共查询到20条相似文献,搜索用时 15 毫秒
1.
A V Kajava 《Journal of molecular biology》1991,218(4):815-823
A detailed stereochemical analysis of intermolecular interactions of collagens made with molecular models and summarized experimental data resulted in a new three-dimensional structural model for collagen fibrils. In this model collagen molecules aligned in axial register form a bunch. The bunches are aligned head to tail and penetrate by 300 A into each other, forming microfibrils; these in turn assemble into fibrils. The new model differs from all the others in that its characteristic axial regularity, with a period of 670 A, results from staggering of the adjacent microfibrils formed by unstaggered molecules rather than from the axial staggering of neighbouring collagen molecules. 相似文献
2.
Intermolecular cross-linking and stereospecific molecular packing in type I collagen fibrils of the periodontal ligament 总被引:2,自引:0,他引:2
A trypsin digest of denatured NaB3H4-reduced native bovine periodontal ligament was prepared and fractionated by gel filtration and cellulose ion-exchange column chromatography. Prior to trypsin digestion, a complete acid hydrolysate was subjected to analyses for nonreducible stable and reducible intermolecular cross-links. Minute amounts of the former and significant amounts of the reduced cross-links dihydroxylysinonorleucine (1.1 mol/mol of collagen), hydroxylysinonorleucine (0.9 mol/mol of collagen), and histidinohydroxymerodesmosine (0.6 mol/mol of collagen) were found. The covalent intermolecular cross-linked two-chained peptides that were isolated were subjected to amino acid and sequence analyses. The structures for the different two-chained linked peptides were alpha 1CB4-5(76-90)[Hyl-87] X alpha 1CB6-(993-22c)[Lysald-16c], alpha 1CB4-5(76-90)[Hyl-87] X alpha 1CB6(993-22c)[Hylald-16c], alpha 2CB4(76-90)[Hyl-87] X alpha 1CB6(993-22c)[Lysald-16c], and alpha 2CB4(76-90)[Hyl-87] X alpha 1CB6(993-22c)[Hylald-16c]. The cross-link in each peptide was glycosylated. This is the first characterization by sequence analysis of a cross-link involving Hyl-87 in an alpha 2 chain in collagen. A stoichiometric conversion of residue 16c aldehyde to an intermolecular cross-link in each of the COOH-terminal nonhelical peptide regions of both alpha 1 chains in a molecule of type I collagen was found. The ratio of alpha 1 to alpha 2 intermolecularly cross-linked chains involved was 3.3:1, indicating a stereospecific three-dimensional molecular packing of type I collagen molecules in bovine periodontal ligament. 相似文献
3.
4.
The assembly of collagen fibrils as a function of temperature and collagen concentration was studied. It was shown that temperature increases from 25 to 35 degrees C, the degree of ordering of collagen fibrils increases 1.5-fold at collagen concentration above 1 mg/ml and 2-fold at low collagen concentration. A maximum ordering of fibril structure occurs under conditions close to physiological (T approximately 35 degrees C and collagen concentration 1.2 mg/ml). As temperature is elevated from 30 to 35 degrees C, the packing of collagen molecules in fibrils becomes more ordered: the values of enthalpy and entropy of the transition of fibrils from the native to a disordered state decrease at all collagen concentrations used. At high collagen concentration, the dimensions of cooperative blocks in fibrils formed at 25 and 30 degrees C coincide with those of cooperative blocks of monomeric collagen in solution. Upon increasing the temperature to 35 degrees C, the dimensions of cooperative blocks increase. 相似文献
5.
