron microscopy. We combined the data from the two groups of sheep held sternally recumbent and vertical because the results were comparable. The average arithmetic mean data for pleural space width determined by reflected-light analysis for samples near the top (18.5 microns) and bottom (20.3 microns) of the chest, separated by 15 cm of lung height, varied inversely with lung height (n = 4; P less than 0.009). The average harmonic mean data demonstrated a similar gravity-dependent gradient (17.3 and 18.8 microns, respectively; P less than 0.02). Therefore a slight vertical gradient of approximately -0.10 micron/cm of lung height was found for costal pleural space width. Pleural space width in the most dependent recesses, such as the costodiaphragmatic recess, reached 1-2 mm. We never found any contacts between the visceral and parietal pleura with either of the frozen hydrated preparations. No points of mesothelial cell contact were revealed in the light- and transmission electron microscopic views of the freeze-substituted tissue, despite an apparent narrower pleural space associated with the tissue-processing steps. We conclude that the pleural space has a slightly nonuniform width, contacts if they occur must be very infrequent, and pleural liquid clearance is probably facilitated by liquid accumulation in dependent regions where lymphatic pathways exist.  相似文献   

6.
Both theoretical and experimental studies of pleural fluid dynamics and lung buoyancy during steady-state, apneic conditions are presented. The theory shows that steady-state, top-to-bottom pleural-liquid flow creates a pressure distribution that opposes lung buoyancy. These two forces may balance, permitting dynamic lung floating, but when they do not, pleural-pleural contact is required. The animal experiments examine pleural-liquid pressure distributions in response to simulated reduced gravity, achieved by lung inflation with perfluorocarbon liquid as compared to air. The resulting decrease in lung buoyancy modifies the force balance in the pleural fluid, which is reflected in its vertical pressure gradient. The data and model show that the decrease in buoyancy with perfluorocarbon inflation causes the vertical pressure gradient to approach hydrostatic. In the microgravity analogue, the pleural pressures would be toward a more uniform distribution, consistent with ventilation studies during space flight. The pleural liquid turnover predicted by the model is computed and found to be comparable to experimental values from the literature. The model provides the flow field, which can be used to develop a full transport theory for molecular and cellular constituents that are found in pleural fluid.  相似文献   

7.
Motivated by single lung transplantation, we studied the mechanics of the chest wall during single lung inflations in recumbent dogs and baboons and determined how pleural pressure (Ppl) is coupled between the hemithoraces. In one set of experiments, the distribution of Ppl was inferred from known volumes and elastic properties of each lung. In a second set of experiments, costal pleural liquid pressure (Pplcos) was measured with rib capsules. Both methods revealed that the increase in Ppl over the ipsilateral or inflated lung (delta Ppli) is greater than that over the contralateral or noninflated lung (delta Pplc). Mean d(delta Pplc)/d(delta Ppli) and its 95% confidence interval was 0.7 +/- 0.1 in dogs and 0.5 +/- 0.1 in baboons. In a third set of experiments in three dogs and three baboons, we prevented sternal displacement and exposed the abdominal diaphragm to atmospheric pressure during unilateral lung inflation. These interventions had no significant effect on Ppl coupling between the hemithoraces. We conclude that lungs of unequal size and mechanical properties need not be exposed to the same surface pressure, because thoracic midline structures and the lungs themselves resist displacement and deformation.  相似文献   

8.
The delicate mesothelial surfaces of the pleural space and other serosal cavities slide relative to each, lubricated by pleural fluid. In the absence of breathing motion, differences between lung and chest wall shape could eventually cause the lungs and chest wall to come into contact. Whether sliding motion keeps lungs and chest wall separated by a continuous liquid layer is not known. To explore the effects of hydrodynamic pressures generated by mesothelial sliding, we measured the thickness of the liquid layer beneath the peritoneal surface of a 3-cm disk of rat abdominal wall under a normal stress of 2 cm H2O sliding against a glass plate rotating at 0-1 rev/s. Thickness of the lubricating layer was determined microscopically from the appearance of fluorescent microspheres adherent to the tissue and glass. Usually, fluid thickness near the center of the tissue disk increased with the onset of glass rotation, increasing to 50-200 microm at higher rotation rates, suggesting hydrodynamic pumping. However, thickness changes often differed substantially among tissue samples and between clockwise and counter-clockwise rotation, and sometimes thickness decreased with rotation, suggesting that topographic features of the tissue are important in determining global hydrodynamic effects. We conclude that mesothelial sliding induces local hydrodynamic pressure gradients and global hydrodynamic pumping that typically increases the thickness of the lubricating fluid layer, moving fluid against the global pressure gradient. A similar phenomenon could maintain fluid continuity in the pleural space, reducing frictional force and shear stress during breathing.  相似文献   

