首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulphated glycosaminoglycans in regenerating rat liver.   总被引:2,自引:0,他引:2       下载免费PDF全文
The total weight percentage glycosaminoglycan content of rat liber was found to increase by 50% in the first 30 h after partial hepatectomy. The content returned to near normal by the third day, but then increased again to a second maximum at 5-6 days, only to gradually decline to normal by the ninth day, when regeneration was nearly complete. This biphasic pattern was most marked in the chondroitin sulphate A/C component, with a 6-fold increase by the sixth day. Dermatan sulphate showed the same temporal trend, whereas heparan sulphate remained relatively unaltered. No such changes were detected in the livers of rats subjected to sham operation. The possible molecular mechanisms underlying the apparent link between cellular glycosaminoglycan content and proliferative tendency are discussed.  相似文献   

2.
1. Developing tail tendons from rats (19-day foetal to 126 days post partum) were examined by electron microscopy after staining for proteoglycan with a cationic copper phthalocyanin dye. Cuprolinic Blue, in a "critical electrolyte concentration" method. Hydroxyproline was measured on papain digests of tendons, from which glycosaminoglycuronans were isolated, characterized and quantified. 2. Mean collagen fibril diameters increased more than 10-fold with age according to a sigmoid curve, the rapid growth phase 2 being during 30-90 days after conception. Fibril periodicities were considerably smaller (50-55 nm) in phases 1 and 2 than in phase 3 (greater than 62 nm). 3. Dermatan sulphate is the main glycosaminoglycuronan in mature tendon. Chondroitin sulphate and hyaluronate preponderate in foetal tissue. 4. Proteoglycan was seen around but not inside collagen fibrils. Proteoglycan and collagen were quantified from electron micrographs. Their ratios behaved similarly to uronic acid/hydroxyproline and hyaluronate/hydroxyproline ratios, which decreased rapidly around birth, and then levelled off to a low plateau coincident with the onset of rapid growth in collagen fibril diameter. 5. Dermatan sulphate/hydroxyproline ratios suggest that the proteoglycan orthogonal array around the fibril is largely dermatan sulphate. In the foetus hyaluronate and chondroitin sulphate exceed that expected to be bound to collagen. 6. An inhibiting action of chondroitin sulphate-rich proteoglycan on fibril diameter growth is suggested. 7. The distributions of hyaluronate, chondroitin sulphate and dermatan sulphate are discussed in the light of secondary structures suggested to be present in hyaluronate and chondroitin sulphate, but not in dermatan sulphate.  相似文献   

3.
Glycosaminoglycans isolated from native non-adhesive surfaces of both endothelial and mesothelial origin and from endothelial cells cultured in vitro were analyzed by electrophoresis and characterized by chemical and enzymatic breakdown. All the surfaces examined expose in vivo chondroitin 6-sulphate as the main glycosaminoglycan. Under in vitro culture, the exposure of chondroitin sulphate is reduced. Paper chromatography of hydrolysis products upon degradation by chondroitinase AC shows equal amounts of both 6- and 4-sulphated disaccharides. At the same time, the surfaces lose their non-adhesiveness to leukocytes. The addition of fibroblast growth factor to endothelial monolayers restores both non-adhesiveness to leukocytes and exposure of chondroitin sulphate. These results seem to indicate that the exposure of chondroitin sulphate is important in preventing cellular adhesion.  相似文献   

4.
THE HYALURONIDASE OF BRAIN   总被引:1,自引:0,他引:1  
Abstract— Hyaluronidase (hyaluronate glycanohydrolase, EC 3.2.1.35), with a pH optimum of 3.7, was detected in rat and bovine brain. It degraded hyaluronic acid and, at a slower rate, chondroitin sulphate to a mixture of higher oligosaccharides with N-acetylhexosamine at the reducing end. The enzyme was enriched 5- and 6-fold in a crude lysosomal fraction of rat brain or bovine cerebral cortex, and was further purified to a total enrichment of 9-fold by ammonium sulphate fractionation. The enzyme activity in grey matter was more than twice that found in white matter, and there was no significant change in enzyme activity as a function of increasing age from the neonatal to the adult rat brain. The level of hyaluronidase activity in rat brain is considerably greaterthan that required to account for the rate of catabolism of hyaluronic acid and chondroitin sulphate measured in vivo.  相似文献   