Jokinen J Dadu E Nykvist P Käpylä J White DJ Ivaska J Vehviläinen P Reunanen H Larjava H Häkkinen L Heino J 《The Journal of biological chemistry》2004,279(30):31956-31963
In the integrin family, the collagen receptors form a structurally and functionally distinct subgroup. Two members of this subgroup, alpha(1)beta(1) and alpha(2)beta(1) integrins, are known to bind to monomeric form of type I collagen. However, in tissues type I collagen monomers are organized into large fibrils immediately after they are released from cells. Here, we studied collagen fibril recognition by integrins. By an immunoelectron microscopy method we showed that integrin alpha(2)I domain is able to bind to classical D-banded type I collagen fibrils. However, according to the solid phase binding assay, the collagen fibril formation appeared to reduce integrin alpha(1)I and alpha(2)I domain avidity to collagen and to lower the number of putative alphaI domain binding sites on it. Respectively, cellular alpha(1)beta(1) integrin was able to mediate cell spreading significantly better on monomeric than on fibrillar type I collagen matrix, whereas alpha(2)beta(1) integrin appeared still to facilitate both cell spreading on fibrillar type I collagen matrix and also the contraction of fibrillar type I collagen gel. Additionally, alpha(2)beta(1) integrin promoted the integrin-mediated formation of long cellular projections typically induced by fibrillar collagen. Thus, these findings suggest that alpha(2)beta(1) integrin is a functional cellular receptor for type I collagen fibrils, whereas alpha(1)beta(1) integrin may only effectively bind type I collagen monomers. Furthermore, when the effect of soluble alphaI domains on type I collagen fibril formation was tested in vitro, the observations suggest that integrin type collagen receptors might guide or even promote pericellular collagen fibrillogenesis. 相似文献
6.
R Fleischmajer E D MacDonald J S Perlish R E Burgeson L W Fisher 《Journal of structural biology》1990,105(1-3):162-169
It has been suggested that dermal collagen fibrils with 67-nm periodicity consist of hybrids of type I and type III collagens. This is based on the assumption that all these banded fibrils are coated with type III collagen regardless of their diameter. However, conclusive evidence for this form of hybridization is lacking. In order to clarify this problem dermal collagen fibrils were disrupted into microfibrils using 8 M urea. Single and double indirect immunoelectron microscopy showed type III collagen at the periphery of intact collagen fibrils but no labeling with type I collagen antibodies, suggesting that the epitopes for this collagen were masked. Disrupted collagen fibrils revealed type I collagen throughout the fibril except for the periphery which was coated with type III collagen. Almost no type III collagen was noted in the interior of the collagen fibrils. Since type III collagen is present only at the periphery it suggests that this collagen has a different role than type I collagen and may have a regulatory function in fibrillogenesis. 相似文献
7.
Normal type I collagen is a heterotrimer of two α1(I) and one α2(I) chains, but various genetic and environmental factors result in synthesis of homotrimers that consist of three α1(I) chains. The homotrimers completely replace the heterotrimers only in rare recessive disorders. In the general population, they may compose just a small fraction of type I collagen. Nevertheless, they may play a significant role in pathology; for example, synthesis of 10-15% homotrimers due to a polymorphism in the α1(I) gene may contribute to osteoporosis. Homotrimer triple helices have different stability and less efficient fibrillogenesis than heterotrimers. Their fibrils have different mechanical properties. However, very little is known about their molecular interactions and fibrillogenesis in mixtures with normal heterotrimers. Here we studied the kinetics and thermodynamics of fibril formation in such mixtures by combining traditional approaches with 3D confocal imaging of fibrils, in which homo- and heterotrimers were labeled with different fluorescent colors. In a mixture, following a temperature jump from 4 to 32 °C, we observed a rapid increase in turbidity most likely caused by formation of homotrimer aggregates. The aggregates promoted nucleation of homotrimer fibrils that served as seeds for mixed and heterotrimer fibrils. The separation of colors in confocal images indicated segregation of homo- and heterotrimers at a subfibrillar level throughout the process. The fibril color patterns continued to change slowly after the fibrillogenesis appeared to be complete, due to dissociation and reassociation of the pepsin-treated homo- and heterotrimers, but this remixing did not significantly reduce the segregation even after several days. Independent homo- and heterotrimer solubility measurements in mixtures confirmed that the subfibrillar segregation was an equilibrium property of intermolecular interactions and not just a kinetic phenomenon. We argue that the subfibrillar segregation may exacerbate effects of a small fraction of α1(I) homotrimers on formation, properties, and remodeling of collagen fibers. 相似文献
8.
