首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The spatial heterogeneity hypothesis predicts a positive relationship between habitat complexity and species diversity: the greater the heterogeneity of a habitat, the greater the number of species in that habitat. On a regional scale, this hypothesis has been proposed to explain the increases in species diversity from the poles to the tropics: the tropics are more diverse because they contain more habitats. On the local scale, the spatial heterogeneity hypothesis suggests that the tropics are more diverse because they contain more microhabitats. The positive relationship between habitat heterogeneity and species diversity, on the local scale, is well documented. In this paper, we test whether habitat heterogeneity on the local scale can explain the latitudinal gradient of species diversity on the regional scale. We determined the latitudinal gradient of species diversity of 305 species of North American grasshoppers using published distribution maps. We compared the slope of this multihabitat (regional-scale) gradient with the slope of a within-habitat (local-scale) gradient in the prairie grasslands. Our results show no significant difference between the slopes at the two scales. We tested the generality of our results by comparing multi- and within-habitat latitudinal gradients of species diversity for ants, scorpions and mammals using data from the literature. These results are in accordance with those from grasshoppers. We can therefore reject the local-scale spatial heterogeneity hypothesis as a mechanism explaining the regional-scale latitudinal gradient of species diversity. We discuss alternative mechanisms that produce this gradient.  相似文献   

2.
The diversity in different groups of obligate saproxylic beetles was related to ecological variables at three levels of spatial scale in mature spruce-dominated forest. The variables were connected to: (i) decaying wood, (ii) wood-inhabiting fungi, (iii) the level of disturbance, (iv) landscape ecology, and (v) vegetational structure. Several strong relationships were found at medium (1 km2) and large scales (4 km2), while only weak relationships were found at a small scale (0.16 ha; 1 ha=104 m2). This may be explained by the local variations in habitat parameters and the high mobilities of many beetle species. Factors connected to decaying wood and wood-inhabiting fungi were clearly the most important factors at all scale levels. In particular, the variables diversity of dead tree parts, number of dead trees of large diameter and number of polypore fungi species increased the species richness of many groups and increased the abundance of many species. Eight species were absent below a certain density of decaying wood per 1 or 4 km2. Former extensive cutting was a negative factor at large scale, probably because of decreasing recolonization with increasing distance to the source habitats. Thinning reduced the diversity of species associated with birch. The development of guidelines favouring the diversity of saproxylic beetles are discussed below.  相似文献   

3.
Using the example of a model group of macromycete (clavarioid fungi), a large-scale investigation into the mycological complex of the Eurasian Arctic is conducted. The species composition of clavarioid fungi’s complex is revealed in all longitudinal sectors and latitudinal subzones, and a comparative analysis is carried out. It has been determined that, among groups of aphyllophoroid fungi, the clavarioid life form is the most adapted to the extremally psychrophilic conditions of the Arctic. It is shown that the near-oceanic sectors are the richest, whereas the continental sectors are much poorer. The distribution of the species composition of fungi conforms to the similar distribution of flowering plants, especially hemicryptophytes. The average annual quantity of atmospheric precipitation is the leading climatic factor. The differences make it possible to subdivide the Eurasian Arctic into four mycogeographical regions: Atlantic (European), Siberian, Chukotian (Beringian), and High Arctic.  相似文献   

4.
Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below‐ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km2). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity–area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine‐scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage‐specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.  相似文献   

5.
Beta diversity (i.e. species turnover rate across space) is fundamental for understanding mechanisms controlling large‐scale species richness patterns. However, the influences on beta diversity are still a matter of debate. In particular, the relative role of environmental and spatial processes (e.g. environmental niche versus dispersal limitation of species) remains elusive, and the influence of species range size has been poorly tested. Here, using distribution maps of 11 405 woody species in China (ca 9.6 × 106 km2), we investigated 1) the geographical and directional patterns of beta diversity for all woody species and species with different range sizes, and 2) compared the effects of environmental and spatial processes on these patterns. Beta diversity was calculated as the decay of similarity in species composition with increasing distance. Variables representing environmental energy, water availability, climatic seasonality, habitat heterogeneity and human activities were used to evaluate the effects of environmental processes, while spatial distance was used to assess the influence of spatial processes. The results indicated significant directional patterns of beta diversity: the similarity decay along the latitudinal gradient was 1.6–2.3 times faster than that along the longitudinal gradient. Beta diversity also increased with the decrease of species range size. As compared with spatial processes, environmental processes had stronger effects on longitudinal beta diversity and on the beta diversity of widely‐ranged species. This was opposite to the larger influence of spatial processes on latitudinal beta diversity and the beta diversity of narrowly‐ranged species. These results suggest that the distributions of narrowly‐ranged woody species in China may have not reached equilibrium with their environmental niches due to dispersal limitation induced by China's topography and/or their low dispersal ability. The projected rapid climatic changes will likely endanger such species. Species dispersal processes should be taken into account in future conservation strategies in China.  相似文献   