5.
The glycosaminoglycans of human tracheobronchial cartilage   总被引:6,自引:6,他引:0       下载免费PDF全文
1. The glycosaminoglycans of human tracheobronchial cartilages from subjects of various ages were liberated by proteolysis of the tissue and purified by ion-exchange chromatography. Purified glycosaminoglycans were fractionated on Dowex 1 resin and cetylpyridinium chloride was used to separate chondroitin sulphates and keratan sulphates occurring in the same fraction. 2. The total chondroitin sulphate content of the cartilages decreased linearly with increasing age. Age-dependent changes in the chemical heterogeneity of chondroitin sulphate were observed, a low-sulphated compound making up 25% of the total glycosaminoglycan at birth but rapidly diminishing in content during the first 6 months of life. Of the total chondroitin sulphate the 6-isomer became rather more prominent than the 4-isomer with increasing age. 3. The total keratan sulphate content of the cartilages increased from trace amounts only at birth to a plateau value by the beginning of the fifth decade. Of the total keratan sulphate approx. 70% was due to a high-molecular-weight compound with a sulphate/hexosamine ratio of 1.5-1.8: 1.0. The degree of sulphation varied between compounds isolated from different individuals. The remaining 30% of the keratan sulphate appeared to be intimately associated with chondroitin 6-sulphate and could only be separated from it after treatment with 0.45m-potassium hydroxide. The hybrid glycosaminoglycans were of lower molecular weight and had a lower sulphate/hexosamine ratio than the major keratan sulphate compound.  相似文献   

6.
A method was developed for the analysis of non-reducing terminal structure of radiolabelled chondroitin sulphate chains with the aid of N-acetylgalactosamine 4-sulphatase ('terminal 4-sulphatase'), N-acetylgalactosamine 6-sulphatase ('terminal 6-sulphatase'), beta-glucuronidase and beta-N-acetylhexosaminidase. Studies with this method on the non-reducing terminal structure of [35S]sulphate- and [3H]glucose-labelled chondroitin sulphate chains from rat and chick-embryo cartilages showed that the presence of a high proportion of 4-sulphated hexosamine residues is a common feature of the termini of newly synthesized chondroitin sulphate chains. Of the non-reducing terminal 4-sulphated hexosamine residues, about 14% (chick embryo) or 46% (rat) contained an additional sulphate group at position 6. The internal portion of the chondroitin sulphate chains, in contrast, contained little or no 4,6-bis-sulphated hexosamine residue, suggesting that 4,6-bis-sulphated structure may play a role in biosynthetic control at the level of chain termination.  相似文献   

7.
Developmental Change in the Glycosaminoglycan Composition of the Rat Brain   总被引:5,自引:5,他引:0  
Abstract: Glycosaminoglycans (GAGs) were isolated from the brains of pre- and postnatal rats. The GAG content of the brain, based on the amount of DNA, was constant during the period from day 13 to day 15 of gestation. After day 15, the GAG content began to increase and reached a plateau by 10 days after birth. Hyaluronate (HA) was the main GAG (> 60% of the total) in the fetal rat brain, and the relative amount of HA decreased after birth. Conversely, the relative amount of chondroitin sulfate increased with development and reached the adult level by 20 days after birth. Heparan sulfate (HS) was the major sulfated GAG in the fetal rat brain at early developmental stages, but HS accounted for approximately 10% of the total GAG in the postnatal brains. In addition to these GAGs, a polysialosyl glycoconjugate was isolated from rapidly growing brains of the rat. These three GAGs could be isolated either from the cerebellum, cerebrum, or brainstem of the newborn rat. A closely similar age-related change in the GAG composition was observed in each of these different regions of the brain. The developmental change could be implicated in morphogenesis or maturation of the brain.  相似文献   

