首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular molecules possess various mechanisms in responding to oxidant stress. In terms of protein responses, protein S-glutathionylation is a unique post-translational modification of protein reactive cysteines forming disulfides with glutathione molecules. This modification has been proposed to play roles in antioxidant, regulatory and signaling in cells under oxidant stress. Recently, the increased level of protein S-glutathionylation has been linked with the development of diseases. In this report, specific S-glutathionylated proteins were demonstrated in human embryonic kidney 293 cells treated with two different oxidative reagents: diamide and hydrogen peroxide. Diamide is a chemical oxidizing agent whereas hydrogen peroxide is a physiological oxidant. Under the experimental conditions, these two oxidants decreased glutathione concentration without toxicity. S-glutathionylated proteins were detected by immunoblotting and glutathione concentrations were determined by high performance liquid chromatography. We further show the effect of alteration of the cellular thiol pool on the amount of protein S-glutathionylation in oxidant-treated cells. Cellular thiol concentrations were altered either by a specific way using buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis or by a non-specific way, incubating cells in cystine-methionine deficient media. Cells only treated with either buthionine sulfoximine or cystine-methionine deficient media did not induce protein S-glutathionylation, even though both conditions decreased 65% of cellular glutathione. Moreover, the amount of protein S-glutathionylation under both conditions in the presence of oxidants was not altered when compared to the amount observed in regular media with oxidants present. Protein S-glutathionylation is a dynamic reaction which depends on the rate of adding and removing glutathione. Phenylarsine oxide, which specifically forms a covalent adduct with vicinal thiols, was used to determine the possible role of vicinal thiols in the amount of glutathionylation. Our data shows phenylarsine oxide did not change glutathione concentrations, but it did enhance the amount of glutathionylation in oxidant-treated cells.  相似文献   

2.
Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions.  相似文献   

3.
Ferrous ascorbate (FeAA: FeSO4+ascorbic acid) has been used in the past by different investigators to induce oxidative stress. The optimum dose of FeAA for inducing oxidative stress by affecting thiols [total thiols (TSH), glutathione reduced (GSH), glutathione oxidized (GSSG), redox ratio (GSH/GSSG)], total lipids and phospholipids has been ascertained in the local crossbred cattle bull spermatozoa. The fractions of spermatozoa suspended in 2.9% sodium citrate were subjected to three doses of FeAA (100 microM:500 microM, 150 microM:750 microM, 200 microM:1000 microM; FeSO4:ascorbic acid), and were assessed for various parameters. On increasing the concentration of FeAA, a gradual decrease in TSH, GSH, GSH/GSSG, lipid and phospholipid levels, but increase in GSSG content were observed. It is concluded that thiol groups play an important role in antioxidation and detoxification of ROS as well as maintaining intracellular redox status. Thiol groups, thus, serve as defense mechanisms of sperm cells to fight against oxidative stress. In addition, all doses of FeAA cause leakage of lipids and phospholipids from the bull sperm membranes.  相似文献   

4.
The radioprotective role of endogenous and exogenous thiols was investigated, with survival as the end-point, after radiation exposure of cells under oxic and hypoxic conditions. Human cell strains originating from a 5-oxoprolinuria patient and from a related control were used. Due to a genetic deficiency in glutathione synthetase, the level of free SH groups, and in particular that of glutathione, is decreased in 5-oxoprolinuria cells. The glutathione synthetase deficient cells have a reduced oxygen enhancement ratio (1.5) compared to control cells (2.7). The radiosensitivity was assessed for both cell strains in the presence of different concentrations of an exogenous radioprotector:cysteamine. At concentrations varying between 0.1 and 20 mM, cysteamine protected the two cell strains to the same extent when irradiated under oxic and hypoxic conditions. The protective effect of cysteamine was lower under hypoxia than under oxic conditions for both cell strains. Consequently, the oxygen enhancement ratio decreased for both cell strains when cysteamine concentration increased. These results suggest that cysteamine cannot replace endogenous thiols as far as they are implicated in the radiobiological oxygen effect.  相似文献   

