共查询到20条相似文献,搜索用时 15 毫秒
1.
0.15 M inorganic phosphate dramatically increased the alpha-helix content of melittin in aqueous solution. When melittin interacted with egg yolk phosphatidylcholine liposomes in the absence of inorganic phosphate, it was converted to an alpha-helix rich form, as postulated by Dawson et al. (Dawson, C.R., Drake, A.F. Helliwell, J. and Hider, R.C. (1978) Biochim. Biophys. Acta 510, 75--86). 相似文献
2.
0.15 M inorganic phosphate dramatically increased the α-helix content of melittin in aqueous solution.When melittin interacted with egg yolk phosphatidylcholine liposomes in the absence of inorganic phosphate, it was converted to an α-helix rich form, as postulated by Dawson et al. (Dawson, C.R., Drake, A.F. Helliwell, J. and Hider, R.C. (1978) Biochim. Biophys. Acta 510, 75–86). 相似文献
3.
A trapping method combined with high-resolution nuclear magnetic resonance spectroscopy is described for the measurement of hydrogen-deuterium exchange rates for individual amides of polypeptides bound to fully hydrated, dispersed phospholipid bilayers. Exchange rates were measured for 22 of the 24 amide hydrogens of bee venom melittin bound to bilayers composed of egg phosphatidylcholine/phosphatidylserine (88:12, mol/mol) dispersed in 20 mM sodium acetate, pH 4.0. Amides of residues 5-11 and 16-22 had exchange rates suppressed by between 30- and 1000-fold, and the rate suppression exhibited a helical periodicity with amides on the hydrophobic helix face up to 20-fold more stable than those on the hydrophilic face of the helix. These results demonstrate that under the conditions studied melittin adopts a helical conformation with stable helical hydrogen bonds extending to residue 22 and that the helix is oriented with the hydrophobic face directed toward the membrane interior. 相似文献
4.
The interaction of bee melittin with lipid bilayer membranes 总被引:8,自引:0,他引:8
The influence of melittin and the related 8-26 peptide on the stability and electrical properties of bilayer lipid membranes is reported. Melittin, unlike the 8-26 peptide, has a dramatic influence on lipid membranes, causing rupture at dilute concentrations. The circular dichroism of melittin demonstrated that under physiological conditions, in water, melittin is in extended conformation, which is enhanced in aqueous ethanol. However in 'membrane-like' conditions it is essentially alpha-helical. Secondary structure predictions were used to locate possible alpha-helical nucleation centres and a model of melittin was built according to these predictions. It is postulated that melittin causes a wedge effect in membranes. 相似文献
5.
To investigate the physical mechanism by which melittin inhibits Ca-adenosine triphosphatase (ATPase) activity in sarcoplasmic reticulum (SR) membranes, we have used electron paramagnetic resonance spectroscopy to probe the effect of melittin on lipid-protein interactions in SR. Previous studies have shown that melittin substantially restricts the rotational mobility of the Ca-ATPase but only slightly decreases the average lipid hydrocarbon chain fluidity in SR. Therefore, in the present study, we ask whether melittin has a preferential effect on Ca-ATPase boundary lipids, i.e., the annular shell of motionally restricted lipid that surrounds the protein. Paramagnetic derivatives of stearic acid and phosphatidylcholine, spin-labeled at C-14, were incorporated into SR membranes. The electronic paramagnetic resonance spectra of these probes contained two components, corresponding to motionally restricted and motionally fluid lipids, that were analyzed by spectral subtraction. The addition of increasing amounts of melittin, to the level of 10 mol melittin/mol Ca-ATPase, progressively increased the fraction of restricted lipids and increased the hyperfine splitting of both components in the composite spectra, indicating that melittin decreases the hydrocarbon chain rotational mobility for both the fluid and restricted populations of lipids. No further effects were observed above a level of 10 mol melittin/mol Ca-ATPase. In the spectra from control and melittin-containing samples, the fraction of restricted lipids decreased significantly with increasing temperature. The effect of melittin was similar to that of decreased temperature, i.e., each spectrum obtained in the presence of melittin (10:1) was nearly identical to the spectrum obtained without melittin at a temperature approximately 5 degrees C lower. The results suggest that the principal effect of melittin on SR membranes is to induce protein aggregation and this in turn, augmented by direct binding of melittin to the lipid, is responsible for the observed decreases in lipid mobility. Protein aggregation is concluded to be the main cause of inactivation of the Ca-ATPase by melittin, with possible modulation also by the decrease in mobility of the boundary layer lipids. 相似文献
6.
Low dose effects of melittin on dilute suspensions of dipalmitoylphosphatidylcholine multilamellar vesicles are investigated by studying the acoustic properties of the system. The temperature dependencies of sound velocity and absorption have been measured at 7.2 MHz in the temperature range of 20-55 degrees C, for different peptide/lipid molar ratios, R. The most pronounced effects were observed at R = 5 x 10(-3), in the vicinity of the pretransition, with a simultaneous increase in sound absorption and velocity. This indicates that melittin affects the polar head group region of the bilayer resulting in a decrease in mobility of the polar head groups. A nonmonotonic dependence of the main transition temperature, with an initial decrease followed by an increase as melittin is added, is interpreted as a consequence of a destabilizing action of the interfaces between mellitin-affected clusters and the unaffected phase. 相似文献
7.