Sidney Lees Michell Pineri M. Escoubes 《International journal of biological macromolecules》1984,6(3):133-136
Only tail tendon (TT) collagen has a sharp X-ray diffraction pattern, so that packing models for the equatorial arrangement of molecules in collagen fibrils have been developed primarily for TT collagen. A more general structure is developed applicable to all type I collagen tissues. Comparison of water content-equatorial diffraction spacing plots of several collagens shows all have essentially the same dry state diffraction spacing but differ as water content increases. TT collagen has the least spacing and the sharpest pattern. The interplanar spacing of the Hulmes-Miller quasi-hexagonal model for TT collagen was used to calculate the intermolecular spacing, which matched the observed diffraction spacing for bone matrix collagen. It is inferred that wet bone matrix collagen packs in a rectangular pattern because of the interaction between the many intermolecular crosslinks and the water absorbed on the collagen molecules. This argument also indicates that TT collagen packs into a quasi-hexagonal scheme because there are fewer intermolecular crosslinks than in bone matrix collagen. 相似文献
9.
Recent studies of the structure of Type I collagen fibrils (Piez and Trus,Biosci. Rep.
1:801–810, 1981; Fraser, MacRae, Miller and Suzuki,J. Mol. Biol.
167:497–521, 1983) suggest that the segments of the collagen molecule which comprise the gap region are more mobile than those which comprise the overlap region. We have analyzed the distribution of amino acid residues and triplet types between the two regions, and find significantly non-uniform distributions for Ala, Gln, His, Hyp, Leu, Phe, and Tyr, and for triplets containing two imino acid residues. Taken together with the lower packing density in the gap region these observations provide a basis for understanding the greater mobility of the molecular segments in the gap region. In addition, we have examined the linear distribution of residue types in the two regions and also the hydropathy profile (Kyte and Doolittle,J. Mol. Biol.
157: 105–113, 1982). These reveal a segment of the gap region comprising helical residues 165–173, 399–407, 633–641 and 867–975 which has the highest hydropathy index, is devoid of charged residues, and contains very high proportions of Ala, Hyp and Phe. 相似文献
10.
Burger C Zhou HW Wang H Sics I Hsiao BS Chu B Graham L Glimcher MJ 《Biophysical journal》2008,95(4):1985-1992
Combined small-angle x-ray scattering and transmission electron microscopy studies of intramuscular fish bone (shad and herring) indicate that the lateral packing of nanoscale calcium-phosphate crystals in collagen fibrils can be represented by irregular stacks of platelet-shaped crystals, intercalated with organic layers of collagen molecules. The scattering intensity distribution in this system can be described by a modified Zernike-Prins model, taking preferred orientation effects into account. Using the model, the diffuse fan-shaped small-angle x-ray scattering intensity profile, dominating the equatorial region of the scattering pattern, could be quantitatively analyzed as a function of the degree of mineralization. The mineral platelets were found to be very thin (1.5 nm ∼ 2.0 nm), having a narrow thickness distribution. The thickness of the organic layers between adjacent mineral platelets within a stack is more broadly distributed with the average value varying from 6 nm to 10 nm, depending on the extent of mineralization. The two-dimensional analytical scheme also leads to quantitative information about the preferred orientation of mineral stacks and the average height of crystals along the crystallographic c axis. 相似文献
11.
Strasser S Zink A Janko M Heckl WM Thalhammer S 《Biochemical and biophysical research communications》2007,354(1):27-32
This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell. 相似文献
12.
In aging and diabetes, glycation of collagen molecules leads to the formation of cross-links that could alter the surface charge on collagen fibrils, and hence affect the properties and correct functioning of a number of tissues. The electron-optical stain phosphotungstic acid (PTA) binds to positively charged amino acid side-chains and leads to the characteristic banding pattern of collagen seen in the electron microscope; any change in the charge on these side-chains brought about by glycation will affect the uptake of PTA. We found that, upon glycation, a decrease in stain uptake was observed at up to five regions along the collagen D-period; the greatest decrease in stain uptake was apparent at the c1 band. This reduction in PTA uptake indicates that the binding of fructose leads to an alteration in the surface charge at several sites along the D-period. Not all lysine and arginine residues are involved; there appear to be specific residues that suffer a loss of positive charge. 相似文献
13.