5.
Radiation protection by thiols in procaryotes and lower eucaryotes has been demonstrated repeatedly to require a competent DNA repair phenotype, suggesting that simple chemical radical scavenging and hydrogen donation are only a portion of the mechanism of radiation protection by thiols. In the present report, thiol-induced radiation resistance--a model in which cells are pretreated with dithiothreitol and then irradiated in the absence of thiol--is shown to be a medium-dependent process. Wild-type log-phase cells treated with dithiothreitol in minimal-glucose medium are induced to radioresistance that persists after the thiol has been removed. Although the thiol pretreatment affected the antioxidants (catalase, superoxide dismutase, and glutathione) in cells at the time of irradiation, various antioxidant levels did not predict radiation resistance. Thiol-induced radioresistance is not expressed in rich medium-treated cells or in DNA repair (recA)-deficient cells. Addition of the efficient chelator, DETAPAC, to the thiol treatment medium leads to additional radioresistance in the case of minimal medium and a moderate expression of resistance in rich medium. Experiments using the intracellular chelator, 1,10-phenanthroline, in the presence of thiol led to inhibition of thiol-induced resistance in minimal medium and radiosensitization in rich medium. These results can be explained by a "site-specific" mechanism of thiol oxidation in which the chelators control the site(s) and rate of thiol oxidation, subsequently determining the type of cellular response.  相似文献   

6.
Apolipoprotein E deficient mice have distinct memory deficits and neurochemical derangements and their recovery from closed head injury is impaired. In the present study, we examined the possibility that the neuronal derangements of apolipoprotein E deficient mice are associated with oxidative stress, which in turn affects their ability to recover from close head injury. It was found that brain phospholipid levels in apolipoprotein E deficient mice are lower than those of the controls (55+/-15% of control, P<0. 01), that the cholesterol levels of the two mice groups are similar and that the levels of conjugated dienes of the apolipoprotein E deficient mice are higher than those of control mice (132+/-15% of P<0.01). Brains of apolipoprotein E deficient mice had higher Mn-superoxide dismutase (134+/-7%), catalase (122+/-8%) and glutathione reductase (167+/-7%) activities than control (P<0.01), whereas glutathione peroxidase activity and the levels of reduced glutathione and ascorbic acid were similar in the two mouse groups. Closed head injury increased catalase and glutathione peroxidase activities in both mouse groups, whereas glutathione reductase increased only in control mice. The superoxide dismutase activity was unaffected in both groups. These findings suggest that the antioxidative metabolism of apolipoprotein E deficient mice is altered both prior to and following head injury and that antioxidative mechanisms may play a role in mediating the neuronal maintenance and repair derangements of the apolipoprotein E deficient mice.  相似文献   

7.
The cellular distribution of 35S after incubating labelled captan with Neurospora crassa conidia has been determined. Nearly all the 35S in the spores is bound to the water-soluble and protein fractions. Thin-layer chromatography of the hot-water extract of spores has shown that 35S occurs largely in oxidized glutathione (GSSG) and in a product tentatively identified as a thiazolidine derivative of glutathione. It is suggested that this derivative, which only forms above pH 6·5, is produced by reaction between glutathione (GSH) and the thiocarbonyl chloride liberated on the decomposition of captan. Captan toxicity could not be completely reversed by pretreatment with thiols and disulphides capable of penetrating the cell membrane, confirming the previous hypothesis that fungitoxicity is due to irreversible changes following the oxidation of the protein thiols to disulphides.  相似文献   

8.
The role of intracellular non-protein bound sulphydryl compounds (NPSH), and in particular that of glutathione (GSH), in the response of cells to ionizing radiation under different O2 concentrations has been assessed using cell strains deficient in glutathione synthetase and exhibiting different NPSH levels. The cell strains used originated from patients with 5-oxoprolinuria and from their relatives (heterozygotes and proficient homozygotes). No correlation has been found between NPSH and GSH concentrations and radiosensitivity under oxic, aerobic and hypoxic conditions. However, a highly significant correlation has been observed between radiosensitivity under hypoxic conditions (and therefore the oxygen enhancement ratio) and the glutathione synthetase activity, suggesting that synthesis of GSH is required after irradiation. In order to explain our results we postulated, beside radical processes, the existence of a GSH-dependent enzymatic repair mechanism for N2 type damage. Hypoxic radio-sensitivity measured with survival curves would result from the interaction of both competition and biochemical repair processes.  相似文献   