9.
Interactive learning has been proven instrumental for the understanding of complex systems where the interaction of interdependent components is hard to envision. Due to the mechanical properties and mutual coupling of the lung and thorax, respiratory mechanics represent such a complex system, yet their understanding is essential for the diagnosis, prognosis, and treatment of various respiratory disorders. Here, we present a new mechanical model that allows for the simulation of respiratory pressure and volume changes in different ventilation modes. A bellow reflecting the "lung" is positioned within the inverted glass cylinder of a bell spirometer, which is sealed by a water lock and reflects the "thorax." A counterweight attached to springs representing the elastic properties of the chest wall lifts the glass cylinder, thus creating negative "pleural" pressure inside the cylinder and inflating the bellow. Lung volume changes as well as pleural and intrapulmonary pressures are monitored during simulations of spontaneous ventilation, forced expiration, and mechanical ventilation, allowing for construction of respiratory pressure-volume curves. The mechanical model allows for simulation of respiratory pressure changes during different ventilation modes. Individual relaxation curves constructed for the lung and thorax reflect the basic physiological characteristics of the respiratory system. In self-assessment, 232 medical students passing the physiology laboratory course rated that interactive teaching at the simulation model increased their understanding of respiratory mechanics by 70% despite extensive prior didactic teaching. Hence, the newly developed simulation model fosters students' comprehension of complex mechanical interactions and may advance the understanding of respiratory physiology.  相似文献   

10.
The effect of severe generalized edema on respiratory system mechanics is not well described. We measured airway pressure, gastric pressure, and four vertical pleural pressures in 13 anesthetized paralyzed pigs ventilated in the upright position. Pressure-volume relationships of the respiratory system, chest wall, and lung were measured on deflation from total lung capacity to residual volume and during tidal breathing both before (control) and 50 min after one of two interventions. In one series of experiments, a volume equal to 15-20% of the pig's body weight was infused intravenously. In a second series, a balloon was placed in the peritoneal space to distend the abdomen to the same gastric pressures as achieved in the first series. Measurements were compared before and after either abdominal balloon inflation or volume infusion. Volume infusion increased the pleural pressure in dependent lung regions, decreased both total lung capacity (34%) and functional residual capacity (62%) (both P less than 0.05), and markedly shifted the respiratory system and chest wall pressure-volume curves to the right, but it only moderately affected the lung deflation curve. Tidal compliances of the respiratory system, chest wall, and lung decreased 36, 31, and 49%, respectively (all P less than 0.05). The effect of abdominal balloon inflation on respiratory system mechanics was similar to that of volume infusion. We conclude that infusing large volumes of fluid markedly alters chest wall mechanics, mainly by causing abdominal distension that prohibits descent of the diaphragm.  相似文献   

11.
Currently, the effect of intrathoracoabdominal, extrapulmonary volume displacements (Vep) are not well understood. Various clinical conditions can lead to volume displacements caused by gas or liquid accumulations. To analyze the pressure and volume changes that occur by Vep, we used a mathematical model of chest wall and lung mechanics that accounts for static changes associated with rib cage, diaphragm, abdomen, and lungs. By solving the model equations, we obtained simulations of the pleural and abdominal displacements that clearly differentiate the mechanisms involved. When abdominal displacement occurs, the reduction in lung volume is less than that caused by an equal displacement in pleural space. Abdominal displacement produces an increased pressure that expands the rib cage significantly, whereas pleural displacement does not produce a comparable action. Furthermore, our model predicts the conditions under which the work of inspiration is expected to increase as a consequence of these displacements. Finally, an important distinction is predicted between abdominal displacements caused by gas or liquid accumulation. Although an abdominal gas displacement tends to decrease the resting lung volume, the weight effect of a liquid displacement tends to increase the resting lung volume by pulling down the diaphragm.  相似文献   

12.
Using 133Xe measured the regional distribution of FRC and of boluses administered at FRC in seated subjects during relaxation, lateral compression of the lower rib cage, and contraction of the inspiratory muscles so that mouth pressure was 50 cmH2O subatmospheric. Lateral compression increased apex-to-base differences of volume and bolus distribution, suggesting an increase of the apex-to-base gradient of pleural surface pressure. Changes in rib cage shape were measured with magnetometers and were qualitatively similar to those associated with increases in apex-to-base difference of pleural surface pressure in animals. Inspiratory effort decreased apex-to-base difference in volume and induced a similar trend in bolus distribution. Though changes in the rib cage shape were directionally similar, they were much smaller than those associated with decreased pleural surface pressure gradients in animals, and the changes in regional volume we observed were more likely due to forces generated by diaphragmatic contraction. These results were compatible with the apex-to-base gradient of pleural pressure being strongly influenced by shape adaptation between lung and chest wall.  相似文献   