Cross-links in tendon collagen are essential for the biomechanical strength of healthy tissue. The nature and position of these cross-links has long been a subject for conjecture. We have approached this problem in a non-destructive manner, by studying neutron diffraction from collagen fibrils that have been specifically deuterated by reduction at keto-amine and Schiff base groups with sodium borodeuteride (NaB2H4). The intensities of the first 23 meridional reflections were recorded for both native and reduced tendons. These data were used to calculate the neutron-scattering density profile of the 67 nm (D) repeat of type I collagen fibrils in rat tail tendon. This approach not only succeeds in determining the location of the cross-linkage sites with respect to the fibril structure, as projected onto the fibre axis, but also presents a novel form of the isomorphous derivative solution to the phase problem. 相似文献
14.
Yang L van der Werf KO Fitié CF Bennink ML Dijkstra PJ Feijen J 《Biophysical journal》2008,94(6):2204-2211
Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 ± 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07-0.17 GPa and 2.9 ± 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 ± 7 MPa at ambient conditions and to 3.4 ± 0.2 MPa in phosphate-buffered saline. 相似文献
15.
Structural changes in human type I collagen fibrils investigated by force spectroscopy 总被引:1,自引:0,他引:1
In the field of biomechanics, collagen fibrils are believed to be robust mechanical structures characterized by a low extensibility. Until very recently, information on the mechanical properties of collagen fibrils could only be derived from ensemble measurements performed on complete tissues such as bone, skin, and tendon. Here, we measure force-elongation/relaxation profiles of single collagen fibrils using atomic force microscopy (AFM)-based force spectroscopy (FS). The elongation profiles show that in vitro-assembled human type I collagen fibrils are characterized by a large extensibility. Numerous discontinuities and a plateau in the force profile indicate major reorganization occurring within the fibrils in the 1.5- to 4.5-nN range. Our study demonstrates that newly assembled collagen fibrils are robust structures with a significant reserve of elasticity that could play a determinant role in the extracellular matrix (ECM) remodeling associated with tissue growth and morphogenesis. 相似文献
16.
《The Journal of cell biology》1994,125(5):1179-1188
The glycosaminoglycan chains of cell surface heparan sulfate proteoglycans are believed to regulate cell adhesion, proliferation, and extracellular matrix assembly, through their interactions with heparin-binding proteins (for review see Ruoslahti, E. 1988. Annu. Rev. Cell Biol. 4:229-255; and Bernfield, M., R. Kokenyesi, M. Kato, M. T. Hinkes, J. Spring, R. L. Gallo, and E. J. Lose. 1992. Annu. Rev. Cell Biol. 8:365-393). Heparin-binding sites on many extracellular matrix proteins have been described; however, the heparin-binding site on type I collagen, a ubiquitous heparin-binding protein of the extracellular matrix, remains undescribed. Here we used heparin, a structural and functional analogue of heparan sulfate, as a probe to study the nature of the heparan sulfate proteoglycan-binding site on type I collagen. We used affinity coelectrophoresis to study the binding of heparin to various forms of type I collagen, and electron microscopy to visualize the site(s) of interaction of heparin with type I collagen monomers and fibrils. Using affinity coelectrophoresis it was found that heparin has similar affinities for both procollagen and collagen fibrils (Kd's approximately 60-80 nM), suggesting that functionally similar heparin- binding sites exist in type I collagen independent of its aggregation state. Complexes of heparin-albumin-gold particles and procollagen were visualized by rotary shadowing and electron microscopy, and a preferred site of heparin binding was observed near the NH2 terminus of procollagen. Native or reconstituted type I collagen fibrils showed one region of significant heparin-gold binding within each 67-nm period, present near the division between the overlap and gap zones, within the "a" bands region. According to an accepted model of collagen fibril structure, our data are consistent with the presence of a single preferred heparin-binding site near the NH2 terminus of the collagen monomer. Correlating these data with known type I collagen sequences, we suggest that the heparin-binding site in type I collagen may consist of a highly basic triple helical domain, including several amino acids known sometimes to function as disaccharide acceptor sites. We propose that the heparin-binding site of type I collagen may play a key role in cell adhesion and migration within connective tissues, or in the cell- directed assembly or restructuring of the collagenous extracellular matrix. 相似文献
17.