9.
The tendency of rat red blood cells to hemolyze in the presence of peroxidizing rat liver microsomes is greatly increased if the red cells are obtained from vitamin E deficient rats. Adequate dietary vitamin E supplementation imparts resistance against hemolysis. Dietary butylated hydroxytoluene or the level of erythrocyte glutathione or total thiols are relatively unimportant factors in determining red cell sensitivity to hemolysis induced by perixiziding microsomes. When separated from peroxidizing microsomes by a dialysis membrane, vitamin E deficient cells are completely hemolyzed. Hemolytically active material can be separated from peroxidized microsomes by dialysis at 0°C.  相似文献   

10.
A model has been developed to obtain a better understanding of the effects of boron neutron capture therapy (BNCT) on a cellular scale. This model, the microdosimetry model MICOR, has been developed to include all reactions important for BNCT. To make the model more powerful in the translation from energy deposition to biological effect, it has been designed to be capable of calculating the effectiveness function. Based on this function, the model can calculate surviving fractions, RBE values and boron concentration distributions. MICOR has been used to analyze an extensive set of biological experiments performed at the HB11 beam in Petten. For V79 Chinese hamster cells, the effectiveness function is determined and used to generate surviving fractions. These fractions are compared with measured surviving fractions, which results in a good agreement between the measured and calculated surviving fractions (within the uncertainties of the measurements).  相似文献   

11.
Human fibroblasts irradiated with ultraviolet light were either tested for survival (colony formation) or infected with simian virus 40 and examined for transformation (foci formation). For normal cell cultures, the fractions of surviving colonies which were also transformed increased with increasing irradiation dose. In contrast, little increase in the transformation of ultraviolet-irradiated repair-deficient (xeroderma pigmentosum and xeroderma pigmentosum variant) cells was observed. Similar experiments with xeroderma pigmentosum variant cells treated with caffeine following irradiation indicated that, under these conditions, the deficient cells produced more transformants among the survivors of ultraviolet irradiation than did unirradiated cells. These results suggest (1) that DNA repair functions, not DNA damage per se, are required for enhanced viral transformation in normal cells; (2) that functions involved in excision repair and functions needed for replication of ultraviolet-damaged DNA appear necessary for this stimulation; and (3) that blocking DNA replication in ultraviolet-irradiated xeroderma pigmentosum variant cells by caffeine enhances viral transformation.  相似文献   

12.
Dimethylfumarate (DMF) depletes intracellular glutathione (GSH) by covalent bond formation in a reaction which may be mediated by GSH-S-transferase. In Chinese hamster ovary cells this depletion is rapid; e.g., 0.5 mM DMF depletes GSH to less than 10% of control in 5 min at room temperature. DMF is a very effective hypoxic cell radiosensitizer, with an enhancement ratio (ER) of about 3 obtained by a 5-min exposure of cells at room temperature to 5 mM DMF, without significant toxicity. At this same concentration of drug, there is a small enhancement of aerobic cells (ER = 1.3), but the 5 mM DMF in hypoxia results in nearly a complete collapse of the hypoxic dose-response curve to the same level as seen in air with DMF. It has been suggested previously that DMF sensitizes cells via electron affinic mechanisms. However, this appears not to be the case in this study, as shown by the fact that cells pretreated with DMF and then washed free of the drug remained equally radiosensitive as cells irradiated in the presence of the drug. This large enhancement of radiation sensitivity appears to be related to the drug's ability to deplete thiols; i.e., thiols appear to be a major factor responsible for radioresistance of hypoxic cells.  相似文献   

13.
The time course for the repair of PLD in LEC and WKAH rat cells irradiated at 5 Gy was examined. In the case of WKAH rat cells, the surviving fraction increased with increasing incubation times after X-irradiation. When hypertonic treatment was performed at each incubation time with 0.5 M NaCl for 20 min, increase in the surviving fractions was not shown. In contrast, no significant recovery of the surviving fraction in LEC rat cells was observed after incubation of irradiated cells with or without 0.5 M NaCl for 20 min. On dose-survival curves, hypertonic treatment with 0.5 M NaCl enhanced radiosensitivity of WKAH rat cells, but not LEC rat cells. Although the surviving fraction of the cells from backcross mice with normal radiosensitivity reduced by treatment with 0.5 M NaCl, the survival fraction was not affected in the cells from backcross mice with higher radiosensitivity by treatment with 0.5 M NaCl. When the cells were X-irradiated and incubated with or without 0.225 M NaCl, the radiosensitivities of LEC and WKAH rat cells treated with 0.225 M NaCl for 4 h were approximately two-fold higher than those of untreated cells. Treatment with caffeine also reduced the surviving fractions of both X-irradiated LEC and WKAH rat cells, compared with those of untreated cells. These results indicated that the slow repair of PLD occurred in LEC rat cells but not the fast repair of PLD.  相似文献   