E A Shorina N V Mast K B Storey O D Lopina A M Rubtsov 《Biochemistry. Biokhimii?a》1999,64(6):705-713
Addition of an amphipathic bee venom peptide, melittin, to sarcoplasmic reticulum (SR) vesicles isolated from rabbit skeletal muscles resulted in a fast (<1 min) blue shift in the fluorescence maximum of the melittin--SR membrane complex. Over the following 45 min the position of the fluorescence maximum did not change, but the fluorescence intensity of the melittin--SR membrane complex decreased by approximately 35% with rate constant 0.14 min-1. Melittin rapidly quenched the isotropic signal in the EPR spectrum of spin-labeled stearic acid added to SR membranes. Further changes in the spectral parameters of the spin probe bound to SR membranes in the presence of melittin indicated an increase of the viscosity of the probe microenvironment (empiric parameter T/eta was decreased by approximately 35% with rate constant 0.11 min-1). The surface potential of SR membranes measured using a pH-sensitive dye, neutral red, decreased after melittin addition from -60 to -30 mV. It was demonstrated with the use of a cross-linking agent, cupric o-phenanthroline, that melittin induced slow aggregation of Ca-ATPase protein in SR membranes; the content of enzyme in the monomeric form decreased with rate constant 0.14 min-1. It is concluded that melittin binds rapidly to SR membranes, inducing slow changes in Ca-ATPase conformation and oligomeric state as well as structural transitions in the lipid bilayer of SR membranes. 相似文献
8.
Spin-labeled derivatives of the bee venom protein, melittin, were obtained by reacting on the average one of the four amino groups of the protein with succinimidyl-2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-3-carboxylate. All 16 statistically possible reaction products with 0, 1, 2, 3 or 4 spin labels per protein were then separated in a single pass with reversed phase high performance liquid chromatography. With the help of trypsin digestion and diode array detection it was possible to assign the primary structure of all 16 eluting fractions. All fractions with only one spin label per protein were purified for electron paramagnetic resonance measurements. The labeling sites cover different regions of the protein: one is at the N-terminus, one at lysine-7, and two are near the C-terminus at lysine-21 and lysine-23, respectively. This set of specifically labeled melittins was used to study the structure and dynamics of melittin in aqueous solutions and when bound to neutral or negatively charged membranes. In aqueous solution a reduction in rotational correlation time and appearance of spin-spin interaction was observed during salt-induced transition from a random coil monomer to a mostly alpha-helical tetramer. Membrane binding to phospholipid bilayers in low or high ionic strength was reflected only in a further decrease in mobility. The absence of any spin interaction in the membrane-bound state suggests that melittin is monomeric under these conditions. All derivatives were able to detect these structural changes, but melittin labeled at the N-terminal amino group was especially valuable. Because of postulated intramolecular hydrogen bonding, this label reflects directly the motion of the entire protein or tetramer. Broadening experiments with chromium oxalate show that all labeled sites are at least partially exposed to the aqueous phase when melittin is bound to membranes. This suggests that an alpha-helical melittin monomer binds to membranes with its axis parallel to the membrane surface. 相似文献
9.
It has been shown on auricle fibres of the frog that neurotoxin from bee poison melittin suppresses the ionic currents entering the cell through calcium and sodium channels of the membrane, increases the background potassium current, suppresses phasic and tonic contraction of the fibres. Toxin modifies the kinetics of calcium channels, but does not affect activation and desensitization of beta adrenoreceptors. Effects of melittin are not decreased when adding the inhibitor of phospholipase A2 indomethacin. The results show that melittin directly affects the protein components of the membrane-ionic channels, probably binding with them. 相似文献
10.
11.
Melittin, deuteromethylated on each of the four amino groups (Gly-1 N alpha and Lys-7, 21, and 23 N epsilon), was prepared by reductive methylation using deuteroformaldehyde and NaBD3CN. Deuterium NMR spectra were obtained for the modified peptide (D-melittin) bound to phospholipid bilayers and erythrocyte ghosts. D-Melittin at 4 mol% (peptide:lipid) induced reversible transitions between extended bilayers and micelles at the phase-transition temperature in dimyristoylphosphatidylcholine (DMPC) bilayers. These changes in lipid morphology did not occur at 1 mol% D-melittin: DMPC and the peptide was highly motionally restricted in gel in gel-phase lipid. 相似文献
12.