8.
DEVELOPMENTAL PROFILES OF GANGLIOSIDES IN HUMAN AND RAT BRAIN   总被引:23,自引:13,他引:10  
Abstract— The developmental profiles of individual gangliosides of human brain were compared with those of rat brain. Interest was focused mainly on the pre- and early postnatal development. Human frontal lobe cortex covering the period from 10 foetal weeks to adult age and the cerebrum of rat from birth to 21 days were analysed. Lipid-NANA and lipid-P were followed; in the rat, also protein and brain weight. A limited number of samples of human cerebral white matter and cerebellar cortex were also studied. The following major results were obtained:
  • 1 The ganglioside concentration increased approximately three-fold within a short period: in rat cerebrum, from birth to the 17th day; in human cerebral cortex, from the 15th foetal week to the age of about 6 months. The largest increase in the rat brain occurred by the 11th to the 13th day; in human brain by term. The relative increase of gangliosides during this period was more rapid than that of phospholipids.
  • 2 A hitherto unknown distinct early period of ganglioside and phospholipid formation in rat occurred by the second to fourth day.
  • 3 The changes in brain ganglioside pattern, characteristic of the developmental stages of the rat, were found to be equally pronounced in the human brain.
  • 4 Regional developmental differences in the ganglioside pattern were demonstrated in human brain. A characteristic white matter pattern, rich in monosialogangliosides, had developed by the age of 1 year. The increase in ganglioside concentration and the formation of the definitive ganglioside pattern of cerebellar cortex occurred later than in cerebral cortex. This cerebellar pattern was characterized by a very large trisialoganglioside fraction.
  • 5 The two periods of rapid ganglioside metabolism in rat brain preceded the two periods of rapid protein biosynthesis.
  相似文献   

9.
Macrophages were obtained from the mouse peritoneal cavity and culturedin vitro. The cells were exposed to35S-sulphate for 20 h, and labelled proteoglycans were recovered from both medium and cell fractions by sodium dodecylsulphate solubilization. The cell fraction contained both proteoglycans and glycosaminoglycans, whereas only intact proteoglycans could be recovered from the medium fraction. 35S-Glycosaminoglycans isolated from cell and medium fractions by papain digestion were shown to contain approximately 25% heparan sulphate and 75% galactosaminoglycans comprising 55% chondroitin sulphate and 20% dermatan sulphate. The galactosaminoglycans were shown by paper chromatography to contain more than 95% 4-sulphated units. Pulse-chase experiments showed that approximately 80% of the cell-associated material was released within 6 h of incubation.35S-Proteoglycans released did not bind to the macrophages, but were recovered in a soluble form from the culture medium.Abbreviations CSPG chondroitin sulphate proteoglycan - HSPG heparan sulphate proteoglycan - SDS sodium dodecylsulphate - DME Dulbecco's Minimum Essential Medium - GAG glycosaminoglycan  相似文献   

10.
Abstract— The activities of adenyl cyclase and phosphodiesterase were determined in homogenates of cerebrum, cerebellum and brain stem of rats of 1 day to 9 weeks of postnatal age. The activity of cerebral and brain stem adenyl cyclase measured either in the absence or presence of sodium fluoride increased rapidly for 2 weeks, reached at 20 days a maximum about three times (brain stem) or six times (cerebrum) that seen on day 1 and then declined slightly during the next several weeks. In contrast, activity of cerebrellar adenyl cyclase increased more slowly and reached a maximum at about 32 days. Activity of phosphodiesterase in cerebrum and brain stem increased several-fold during brain maturation; however, enzymic activity in the cerebellum decreased during the entire 9 week period.
In the pineal gland, adenyl cyclase activity measured in the absence of norepinephrine or sodium fluoride did not change significantly with age. However, enzymic activity measured in the presence of these agents increased with the age of the rat. Bilateral removal of the superior cervical ganglia at 1 day of age is known to arrest the sympathetic innervation of the pineal gland but did not prevent the development of this adenyl cyclase system activated by catecholamines or fluoride.  相似文献   

11.
Monensin (10nm-1mum) inhibited the incorporation of [(35)S]sulphate and [(3)H]glucosamine into proteoglycans by rat chondrosarcoma cells, but the incorporation of [(3)H]glucosamine into hyaluronate was unaffected. The results suggest that hyaluronate synthesis occurs in a cell compartment separate from chondroitin sulphate synthesis.  相似文献   

12.
Glycosaminoglycans were extracted from normal, inflamed and phenytoin induced overgrowth of human gingival tissue by proteolysis and alcohol precipitation. Extracts were run in a Dowex-1 column and the fractions were treated with mucopolysaccharidases. Cellulose acetate electrophoresis was carried out with or without enzyme digestion for identification of individual glycosaminoglycans. Glycosaminoglycans were found to be decreased in inflammation but were observed to increase in the overgrowth. Hyaluronic acid was found to be increased in both the pathological conditions. Dermatan sulphate, chondroitin sulphate and heparan sulphate were observed to be decreased in inflammation. In overgrowth, dermatan sulphate and chondroitin sulphate were found to increase while the presence of heparan sulphate was not significant. The changes in the pattern of individual glycosaminoglycan in the two varied conditions are discussed.Abbreviations GAG glycosaminoglycan - MPS mucopolysaccharide - DS dermatan sulphate - HS heparan sulphate - CS chondroitin sulphate - HA hyaluronic acid - KS keratan sulphate  相似文献   