6.
Aim Local‐regional (LR) species diversity plots were conceived to assess the contribution of regional and local processes in shaping the patterns of biological diversity, but have been used also to explore the scaling of diversity in terms of its alpha, beta, and gamma components. Here we explore the idea that patterns in the geographical ranges of species over a continent can determine the shape of small region to large region (SRLR) plots, which are equivalent to LR plots when comparing the diversity of sites at two regional scales. Location To test that idea, we analysed the diversity patterns at two regional scales for the mammals of North America, defined as the mainland from Alaska and Canada to Panama. Method We developed a theoretical model relating average range size of species over a large‐scale region with its average regional point species diversity (RPD). Then, we generated a null model of expected SRLR plots based on theoretical predictions. Species diversities at two scales were modelled using linear and saturation functions for Type I and Type II SRLR relationships, respectively. We applied the models to the case of North American mammals by examining the regional diversity and the RPD for 21 large‐scale quadrats (with area equal to 160,000 km2), arranged along a latitudinal gradient. Results Our model showed that continental and large‐scale regional patterns of distribution of species can generate both types of SRLR relationship, and that these patterns can be reflected in LR plots without invoking any kind of local processes. We found that North American nonvolant mammals follow a Type I SRLR relationship, whereas bats follow a Type II pattern. This difference was linked to patterns in which species of the two mammalian groups distribute in geographical space. Conclusion Traditional LR plots and the new SRLR plots are useful tools in exploring the scaling of species diversity and in showing the relationship between distribution and diversity. Their usefulness in comparing the relative role of local and regional processes is, however, very limited.  相似文献   

7.
Planning riparian restoration to resemble historic reference conditions requires an understanding of both local and regional patterns of plant species diversity. Thus, understanding species distributions at multiple spatial scales is essential to improve restoration planting success, to enhance long‐term ecosystem functioning, and to match restoration planting designs with historic biogeographic distributions. To inform restoration planning, we examined the biogeographic patterns of riparian plant diversity at local and regional scales within a major western U.S.A. drainage, California's Sacramento—San Joaquin Valley. We analyzed patterns of species richness and complementarity (β‐diversity) across two scales: the watershed scale and the floodplain scale. At the watershed scale, spatial patterns of native riparian richness were driven by herbaceous species, whereas woody species were largely cosmopolitan across the nearly 38,000 km2 study area. At the floodplain scale, riparian floras reflected species richness and dissimilarity patterns related to hydrological and disturbance‐driven successional sequences. These findings reinforce the importance of concurrently evaluating both local and regional processes that promote species diversity and distribution of native riparian flora. Furthermore, as restoration activities become more prevalent across the landscape, strategies for restoration outcomes should emulate the patterns of species diversity and biogeographic distributions found at regional scales.  相似文献   

8.
Beta多样性度量不同时空尺度物种组成的变化,是生物多样性的重要组成部分;理解其地理格局和形成机制已成为当前生物多样性研究的热点问题。基于Alwyn H. Gentry在美洲收集的131个森林样方数据,采用倍性和加性分配方法度量群落beta多样性,检验beta多样性随纬度的变化趋势,并分析其形成机制。研究表明:(1) 美洲森林群落beta多样性随纬度增加显著下降,热带和亚热带地区beta多样性高于温带地区;此格局可由物种分布范围的纬度梯度性和不同粒度(grain)下物种丰富度与纬度回归斜率的差异推论得出;(2) 加性分配方法表明beta多样性对各个温度带森林群落gamma多样性的相对贡献率平均为78.2%,并且随纬度升高而降低;(3) 美洲南半球森林群落beta多样性高于其北半球,这可能反映了区域间物种进化和环境变迁历史的差异。此外,还探讨了不同beta多样性计算方法的适用情景,首次证实了森林生态系统群落水平beta多样性的纬度梯度性,这对研究生物多样性的形成机制和生物多样性保护都具有重要的意义。  相似文献   

