首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photochemically induced dynamic-nuclear-polarization (photo-CIDNP) NMR technique was used to investigate the membrane-active peptides melittin and glucagon. The experiments were performed both in the absence and presence of phospholipid vesicles in order to study the topography of the membrane-bound state. From the results it can be concluded that the melittin peptide chain is oriented in such a way that the single tryptophan residue (Trp19) reaches into the membrane. In the case of glucagon, a binding interaction with vesicle membranes is indicated within the pH range 2-10, whereby the single tryptophan residue (Trp25) is buried in the lipid bilayer and the tyrosine and histidine residues are exposed to the aqueous solvent.  相似文献   

2.
Melittin from bee venom is water-soluble, yet integrates into membranes and lyses cells. Each melittin chain consists of 26 amino acid residues and in aqueous salt solutions it exists as a tetramer. We have determined the molecular structure of the tetramer in two crystal forms grown from concentrated salt solutions. In both crystal forms the melittin polypeptide is a bent alpha-helical rod, with the "inner" surface largely consisting of hydrophobic sidechains and the "outer" surface consisting of hydrophilic side chains. Thus, the helix is strongly amphiphilic. In the tetramer, four such helices contribute their hydrophobic side chains to the center of the molecule. The packing of melittin tetramers is also very similar in the two crystal forms: they are packed in planar layers with the outsides forming hydrophilic surfaces and the insides (the centers of melittin tetramers) forming a hydrophobic surface. We suggest that the surface activity of melittin can be rationalized in terms of these surfaces. The lytic activity of melittin can also be interpreted in terms of the molecular structure observed in the crystals: the hydrophobic inner surface of a melittin helix may integrate into the apolar region of a bilayer with the helix axis approximately parallel to the plane of the bilayer, and with the hydrophilic surface exposed to the aqueous phase. This integration would be expected to disrupt the bilayer because of melittin helix would penetrate only a short distance into it. Additionally, the integration of melittin from one side of a bilayer would produce a surface area difference across the bilayer, perhaps leading to lysis. In this view, melittin is distinct from membrane proteins that penetrate evenly into both leaflets of a bilayer or exactly halfway through a bilayer, and hence we refer to melittin as a surface-active protein.  相似文献   

3.
Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, is the very first site of interactions with the antimicrobial peptides. In this work, we have determined a solution conformation of melittin, a well-known membrane active amphiphilic peptide from honey bee venom, by transferred nuclear Overhauser effect (Tr-NOE) spectroscopy in its bound state with lipopolysaccharide. The LPS bound conformation of melittin is characterized by a helical structure restricted only to the C-terminus region (residues A15-R24) of the molecule. Saturation transfer difference (STD) NMR studies reveal that several C-terminal residues of melittin including Trp19 are in close proximity with LPS. Isothermal titration calorimetry (ITC) data demonstrates that melittin binding to LPS or lipid A is an endothermic process. The interaction between melittin and lipid A is further characterized by an equilibrium association constant (Ka) of 2.85 x 10(6) M(-1) and a stoichiometry of 0.80, melittin/lipid A. The estimated free energy of binding (delta G0), -8.8 kcal mol(-1), obtained from ITC experiments correlates well with a partial helical structure of melittin in complex with LPS. Moreover, a synthetic peptide fragment, residues L13-Q26 or mel-C, derived from the C-terminus of melittin has been found to contain comparable outer membrane permeabilizing activity against Escherichia coli cells. Intrinsic tryptophan fluorescence experiments of melittin and mel-C demonstrate very similar emission maxima and quenching in presence of LPS micelles. The Red Edge Excitation Shift (REES) studies of tryptophan residue indicate that both peptides are located in very similar environment in complex with LPS. Collectively, these results suggest that a helical conformation of melittin, at its C-terminus, could be an important element in recognition of LPS in the outer membrane.  相似文献   

4.
We have examined the kinetics of the adsorption of melittin, a secondary amphipathic peptide extracted from bee venom, on lipid membranes using three independent and complementary approaches. We probed (i) the change in the polarity of the 19Trp of the peptide upon binding, (ii) the insertion of this residue in the apolar core of the membrane, measuring the 19Trp-fluorescence quenching by bromine atoms attached on lipid acyl chains, and (iii) the folding of the peptide, by circular dichroism (CD). We report a tight coupling of the insertion of the peptide with its folding as an α-helix. For all the investigated membrane systems (cholesterol-containing, phosphoglycerol-containing, and pure phosphocholine bilayers), the decrease in the polarity of 19Trp was found to be significantly faster than the increase in the helical content of melittin. Therefore, from a kinetics point of view, the formation of the α-helix is a consequence of the insertion of melittin. The rate of melittin folding was found to be influenced by the lipid composition of the bilayer and we propose that this was achieved by the modulation of the kinetics of insertion. The study reports a clear example of the coupling existing between protein penetration and folding, an interconnection that must be considered in the general scheme of membrane protein folding.  相似文献   