The effect of the neurotoxin melittin on the activation of ion channels of excitable membrane, the plasmalemma of Characeae algae cells, isolated membrane patches of neurons of mollusc L. stagnalis and Vero cells was studied by the method of intracellular perfusion and the patch-clamp technique in inside-out configuration. It was shown that melittin disturbs the conductivity of plasmalemma and modifieds Ca(2+)-channels of plant membrane. The leakage current that appears by the action of melittin can be restored by substituting calmodulin for melittin. Melittin modifies K(+)-channels of animal cell membrane by disrupting the phospholipid matrix and forms conductive structures in the membrane by interacting with channel proteins, which is evidenced by the appearance of additional ion channels. 相似文献
13.
Dynamics of melittin in water and membranes as determined by fluorescence anisotropy decay. 总被引:1,自引:1,他引:1
下载免费PDF全文

Fluorescence anisotropy decay measurements were performed on melittin in water and in membranes of dimyristoylphosphatidylcholine. The fluorescence of the single tryptophan residue of melittin and of a pyrene label attached to melittin was detected. In water, the slowest relaxation process in the anisotropy decay occurs with a relaxation time of 1.5 or 5.5 ns in the case of low or high ionic strength and corresponds to rotational diffusion of monomeric or tetrameric melittin. Superimposed on this slow process are fast processes in the subnanosecond range reflecting fluctuations of the fluorophores relative to the polypeptide backbone. In membranes, the fast relaxation processes are not much altered. A slow process with a relaxation time of 35 ns is observed and assigned to orientational fluctuations of the melittin helices in membranes. 相似文献
14.
The relative depth of penetration of melittin into egg phosphatidylcholine and bovine heart cardiolipin model membranes was investigated using fluorescence spectroscopy techniques. The tryptophan intrinsic fluorescence shift suggests a more hydrophobic surrounding of this residue in cardiolipin, while the accessibility for charged and uncharged aqueous quenchers is decreased in the cardiolipin system when compared with the phosphatidylcholine-bound situation. A lipid incorporated hydrophobic, collisional quencher and a resonance energy transfer acceptor on the other hand are more effective in quenching the tryptophan fluorescence of cardiolipin bound melittin. The combination of these results is interpreted as prove of a deeper positioning of the tryptophan containing part of the peptide molecule in the cardiolipin system in comparison with the situation in phosphatidylcholine. Models that take this difference into account are presented, which try to explain the opposite effect of melittin binding to the two lipid systems with respect to supramolecular structure, as reported in the preceding article (Batenburg, A.M., Hibbeln, J.C.L., Verkleij, A.J. and De Kruijff, B. (1987) Biochim. Biophys. Acta 903, 142-154). 相似文献
15.
16.
Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation 总被引:11,自引:0,他引:11
The binding of melittin to nonsonicated bilayer membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine was studied with an ultracentrifugation assay and with 2H and 31P nuclear magnetic resonance. Melittin binding could best be described by a partition equilibrium with Kp = (2.1 +/- 0.2) X 10(3) M-1, measuring the binding isotherm in the concentration range of 0-100 microM melittin and taking into account electrostatic effects by means of the Gouy-Chapman theory. This partition coefficient is smaller than that deduced for small sonicated vesicles and attests to the tighter lipid packing in the nonsonicated bilayers. Deuterium magnetic resonance revealed a conformational change of the phosphocholine head group upon melittin binding. The quadrupole splittings of the alpha and beta segments of the choline head group varied linearly with the amount of bound melittin but in opposite directions; i.e., the alpha splitting decreased, and the beta splitting increased. This conformational change is not specific to melittin but is a response of the phosphocholine head group to positive membrane surface charges in general. Quantitatively, melittin is one of the most efficient head-group modulators, the efficiency per unit charge comparable to that of charged local anesthetics or hydrophobic ions. 相似文献
17.
18.
19.
蜂毒溶血肽的研究进展 总被引:6,自引:0,他引:6
蜂毒溶血肽 (melittin)是蜜蜂毒液的主要组分 ,由 2 6个氨基酸残基组成 ,具有两亲性和种的特异性。它的cDNA已经被克隆 ,并以融合蛋白的形式在大肠杆菌Escherichiacoli中进行表达。蜂毒溶血肽的作用机制主要包括脂酶的激活 ,产生第二信使 ,调节一些酶及离子通道 ;Ca2 +的水平调节 ,影响骨骼肌和心肌的收缩 ;作为脂类代谢的探针。由于蜂毒溶血肽结构简单 ,且抑制病毒复制 ,因此可将其用于癌症的基因治疗及爱滋病的防治。此外 ,蜂毒溶血肽还可作为对一些作用机理进行研究的模型肽。 相似文献
20.
Melittin, a surface-active polypeptide from bee venom, has an overall hydrophobic N-terminus, with basic residues clustered at the C-terminus. In aqueous solution melittin exists as a mixture of monomer and tetramer, the monomer adopting a predominantly random-coil configuration, whereas the tetramer is rich in alpha-helix. The tendency of melittin to aggregate is dependent on the counter-anions present in solution, the effect being most marked with phosphate, decreasing in the order HPO4(2-) greater than SO4(2-) greater than ClO4- greater than Cl-. 相似文献