9.
This study examined the latitudinal gradient of species diversity of rocky intertidal sessile assemblages on the slopes of rocks along the Northwestern Pacific coast of Japan, located between 31°N and 43°N, by explicitly incorporating an hierarchical spatial scale into the monitoring design. The specific questions were to examine: (1) whether there is a latitudinal gradient of regional diversity, (2) how spatial components of the regional diversity (local diversity and turnover diversity) vary with latitude depending on spatial scale, and (3) whether the latitudinal gradient differs between different measures of species diversity, i.e. species richness and Simpsons diversity index. We measured coverage and the presence or absence of all sessile organisms in a total of 150 census plots established at five shores in each of six regions. The results showed that there were clear latitudinal gradients in regional species richness and in species turnover among shores. However, these patterns were not reflected in smaller-scale local species richness. For Simpsons diversity index, there was no evidence of latitudinal clines either in regional diversity or in spatial components. These results suggest that relative abundance of common species does not vary along latitude, while the number of rare species increases with decreasing latitude.
An erratum to this article can be found at  相似文献   

10.
The role of habitat selection behaviour in the assembly of natural communities is an increasingly important theme in ecology. At the same time, ecologists and conservation biologists are keenly interested in scale and how processes at scales from local to regional interact to determine species distributions and patterns of biodiversity. How important is habitat selection in generating observed patterns of distribution and diversity at multiple spatial scales? In theory, habitat selection in response to interacting species can generate both positive and negative covariances among species distributions and create the potential to link processes of community assembly across multiple scales. Here I demonstrate that habitat selection by treefrogs in response to the distribution of fish predators functions at both the regional scale among localities and the local scale among patches within localities, implicating habitat selection as a critical link between local communities and the regional dynamics of metacommunities in complex landscapes.  相似文献   

11.
The underlying drivers of β‐diversity along latitudinal gradients have been unclear. Previous studies have focused on β‐diversities calculated at a local scale and shed limited light on regional β‐diversity. We tested the much‐debated effects of range size vs. environmental filtering on the β‐gradient using data from the US Forest Inventory Analysis Program. We showed that the drivers of the β‐gradient were scale dependent. At the local scale species spatial patterns contributed little to the β‐gradient, whereas at the regional scale spatial patterns dominated the gradient and a U‐shape latitudinal relationship for the standardised β‐diversity deviation was revealed. The relationship can be explained by spatial variation in climate and soil texture, thus supporting the environmental filtering hypothesis. But it is inconsistent with Rapoport's rule about the effect of range size on β‐gradient. These results resolve the debate on whether species spatial distributions contribute to β‐gradient and attest the importance of environmental filtering in determining regional β‐diversity.  相似文献   

12.
13.
Ectomycorrhizal (ECM) fungi play major ecological roles in temperate and tropical ecosystems. Although the richness of ECM fungal communities and the factors controlling their structure have been documented at local spatial scales, how they vary at larger spatial scales remains unclear. In this issue of Molecular Ecology, Tedersoo et al. (2012) present the results of a meta‐analysis of ECM fungal community structure that sheds important new light on global‐scale patterns. Using data from 69 study systems and 6021 fungal species, the researchers found that ECM fungal richness does not fit the classic latitudinal diversity gradient in which species richness peaks at lower latitudes. Instead, richness of ECM fungal communities has a unimodal relationship with latitude that peaks in temperate zones. Intriguingly, this conclusion suggests the mechanisms driving ECM fungal community richness may differ from those of many other organisms, including their plant hosts. Future research will be key to determine the robustness of this pattern and to examine the processes that generate and maintain global‐scale gradients of ECM fungal richness.  相似文献   

14.
The article studies the change of clavarioid mycota species richness along the longitudinal gradient of climatic continentality in the forest tundra ecotone of Eurasia and the results are discussed for continental and regional levels using the basic climatic variables. It was found that species richness declines, both continentally and regionally, with climate continentality increasing. The Fennoscandian sector situated in the mild maritime climate is the richest, whereas Yakutia, with an ultracontinental harsh climate is the poorest. Strong positive correlations were found between species richness and mean annual temperature and precipitation. On the other hand, spatial turnover of species, or beta diversity, has a negative correlation with the macroclimatic gradient. There are European sectors, where clavarioid mycota associating with the birch and pine-spruce open woodlands have high similarity with their boreal variants, whereas in Siberian sectors, east of the Yenisei River, where mycota is associated with larch and cedar elfin bushes, the similarities are more akin to tundra variants. At the continental scale, there is no reliable relationship between mycota diversity with the flora richness and soil pH, but the permafrost thickness is significantly correlated with the studied levels of the clavarioid mycota diversity.  相似文献   