Raspanti M Viola M Forlino A Tenni R Gruppi C Tira ME 《Journal of structural biology》2008,164(1):134-139
Current wisdom on intermolecular interactions in the extracellular matrix assumes that small proteoglycans bind collagen fibrils on highly specific sites via their protein core, while their carbohydrate chains interact with each other in the interfibrillar space. The present study used high-resolution scanning electron microscopy to analyse the interaction of two small leucine-rich proteoglycans and several glycosaminoglycan chains with type I collagen fibrils obtained in vitro in a controlled, cell-free environment. Our results show that most ligands directly influence the collagen fibril size and shape, and their aggregation into thicker bundles. All chondroitin sulphate/dermatan sulphate glycosaminoglycans we tested, except chondroitin 4-sulphate, bound to the fibril surface in a highly specific way and, even in the absence of any protein core, formed regular, periodic interfibrillar links resembling those of the intact proteoglycan. Only intact decorin, however, was able to organize collagen fibrils into fibres compact enough to mimic in vitro the superfibrillar organization of natural tissues. Our data indicate that multiple interaction patterns may exist in vivo, may explain why decorin- or biglycan-knockout organisms show milder effects than can be expected, and may lead to the development of better, simpler engineered biomaterials. 相似文献
18.
Collagen fibrils resemble smectic, liquid crystals in being highly ordered axially but relatively disordered laterally. In some connective tissues, x-ray diffraction reveals three-dimensional crystallinity in the molecular packing within fibrils, although the continued presence of diffuse scatter indicates significant underlying disorder. In addition, several observations from electron microscopy suggest that the molecular packing is organized concentrically about the fibril core. In the present work, theoretical equatorial x-ray diffraction patterns for a number of models for collagen molecular packing are calculated and compared with the experimental data from tendon fibrils. None of the models suggested previously can account for both the crystalline Bragg peaks and the underlying diffuse scatter. In addition, models in which any of the nearest-neighbor, intermolecular vectors are perpendicular to the radial direction are inconsistent with the observed radial orientation of the principal approximately 4 nm Bragg spacing. Both multiple-start spiral and concentric ring models are devised in which one of the nearest-neighbor vectors is along the radial direction. These models are consistent with the radial orientation of the approximately 4 nm spacing, and energy minimization results in radially oriented crystalline domains separated by disordered grain boundaries. Theoretical x-ray diffraction patterns show a combination of sharp Bragg peaks and underlying diffuse scatter. Close agreement with the observed equatorial diffraction pattern is obtained. The concentric ring model is consistent with the observation that the diameters of collagen fibrils are restricted to discrete values. 相似文献
19.
Studies devoted to the analysis of the mechanisms of packing of collagen fibrils and the effect of the macromolecular structure and the physicochemical parameters of medium on the packing are reviewed. 相似文献
20.
Pleomorphism in type I collagen fibrils produced by persistence of the procollagen N-propeptide 总被引:4,自引:0,他引:4
D J Hulmes K E Kadler A P Mould Y Hojima D F Holmes C Cummings J A Chapman D J Prockop 《Journal of molecular biology》1989,210(2):337-345
The assembly of type I collagen and type I pN-collagen was studied in vitro using a system for generating these molecules enzymatically from their immediate biosynthetic precursors. Collagen generated by C-proteinase digestion of pC-collagen formed D-periodically banded fibrils that were essentially cylindrical (i.e. circular in cross-section). In contrast, pN-collagen generated by C-proteinase digestion of procollagen formed thin, sheet-like structures that were axially D-periodic in longitudinal section, of varying lateral widths (up to several microns) and uniform in thickness (approximately 8 nm). Mixtures of collagen and pN-collagen assembled to form a variety of pleomorphic fibrils. With increasing pN-collagen content, fibril cross-sections were progressively distorted from circular to lobulated to thin and branched structures. Some of these structures were similar to fibrils observed in certain heritable disorders of connective tissue where N-terminal procollagen processing is defective. The observations are considered in terms of the hypothesis that the N-propeptides are preferentially located on the surface of a growing assembly. The implications for normal diameter control of collagen fibrils in vivo are discussed. 相似文献