13.
Pleural effusion is a complicating feature of many diseases of the lung and pleura, but its effects on the mechanics of the diaphragm have not been assessed. In the present study, radiopaque markers were attached along muscle bundles in the midcostal region of the diaphragm in anesthetized dogs, and the three-dimensional location of the markers during relaxation before and after the stepwise introduction of liquid into the left or right pleural space and during phrenic nerve stimulation in the same conditions was determined using computed tomography. From these data, accurate measurements of diaphragm muscle length and displacement were obtained, and the changes in pleural and abdominal pressure were analyzed as functions of these parameters. The effect of liquid instillation on the axial position of rib 5 was also measured. The data showed that 1) liquid leaked through the dorsal mediastinal sheet behind the pericardium so that effusion was bilateral; 2) effusion caused a caudal displacement of the relaxed diaphragm; 3) this displacement was, compared with passive lung inflation, much larger than the cranial displacement of the ribs; and 4) the capacity of the diaphragm to generate pressure, in particular pleural pressure, decreased markedly as effusion increased, and this decrease was well explained by the decrease in active muscle length. It is concluded that pleural effusion has a major adverse effect on the pressure-generating capacity of the diaphragm and that this is the result of the action of hydrostatic forces on the muscle.  相似文献   

14.
The chest wall is modeled as a linear system for which the displacements of points on the chest wall are proportional to the forces that act on the chest wall, namely, airway opening pressure and active tension in the respiratory muscles. A standard theorem of mechanics, the Maxwell reciprocity theorem, is invoked to show that the effect of active muscle tension on lung volume, or airway pressure if the airway is closed, is proportional to the change of muscle length in the relaxation maneuver. This relation was tested experimentally. The shortening of the cranial-caudal distance between a rib pair and the sternum was measured during a relaxation maneuver. These data were used to predict the respiratory effect of forces applied to the ribs and sternum. To test this prediction, a cranial force was applied to the rib pair and a caudal force was applied to the sternum, simulating the forces applied by active tension in the parasternal intercostal muscles. The change in airway pressure, with lung volume held constant, was measured. The measured change in airway pressure agreed well with the prediction. In some dogs, nonlinear deviations from the linear prediction occurred at higher loads. The model and the theorem offer the promise that existing data on the configuration of the chest wall during the relaxation maneuver can be used to compute the mechanical advantage of the respiratory muscles.  相似文献   

15.
In recent studies using relatively noninvasive techniques, the vertical gradient in pleural liquid pressure was 0.2-0.5 cmH2O/cm ht, depending on body position, and pleural liquid pressure closely approximated lung recoil (J. Appl. Physiol. 59: 597-602, 1985). We built a model to discover why the vertical gradient in pleural pressure is less than hydrostatic (1 cmH2O/cm). A long rubber balloon of cylindrical shape was inflated in a plastic cylinder. The "pleural" space between the balloon and cylinder was filled with blue-dyed water. With the cylinder vertical, we measured pleural pressure by a transducer through side taps at 2-cm intervals up the cylinder. The pressure was measured with different amounts of water in the pleural space. With a clear separation between the balloon and the container, the vertical gradient in pleural liquid pressure was hydrostatic. As water was withdrawn from the pleural space, the balloon approached the wall of the container. Over an 8-cm-long midregion of the model where the balloon diameter matched the cylinder diameter, the vertical gradient was not hydrostatic and was virtually absent. In this region, the pleural liquid pressure was uniform and equal to the recoil of the balloon. In this section we could not see any pleural space. By scintillation imaging using 99mTc-diethylenetriamine pentaacetic acid in the water, we estimated the thickness of this flat "costal" pleural space to be approximately 20 microns. Radioactive tracer injected at the top of the pleural space appeared by 24 h at the bottom, which indicated a slow drainage of liquid by gravity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Data on the shape of the chest wall at total lung capacity (TLC) and functional residual capacity (FRC) were used as boundary conditions in an analysis of the deformation of the dog lung. The lung was modeled as an elastic body, and the deformation of the lung from TLC to FRC caused by the change in chest wall shape and gravity were calculated. Parenchymal distortions, distributions of regional volume at FRC as a fraction of the volume at TLC, and distributions of surface pressure at FRC are reported. In the prone dog there are minor variations in fractional volume along the cephalocaudal axis. In transverse planes opposing deformations are caused by the change of shape of the transverse section and the gravitational force on the lung, and the resultant fractional volume and pleural pressure distributions are nearly uniform. In the supine dog, there is a small cephalocaudal gradient in fractional volume, with lower fractional volume caudally. In transverse sections the heart and abdomen extend farther dorsally at FRC, squeezing the lung beneath them. The gradients in fractional volume and pleural pressure caused by shape changes are in the same direction as the gradients caused by the direct gravitational force on the lung, and these two factors contribute about equally to the large resultant vertical gradients in fractional volume and pleural pressure. In the prone position the heart and upper abdomen rest on the rib cage. In the supine posture much of their weight is carried by the lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Chest wall mechanics: effects of acute and chronic lung disease   总被引:1,自引:0,他引:1  
Data from the literature show that lung tissue properties affect the chest wall compliance, Ccw, which is the change in lung volume, Vl, with respect to the pleural pressure, Ppl. to analyze the difference between acute and chronic lung tissue changes, we used a mathematical model that describes the static, nonlinear mechanics of the ventilatory system in terms of its major elements: rib cage; abdomen; diaphragm and lung. With this model we derived the relationship between chest wall, rib-cage and diaphragm compliances. Although the Vl-Ppl relation is independent of lung mechanics, the volume operating point (FRC) of the ventilatory system depends on lung tissue properties. This accounts for the effect of acute lung abnormalities. In the presence of chronic lung abnormalities, the properties of the rib-cage are changed which shifts the entire Vl-Ppl curve. In general, valid comparisons of (extra-pulmonary) chest wall mechanics can only be made using the entire Vl-Ppl relation, or at least a sufficiently large part of the relation about FRC. Differentiation of the rib-cage and diaphragm mechanics requires additional measurements of the rib-cage A-P distance and the relative position of the diaphragm.  相似文献   