14.
BACKGROUND: Components of the DNA damage checkpoint are essential for surviving exposure to DNA damaging agents. Checkpoint activation leads to cell cycle arrest, DNA repair, and apoptosis in eukaryotes. Cell cycle regulation and DNA repair appear essential for unicellular systems to survive DNA damage. The relative importance of these responses and apoptosis for surviving DNA damage in multicellular organisms remains unclear. RESULTS: After exposure to ionizing radiation, wild-type Drosophila larvae regulate the cell cycle and repair DNA; grp (DmChk1) mutants cannot regulate the cell cycle but repair DNA; okra (DmRAD54) mutants regulate the cell cycle but are deficient in repair of double strand breaks (DSB); mei-41 (DmATR) mutants cannot regulate the cell cycle and are deficient in DSB repair. All undergo radiation-induced apoptosis. p53 mutants regulate the cell cycle but fail to undergo apoptosis. Of these, mutants deficient in DNA repair, mei-41 and okra, show progressive degeneration of imaginal discs and die as pupae, while other genotypes survive to adulthood after irradiation. Survival is accompanied by compensatory growth of imaginal discs via increased nutritional uptake and cell proliferation, presumably to replace dead cells. CONCLUSIONS: DNA repair is essential for surviving radiation as expected; surprisingly, cell cycle regulation and p53-dependent cell death are not. We propose that processes resembling regeneration of discs act to maintain tissues and ultimately determine survival after irradiation, thus distinguishing requirements between muticellular and unicellular eukaryotes.  相似文献   

15.
Withaferin A (WA), a plant withanolide, has shown significant radiosensitizing effect in vitro and in vivo. Inhibition of DNA repair has been suggested as a mechanism of radiosensitization by WA. To test this, the effect of withaferin A on survival of DT40 chicken B-lymphocyte cell line and its repair deficient single gene mutants Rad54-/-, Ku70-/- and double mutant Ku70-/- /Rad54-/- after irradiation was studied. Exponentially growing cells were treated for 1 hr with 5 microM WA and then exposed to different doses of X-rays. Cell survival was studied by clonogenic assay. WA significantly reduced survival of DT40, Ku70-/- and Ku70-/- /Rad54-/-, but not Rad54-/- cells, suggesting that WA enhances radiosensitivity by interfering with homologous repair, the major pathway of DSB repair in these cells. Inhibition of DNA repair is further indicated in a significant decrease in surviving fraction of DT40 cells by post-irradiation incubation with WA. This could have relevance to cancer radiotherapy.  相似文献   

16.
In increasing numbers of pulmonary diseases an association with a loss of intracellular thiols, mainly glutathione, is postulated. Therefore, the quantitative measurement of thiols within different viable cells is a possible metabolic parameter for cellular function and defense capacity of all pulmonary immune cells including alveolar macrophages (AM), that are highly compromised by oxidative stress. In this study the cellular thiol content was determined using fluorochrom conjugated chloromethyl derivatives (5-chloromethylfluorescein diacetate, CMFDA) in flow cytometry. The procedure was evaluated in vitro using biochemical techniques for glutathione quantification. Based on this approach, AM obtained from bronchoalveolar lavage (BAL) of smokers and patients with chronic obstructive pulmonary disease (COPD) showed a significant thiol deficiency compared to a nonsmoker/non-COPD group. The cellular thiol expression of AM from smokers and COPD patients reached only 50 and 53% of the control group. Lowest thiol concentrations (47% of control) were detected within the smoker(+)/COPD(+) group. This intracellular thiol deficiency significantly correlated with reduced lung function (FEV(1), PaO(2)). With regard to the tightly regulated thiol metabolism of immune cells, these results imply the onset of functional disturbances in thiol deficient AM. The determination of the cellular thiol content of AM, obtained from BAL by flow cytometry, presents a simple and reliable tool to monitor the effect of therapeutic measures focusing on the stabilization of the cellular thiol status.  相似文献   