13.
Glycosaminoglycans, the sugar moieties of proteoglycans, modulate axonal growth in vitro. However, their anatomical distribution in relation to developing axonal tracts in the rat brain has not been studied. Here, we examined the immunohistochemical distribution of chondroitin-6-sulfate and chondroitin-4-sulfate, two related glycosaminoglycan epitopes, which are present in three types of glycosaminoglycans: chondroitin sulfate C, chondroitin sulfate A, and chondroitin sulfate B. Further, we compared their distribution pattern to that of axonal tract development. Both glycosaminoglycan epitopes showed a heterogeneous spatiotemporal distribution within the developing rat brain. However, the expression of chondroitin-4-sulfate was more restricted than that of chondroitin-6-sulfate, although both epitopes were detected from embryonic day 13 until the day of birth, overlapping in many regions of the central nervous system including cortex, hippocampus, thalamus, and hindbrain. After birth, the levels of expression of both glycosaminoglycan epitopes progressively decreased and were practically undetectable after the first postnatal week. The expression of chondroitin-6-sulfate and, to a lesser extent, that of chondroitin-4-sulfate, was preferentially associated to the extracellular matrix surrounding specific axon bundles. However, the converse association was not true, and several apparently similar types of axon developed on a substrate devoid of both types of glycosaminoglycan epitopes. These results provide an anatomical background for the idea that different types of glycosaminoglycans may contribute to establish the complex set of guidance cues necessary for the specific development of defined axon tracts in the central nervous system. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Abstract— The activity of cyclic AMP phosphodiesterase of rat cerebral homogenates increased several-fold between 1 and 60 days of age. Enzyme activity in the cerebellum, on the other hand, did not increase during this period. A kinetic analysis of the phosphodiesterase activity revealed evidence for multiple forms of the enzyme and indicated that the postnatal increase in phosphodiesterase activity of rat cerebrum was due almost exclusively to the high Km enzyme. In cerebellum, the ratio of the high and low Km enzyme remained fairly constant during ontogenetic development. Physical separation of the phosphodiesterases contained in 100,000 g soluble supernatant fractions of sonicated brain homogenates by polyacrylamide disc gel electrophoresis confirmed the presence of multiple enzyme forms. In adult rats we found six distinct peaks of phosphodiesterase activity (designated I to VI according to the order in which they were eluted from the column) in cerebellum and 4 forms of the enzyme (Peaks I through IV) in cerebrum. Brains of newborn rats had a different pattern and ratio of phosphodiesterase activities. For example, Peak I phosphodiesterase was undetectable in cerebrum or cerebellum of newborn rats. Moreover, in the cerebellum of newborn rats Peak II was the dominant peak whereas in the cerebellum of adult rats Peak III was the largest peak. A comparison of the multiple forms of phosphodiesterase from the cerebrum of newborn and adult animals suggested that the postnatal increase in phosphodiesterase activity previously seen in crude homogenates was due largely to an increase in a high K, Peak II phosphodiesterase. The ratios of activities of the other peaks and their sensitivities to an activator of phosphodiesterase were similar in newborn and adult rats. An endogenous heat-stable activator of phosphodiesterase was found in cerebrum, cerebellum and brain stem. In newborn rats, the cerebellum contained several-fold less activity of this activator than did cerebrum or brain stem. However, the activity of this activator increased with age in the cerebellum and would appear to have decreased postnatally in cerebrum and brain stem. These results suggest that some multiple forms of phosphodiesterase can develop independently and that changes in activities of these phosphodiesterases may occur by increases in the quantity of enzyme or by changes in the quantity of an endogenous activator of phosphodiesterase.  相似文献   

15.
Abstract— Thelevel of the S-100 protein, a brain-specific antigen, wasdetermined by quantitative complement fixation in the brain stem and cerebrum of the rat during postnatal maturation. The content was minimal at birth in the brain stem and rose to its adult value by day 25. Although S-100 protein could not be detected in the cerebrum of the 2-day-old rat, adult values were also present by the 25th day of age. Neither single dose X-irradiation with 750 rd to the head at 2 days of age or single dose X-irradiation at 11 days of age affected the adult level of S-100 protein in the brain stem or cerebrum. Similarly, hypophysectomy at 20 days of age had no effect on the subsequent levels of S-100 protein.  相似文献   