18.
The precise measurement of esophageal pressure (Pes) as a reflection of pleural pressure (Ppl) is crucial to the measurement of lung mechanics in the newborn. The fidelity of Pes as a measurement of Ppl is determined by the occlusion test in which, during respiratory efforts against an occlusion at the airway opening, changes in pressure (delta Pao) (Pao is assumed to be equal to alveolar pressure) are shown to be equal to changes in Pes (delta Pes). Eight intubated premature infants (640-3,700 g) with chest wall distortion were studied using a water-filled catheter system to measure Pes. During the occlusion test, all patients had a finite region of the esophagus where delta Pes equaled delta Pao, which corresponded to points in the esophagus above the cardia but below the carina. In conclusion, even in the presence of chest wall distortion, a liquid-filled catheter with the tip between the cardia and carina can provide an accurate measurement of Ppl, even in the very small premature infant with chest wall distortion.  相似文献   

19.
We studied lung mechanics and regional lung function in five young men during restrictive chest strapping. The effects on lung mechanics were similar to those noted by others in that lung elastic recoil increased as did maximum expiratory flow at low lung volumes. Chest strapping reduced the maximum expiratory flow observed at a given elastic recoil pressure. Breathing helium increased maximum expiratory flow less when subjects were strapped than when they were not. These findings indicated that strapping decreased the caliber of airways upstream from the equal pressure point. Regional lung volumes from apex to base were measured with xenon 133 while subjects were seated. The distribution of regional volumes was measured at RV, and at volumes equal to strapped FRC and strapped TLC; no change due to chest strapping was observed. Similarly, the regional distribution of 133Xe boluses inhaled at RV and strapped TLC was unaffected by chest strapping. Closing capacity decreased with chest strapping. We concluded that airway closure decreased during chest strapping and that airway closure was not the cause of the observed increase in elastic recoil of the lung. The combination of decreased slope of the static pressure-volume curve and unchanged regional volumes suggested that strapping increased the apex-to-base pleural pressure gradient.  相似文献   

20.
Standard methods for describing the mechanical properties of a linear elastic system are applied to the two- and three-compartment models of the chest wall. The compliance matrix and the experiments required to determine the entries in this matrix and thereby to describe the mechanical properties of the relaxed chest wall are described. The effective forces exerted by external loads and muscle tension are defined. The formal theory is used to identify relations among variables. From the definition of effective force, it follows that the ratio of the forces exerted by the diaphragm on the rib cage and abdomen is the same as the ratio of the dependence of diaphragm length on rib cage and abdominal volumes. As an example of relations among variables that follow from the symmetry of the compliance matrix, it is shown that the change of gastric pressure caused by raising pleural pressure is related to the change in lung volume caused by changing stomach volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号