17.
Suspensions of freshly isolated rat hepatocytes and renal tubular cells contain high levels of reduced glutathione (GSH), which exhibits half-lives of 3-5 and 0.7-1 h, respectively. In both cells types the availability of intracellular cysteine is rate limiting for GSH biosynthesis. In hepatocytes, methionine is actively converted to cysteine via the cystathionine pathway, and hepatic glutathione biosynthesis is stimulated by the presence of methionine in the medium. In contrast, extracellular cystine can support renal glutathione synthesis; several disulfides, including cystine, are rapidly taken up by renal cells (but not by hepatocytes) and are reduced to the corresponding thiols via a GSH-linked reaction sequence catalyzed by thiol transferase and glutathione reductase (NAD(P)H). During incubation, hepatocytes release both GSH and glutathione disulfide (GSSG) into the medium; the rate of GSSG efflux is markedly enhanced during hydroperoxide metabolism by glutathione peroxidase. This may lead to GSH depletion and cell injury; the latter seems to be initiated by a perturbation of cellular calcium homeostasis occurring in the glutathione-depleted state. In contrast to hepatocytes, renal cells metabolize extracellular glutathione and glutathione S-conjugates formed during drug biotransformation to the component amino acids and N-acetyl-cysteine S-conjugates, respectively. In addition, renal cells contain a thiol oxidase acting on extracellular GSH and several other thiols. In conclusion, our findings with isolated cells mimic the physiological situation characterized by hepatic synthesis and renal degradation of plasma glutathione and glutathione S-conjugates, and elucidate some of the underlying biochemical mechanisms.  相似文献   

18.
The role of endogenous thiols in intrinsic radioprotection   总被引:1,自引:0,他引:1  
Observations are reviewed from experiments performed to study the role of endogenous thiols in the radiation response of cells using a glutathione-deficient and a related glutathione-proficient cell strain. The effect of glutathione in the initial radical reactions was considered and the yield of single-strand DNA breaks was the end-point of the response. The rejoining of breaks and clonogenic survival were chosen as end-points when, in addition, the role of glutathione in the subsequent biochemical processes was studied. The results were interpreted to indicate that glutathione plays a role in both the radical and the biochemical reactions which follow irradiation. In the former case, it functions as a damage-restituting reactant, in general agreement with the 'competition model'. Some biochemical repair processes, in particular those concerned with the rejoining of breaks induced by radiation in the presence of oxygen or misonidazole, appear also to be critically dependent on glutathione. Due, probably, to its particular spatial distribution, endogenous glutathione is specific in the radical processes, and exogenous thiols cannot be substituted for it. No such specificity was indicated in the biochemical processes related to strand break rejoining.  相似文献   

19.
Thiols play a central role in maintaining biological homeostasis. Their levels can change dramatically in response to oxidative stress associated with toxic insults, bacterial infection, and disease. Therefore, a reagent that can monitor thiol levels both in vitro and in vivo would be useful for assays and as a biomarker. Such a reagent should (i) be selective for thiols, (ii) be able to penetrate cell walls, and (iii) have a low reduction potential so as not to create oxidative stress in a cell. We have developed such a fluorescent reagent (DSSA) based on a dithiol linker: (i) the use of a dithiol linker makes it selective for thiols; (ii) the use of fluorophores that populate neutral states at physiological pH improves cell wall penetration; and (iii) because of the reagent's low reduction potential (-0.60 V), it will not stress cells oxidatively. For example, 5 microM of reagent is responsive to changes in glutathione levels in the physiologically relevant range of 1 to 10mM, yet this would oxidize less than 1% of cellular glutathione. In Escherichia coli, decreased thiol levels were detected in cells deficient in glutathione synthesis. In zebrafish embryos, the DSSA reagent permitted detection of unusually high thiol levels in the zebrafish chorion.  相似文献   

20.
It has long been assumed that the oxidized form of glutathione, the tripeptide glutamate-cysteine-glycine, is a source of oxidizing equivalents needed for the formation of disulphide bonds in proteins within the endoplasmic reticulum (ER), although the in vivo function of glutathione in the ER has never been studied directly. Here we show that the major pathway for oxidation in the yeast ER, defined by the protein Ero1, is responsible for the oxidation of both glutathione and protein thiols. However, mutation and overexpression studies show that glutathione competes with protein thiols for the oxidizing machinery. Thus, contrary to expectation, cellular glutathione contributes net reducing equivalents to the ER; these reducing equivalents can buffer the ER against transient hyperoxidizing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号