首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The induction of heat shock protein gene expression in response to stress is critical for the ability of organisms to cope with and survive exposure to these stresses. However, most studies on HSF1-mediated induction of hsp70 gene expression have utilized immortalized cell lines and temperatures above the physiologically relevant range. For these reasons much less is known about the heat shock response as it occurs in mammalian cells within tissues in the intact organism. To gain insight into this area we determined the temperature thresholds for activation of HSF1 DNA binding in different mouse tissues. We have found that HSF1 DNA binding activity and hsp70 synthesis are induced in spleen cells at significantly lower temperatures relative to cells of other tissues, with a temperature threshold for activation (39 degrees C) that is within the physiological range for fever. Furthermore, we found that the lowered temperature set point for induction of the stress response in spleen is specific to T-lymphocytes residing within this tissue and is not exhibited by B-lymphocytes. This lowered threshold is also observed in T-lymphocytes isolated from lymph nodes, suggesting that it is a general property of T-lymphocytes, and is seen in different mouse strains. Fever is an early event in the immune response to infection, and thus activation of the cellular stress response in T-lymphocytes by fever temperatures could serve as a way to give these cells enough time to express hsps in anticipation of their function in the coming immune response. The induced hsps likely protect these cells from the stressful conditions that can exist during the immune response, for example increasing their protection against stress-induced apoptosis.  相似文献   

7.
8.
9.
10.
11.
Recently, we have shown that two proteasome inhibitors, MG132 and lactacystin, induce hyperphosphorylation and trimerization of HSF1, and transactivate heat shock genes at 37 degrees C. Here, we examined the effects of these proteasome inhibitors and, in addition, a phosphatase inhibitor calyculin A (CCA) on the activation of HSF1 upon heat shock and during post-heat-shock recovery, with emphasis on HSF1 hyperphosphorylation and the ability of HSF1 to transactivate heat shock genes. When lactacystin, MG132, or CCA was present after heat shock, HSF1 remained hyperphosphorylated during post-heat-shock recovery at 37 degrees C. Failure of HSF1 to recover to its preheated dephosphorylated state correlated well with the suppression of the heat-induced hsp70 expression. In vitro, HSF1 from heat-shocked cells, when dephosphorylated, showed an increase in HSE-binding affinity. Taken together, these data suggest that phosphorylation of HSF1 plays an important role in the negative regulation of heat-shock response. Specifically, during post-heat-shock recovery phase, prolonged hyperphosphorylation of HSF1 suppresses heat-induced expression of heat shock genes.  相似文献   

12.
Expression of stress proteins is generally induced by a variety of stressors. To gain a better understanding of the sensing and induction mechanisms of stress responses, we studied the effects of culture temperature on responses to various stressors, since the induction of hsp70 in mammalian cells by heat shock is somehow modulated by culture temperature. Hsp70 was not induced by treatment with sodium arsenite, azetidine-2-carboxylic acid, or zinc sulfate at the level of heat shock factor (HSF) 1 activation in cells incubated at low temperature, although these treatments induced hsp70 in cells incubated at 37 degrees C. The repression of sodium arsenite or zinc sulfate-induced HSF1 activation by low temperature was not simply due to the inhibition of protein synthesis. On the other hand, heat shock and iodoacetamide induced HSF 1 activation in cells incubated at either temperature. Thus, there seem to be two kinds of stressors that induce HSF1 activation independently of or dependent on culture temperature. Furthermore, the reduction of glutathione level seemed to be essential for HSF1 activation by chemical stressors.  相似文献   

13.
Heat shock induces c-Jun N-terminal kinase (JNK) activation as well as heat shock protein (HSP) expression through activation of the heat shock factor (HSF), but its signal pathway is not clearly understood. Since a small GTPase Rac1 has been suggested to participate in the cellular response to stresses, we examined whether Rac1 is involved in the heat shock response. Here we show that moderate heat shock (39-41 degrees C) induces membrane translocation of Rac1 and membrane ruffling in a Rac1-dependent manner. In addition, Rac1N17, a dominant negative mutant of Rac1, significantly inhibited JNK activation by heat shock. Since Rac1V12 was able to activate JNK, it is suggested that heat shock may activate JNK via Rac1. Similar inhibition by Rac1N17 of HSF activation in response to heat shock was observed. However, inhibitory effects of Rac1N17 on heat shock-induced JNK and HSF activation were reduced as the heat shock temperature increased. Rac1N17 also inhibited HSF activation by l-azetidine-2-carboxylic acid, a proline analog, and heavy metals (CdCl)), suggesting that Rac1 may be linked to HSF activation by denaturation of polypeptides in response to various proteotoxic stresses. However, Rac1N17 did not prevent phosphorylation of HSF1 in response to these proteotoxic stresses. Interestingly, a constitutively active mutant Rac1V12 did not activate the HSF. Therefore, Rac1 activation may be necessary, but not sufficient, for heat shock-inducible HSF activation and HSP expression, or otherwise a signal pathway(s) involving Rac1 may be indirectly involved in the HSF activation. In sum, we suggest that Rac1 may play a critical role(s) in several aspects of the heat shock response.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Stocker AJ  Madalena CR  Gorab E 《Genetica》2006,126(3):277-290
The chromosomal response to temperature shock in Rhynchosciara americana is similar to that observed in other Diptera. After a 33 degrees C/90 min or a 36 degrees C/30 min shock the reaction for RNA polymerase II (RpII) is enhanced at five loci. The most prominent of these was identified by in situ hybridization as the site of the hsp70 gene. At 33 degrees C, an accumulation of heat shock factor (HSF) and an increase in the level of RpII was observed at some heat shock loci after 5 min and reached a maximum after 15 min at most loci. The pattern of accumulation of HSF and RpII at individual heat shock loci was similar and their increases were generally coordinated among the loci. RpII gradually decreased at sites active prior to shock, the rate of decrease varying with the site. The B2 DNA puff retained RpII for a significant length of time while the histone locus still contained RpII after a shock of 90 min. With a 36 degrees C/30 min shock, the size of the heat shock puffs and the intensities of HSF and RpII peaked at 1-4 h post stress. The level of HSF declined rapidly after 1 h while the level of RpII remained high for an additional 4 h. The reaction of the DNA puffs to heat shock varied. Usually they did not regress completely and retained traces of RpII. BrdU incorporation continued at both amplifying and non-amplifying bands after shock but on average it appeared depressed for about 24 h post stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号