15.
On any spatial scale, the species composition of a taxonomic group often departs from a phylogenetically random subset drawn from the pool of species available on a higher scale. Analysis of the uneven representation of related lineages in different assemblages can reveal the action of various forces shaping their diversification. For any assemblage, unequal diversification among lineages can be estimated using diversity skewness, an index of the balance of a phylogenetic tree whose values increase with increasing differences in diversification rates among tree branches. We tested for geographical patterns in the diversity skewness of flea assemblages parasitic on small mammals in 26 distinct geographic localities from the Palaearctic and 15 from the Nearctic. Overall, diversity skewness of the Nearctic flea assemblage was unexpectedly high compared to that of the global flea fauna, whereas that of the Palaearctic did not depart from the expectations of a null model. On a smaller scale, the diversity skewness of local flea assemblages was sometimes lower, sometimes higher, but, in most of the 41 localities, it did not differ significantly from that of random subsets taken from the species pool available on the larger spatial scale (either the world fauna or that of the biogeographical realm, i.e. Palaearctic or Nearctic). More importantly, among Palaearctic assemblages, diversity skewness increased with increasing latitude and/or decreasing mean air temperatures. The different patterns observed in the Palaearctic and Nearctic may be in part due the fact that flea diversification appears to have been more intense in the former than the latter, and to differences between them in relief and glacial history. Temperature‐driven speciation rates may well explain the latitudinal gradient in diversity skewness in the Palaearctic. The results illustrate the action of various biogeographical processes in shaping the uneven differentiation of flea lineages on different spatial scales. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 807–814.  相似文献   

16.
Aim We tested the hypothesis that shredder detritivores, a key trophic guild in stream ecosystems, are more diverse at higher latitudes, which has important ecological implications in the face of potential biodiversity losses that are expected as a result of climate change. We also explored the dependence of local shredder diversity on the regional species pool across latitudes, and examined the influence of environmental factors on shredder diversity. Location World‐wide (156 sites from 17 regions located in all inhabited continents at latitudes ranging from 67° N to 41° S). Methods We used linear regression to examine the latitudinal variation in shredder diversity at different spatial scales: alpha (α), gamma (γ) and beta (β) diversity. We also explored the effect of γ‐diversity on α‐diversity across latitudes with regression analysis, and the possible influence of local environmental factors on shredder diversity with simple correlations. Results Alpha diversity increased with latitude, while γ‐ and β‐diversity showed no clear latitudinal pattern. Temperate sites showed a linear relationship between γ‐ and α‐diversity; in contrast, tropical sites showed evidence of local species saturation, which may explain why the latitudinal gradient in α‐diversity is not accompanied by a gradient in γ‐diversity. Alpha diversity was related to several local habitat characteristics, but γ‐ and β‐diversity were not related to any of the environmental factors measured. Main conclusions Our results indicate that global patterns of shredder diversity are complex and depend on spatial scale. However, we can draw several conclusions that have important ecological implications. Alpha diversity is limited at tropical sites by local factors, implying a higher risk of loss of key species or the whole shredder guild (the latter implying the loss of trophic diversity). Even if regional species pools are not particularly species poor in the tropics, colonization from adjacent sites may be limited. Moreover, many shredder species belong to cool‐adapted taxa that may be close to their thermal maxima in the tropics, which makes them more vulnerable to climate warming. Our results suggest that tropical streams require specific scientific attention and conservation efforts to prevent loss of shredder biodiversity and serious alteration of ecosystem processes.  相似文献   

17.
Understanding the structure of and spatial variability in the species composition of ecological communities is at the heart of biogeography. In particular, there has been recent controversy about possible latitudinal trends in compositional heterogeneity across localities (β‐diversity). A gradient in the size of the regional species pool alone can be expected to impose a parallel gradient on β‐diversity, but whether β‐diversity also varies independently of the size of the species pool remains unclear. A recently suggested methodological approach to correct latitudinal β‐diversity gradients for the species pool effect is based on randomization null models that remove the effects of gradients in α‐ and γ‐diversity on β‐diversity. However, the randomization process imposes constraints on the variability of α‐diversity, which in turn force γ‐ and β‐diversity to become interdependent, such that any change in one is mirrored in the other. We argue that simple null model approaches are inadequate to discern whether correlations between α‐, β‐ and γ‐diversity reflect processes of ecological interest or merely differences in the size of the species pool among localities. We demonstrate that this kind of Narcissus effect may also apply to other metrics of spatial or phylogenetic species distribution. We highlight that Narcissus effects may lead to artificially high rejection rates for the focal pattern (Type II errors) and caution that these errors have not received sufficient attention in the ecological literature.  相似文献   