16.
The sulfated glycosaminoglycans synthesized in the forelimb plates of rats on days 12, 13, 14, and 15 of gestation were characterized by their susceptibility to various glycosaminoglycan lyases. On days 12 and 13, heparan sulfate accounted for approximately 65% of the newly synthesized sulfated glycosaminoglycans. Small amounts of dermatan sulfate and chondroitin sulfates were also observed. On day 14, the relative amount of chondroitin 4-sulfate began to increase, there being a compensatory decrease in the amount of heparan sulfate. 35S-Sulfate-labeled material was extracted from day-13 forelimb plates with 4 M guanidine/HCl without proteolysis. Using ultracentrifugation on a sucrose density gradient, the extract was separated into two peaks: a light peak (L) mainly composed of heparan sulfate, and a faster-sedimenting peak (M) mainly composed of chondroitin sulfate. The cartilage-type proteoglycan (H) was first detectable on day 14 of gestation, indicating that chondrogenesis in rat forelimb plates starts on day 14 of gestation. In addition to these previously identified glycosaminoglycans or proteoglycans, we isolated an unknown component in the glycosaminoglycan preparations obtained from limb plates during these developmental stages. This component was not found in glycosaminoglycan preparations obtained either from the brain or tail of rat fetuses at the same stages.  相似文献   

17.
Each of the known classes of mammalian glycosaminoglycans, with the exception of keratan sulphate, was found in cerebral cortex samples from patients with Alzheimer-type dementia and age-matched controls. These molecules were quantitated, after electrophoresis and staining with Alcian Blue dye, by scanning densitometry. No significant differences were found between the mean levels of each of the above glycosaminoglycans in frontal cortex from patients with dementia compared with controls. An increase (26%; p less than 0.05) in the mean level of hyaluronate, but not of other glycosaminoglycans, was found in temporal cortex samples. On the other hand, the uronic acid content of hyaluronate degradation products following Streptomyces hyaluronidase treatment of brain glycosaminoglycans did not reveal any statistically significant changes in Alzheimer's disease. HPLC of disaccharide products from Arthrobacter chondroitinase AC digests did not reveal any significant changes in sulphate substitution of chondroitin sulphate in Alzheimer brain.  相似文献   

18.
Total and specific activity of cathepsin D (EC. 3.4.23.5) were measured in rat liver and brain from 1 to 98 days of age. The activity of cathepsin D in the liver of adult and newborn rats was the same while in the rat brain it was higher in adult than in newborn rats. In the liver maximum specific activity of cathepsin D occurred on the 10th postnatal day and minimum on the fourth day of age. In the brain maximum specific activity of the enzyme occurred on the 14th postnatal day. Total activity of cathepsin D increased after birth in rat liver and brain. These results are discussed in relation to the functional role of cathepsin D in the rat liver and the brain.  相似文献   

19.
The variation and changes of glycosaminoglycans in human vitreous body from patients with retinal detachment were studied. The isolated glycosaminoglycans from normal vitreous were identified as hyaluronate, which is the main component (92%) and chondroitin sulphate (8%). In contrast, in pathologic samples up to 18% of total glycosaminoglycans were identified as chondroitin.sulphate. In addition, in pathologic vitreous two fractions of glycosaminoglycans about 10% were identified as undersulphated chondroitin and heparan sulphate. The hydrodynamic size of hyaluronate differs between normal and pathologic samples. In samples from the patients with detached retinas the hyaluronic acid was of small hydrodynamic size.  相似文献   

20.
Polysialosyl glycopeptides were coisolated with glycosaminoglycans by Pronase digestion of the whole brains of perinatal rats and could be separated from known glycosaminoglycans by two-dimensional electrophoresis on cellulose acetate film. The polysialosyl glycopeptides could not be obtained from fetal rat brain on day 13 of gestation, but began to be detected on day 14. The amount of polysialosyl glycopeptides was estimated from the dye concentration of the Alcian blue-stained spot in the electrophoretogram. The glycopeptide content increased almost linearly, on the basis of brain DNA, up to 10 days after birth. Thereafter, the content decreased rapidly, and hardly any polysialosyl glycopeptides could be isolated from the brain at approximately 30 days. This developmental change may be involved in morphogenesis and maturation of the brain. The polysialosyl glycopeptides could be isolated from the cerebellum, from the cerebrum, or from the brainstem of the neonatal rat. However, each region of the brain had a postnatal developmental change in glycopeptide content different from those of the other regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号