18.
There is growing evidence that root‐associated fungi have important roles in Arctic ecosystems. Here, we assess the diversity of fungal communities associated with roots of the ectomycorrhizal perennial herb Bistorta vivipara on the Arctic archipelago of Svalbard and investigate whether spatial separation and bioclimatic variation are important structuring factors of fungal community composition. We sampled 160 plants of B. vivipara from 32 localities across Svalbard. DNA was extracted from entire root systems, and 454 pyrosequencing of ITS1 amplicons was used to profile the fungal communities. The fungal communities were predominantly composed of Basidiomycota (55% of reads) and Ascomycota (35%), with the orders Thelephorales (24%), Agaricales (13.8%), Pezizales (12.6%) and Sebacinales (11.3%) accounting for most of the reads. Plants from the same site or region had more similar fungal communities to one another than plants from other sites or regions, and sites clustered together along a weak latitudinal gradient. Furthermore, a decrease in per‐plant OTU richness with increasing latitude was observed. However, no statistically significant spatial autocorrelation between sites was detected, suggesting that environmental filtering, not dispersal limitation, causes the observed patterns. Our analyses suggest that while latitudinal patterns in community composition and richness might reflect bioclimatic influences at global spatial scales, at the smaller spatial scale of the Svalbard archipelago, these changes more likely reflect varied bedrock composition and associated edaphic factors. The need for further studies focusing on identifying those specific bioclimatic and edaphic factors structuring root‐associated fungal community composition at both global and local scales is emphasized.  相似文献   

19.
Aim Ecologists have shown increasing interest in the relative roles of local and regional factors in structuring biotic communities. One approach to studying this is to examine the relationship between local species richness (LSR) and regional species richness (RSR). We examined the LSR–RSR relationship in stream diatoms, using two data sets that varied in spatial extent. At broad spatial extent ranging across drainage systems, we expected climatic and dispersal‐related factors to constrain LSR, thus resulting in a linear LSR–RSR relationship. However, at small spatial scales dispersal across sites should be unconstrained, resulting in strong local interactions and a weak or asymptotic LSR–RSR relationship. Location Boreal streams in Finland. Methods For data set 1, we sampled 15 stream riffles (localities) in each of eight drainage systems (regions), with the latitudinal gradient between the southernmost and northernmost sites being almost 1100 km. For data set 2, a locality for estimating LSR was a single stone, and each riffle represented a region for estimating RSR. We sampled 20 stones in each of eight riffles. We used linear regressions to examine the relationship between LSR and RSR across regions. We used both observed richness values, as well as values estimated with the Chao1 estimator. Results We found a relatively strong linear relationship between the Chao1‐estimated mean LSR and RSR (R2 = 0.654, P = 0.015) across drainage systems. The slope of the regression was 0.643 and it did not differ from 1.0, thus indicating linearity. At the riffle scale, however, LSR and RSR were not linearly related, and the slope of the regression (0.039) differed significantly from 1.0, indicating curvilinearity. Main conclusions These results suggest that the relationship between mean LSR and RSR varies across spatial scales in diatoms – from significantly linear at large scales to curvilinear at small scales. These plots imply strong regional enrichment in stream diatoms across drainage systems. Their diversity is thus determined largely by the composition of the regional species pool, as also in many macroorganisms. In contrast, at small spatial scales the LSR–RSR relationship implied a hard limit to local diversity, reflecting the primacy of local processes.  相似文献   

20.
Over the last two decades, although much has been learned regarding the multifaceted nature of biodiversity, relatively little is known regarding spatial variation in constituents other than species richness. This is particularly true along extensive environmental gradients such as latitude. Herein, we describe latitudinal gradients in the functional diversity of New World bat communities. Bat species from each of 32 communities were assigned to one of seven functional groups. Latitudinal gradients existed for the richness, diversity and scaled‐dominance of functional groups. No significant patterns were observed for evenness of functional groups. Measures of functional diversity were different in magnitude and increased towards the equator at a faster rate than expected given the underlying spatial variation in species richness. Thus, latitudinal gradient in species richness alone do not cause the latitudinal gradient in functional diversity. When variation in species composition of the regional fauna of each community was incorporated into analyses, many differences between observed and simulated patterns of functional diversity were not significant. This suggests that those processes that determine the composition of regional faunas strongly influence the latitudinal gradient in functional diversity at the local level. Nonetheless, functional diversity was lower than expected across observed sites. Community‐wide responses to variation in the quantity and quality of resources at the local level probably contribute to differences in functional diversity at local and regional scales and enhance beta diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号