5.
S Bernche  M Nina    B Roux 《Biophysical journal》1998,75(4):1603-1618
Molecular dynamics trajectories of melittin in an explicit dimyristoyl phosphatidylcholine (DMPC) bilayer are generated to study the details of lipid-protein interactions at the microscopic level. Melittin, a small amphipathic peptide found in bee venom, is known to have a pronounced effect on the lysis of membranes. The peptide is initially set parallel to the membrane-solution interfacial region in an alpha-helical conformation with unprotonated N-terminus. Solid-state nuclear magnetic resonance (NMR) and polarized attenuated total internal reflectance Fourier transform infrared (PATIR-FTIR) properties of melittin are calculated from the trajectory to characterize the orientation of the peptide relative to the bilayer. The residue Lys7 located in the hydrophobic moiety of the helix and residues Lys23, Arg24, Gln25, and Gln26 at the C-terminus hydrophilic form hydrogen bonds with water molecules and with the ester carbonyl groups of the lipids, suggesting their important contribution to the stability of the helix in the bilayer. Lipid acyl chains are closely packed around melittin, contributing to the stable association with the membrane. Calculated density profiles and order parameters of the lipid acyl chains averaged over the molecular dynamics trajectory indicate that melittin has effects on both layers of the membrane. The presence of melittin in the upper layer causes a local thinning of the bilayer that favors the penetration of water through the lower layer. The energetic factors involved in the association of melittin at the membrane surface are characterized using an implicit mean-field model in which the membrane and the surrounding solvent are represented as structureless continuum dielectric material. The results obtained by solving the Poisson-Bolztmann equation numerically are in qualitative agreement with the detailed dynamics. The influence of the protonation state of the N-terminus of melittin is examined. After 600 ps, the N-terminus of melittin is protonated and the trajectory is continued for 400 ps, which leads to an important penetration of water molecules into the bilayer. These observations provide insights into how melittin interacts with membranes and the mechanism by which it enhances their lysis.  相似文献   

6.
We studied the effects of melittin on various cell wall components and vesicles of various lipid compositions. To interact with the cytoplasmic membrane, melittin must traverse the cell wall, which is composed of oligosaccharides. Here, we found that melittin had a strong affinity for chitin, peptidoglycan, and lipopolysaccharide. We further examined the influence of lipid compositions on the lysis of the membranes by melittin. The result showed that melittin bound better to negatively charged than to zwitterionic lipid vesicles but was more potent at inducing leakage from zwitterionic lipid vesicles. Our studies further indicated that the oligomeric state of melittin varied between tetramers and octamers during the formation of toroidal pores. Dextran leakage experiments confirmed the formation and dimension of these toroidal pores. Finally, transmission electron microscopy revealed that melittin formed pores via peptide oligomerization by the toroidal pore-forming mechanism. The toroidal pores composed of 7-8 nm diameter rings that encircled 3.5-4.5 nm diameter cavities on zwitterionic lipid vesicles.  相似文献   

7.
Melittin: a Membrane-active Peptide with Diverse Functions   总被引:1,自引:0,他引:1  
Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid–protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin–membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.  相似文献   

8.
The temporal sequence of molecular events involved in the interactions of a number of related peptides with membranes are revealed using two complementary fluorescence techniques. Comparative studies are reported of the interactions of melittin, promelittin and a melittin analogue with trp-19 replaced with Ile and the n-terminal gly replaced with a trp residue, with phosphatidylcholine membranes. It is shown that the interaction of the n-terminal region of melittin rapidly binds and inserts into the body of the membrane with a rate constant of around 367 s-1. This is followed by a slightly slower membrane insertion of the trp-19 region with a rate constant of around 112 s-1. The positive charges of the melittin molecule then come into close proximity with the membrane with rate constants around 27 s-1. Finally, these charged regions insert into the hydrophobic core of the membrane with rate constants of about 0.3 s-1. The effect of incorporating net negative charge onto the membrane surface in the form of 15 mole % phosphatidylserine, augments by about threefold, the binding of the charged domains of the melittin molecule. The observations of the melittin interactions are compared with the melittin-precursor protein, promelittin. Sections of the promelittin molecule are also found to bind and insert into the body of the phospholipid membrane, although nearly 30 times less rapidly than melittin. No charged sections of promelittin are found to insert into the membrane.  相似文献   

9.
Melittin, a bee-venom peptide of 26 amino acids, induces IgE and IgG responses in man and animals. The antibody response was shown previously to be specific primarily for the C-terminal 6 residues and its T cell epitope in H-2d restricted mice was shown to be in residue 11-19 of melittin. To study the relationship of peptide structure and immunogenicity in mice, we have prepared a series of melittin analogs varied in length and composition at the C-terminus. Immunogenicity of the analogs for IgG and IgE responses was found to correlate with two factors: a peptide length of more than 24 residues and the presence of a hydrophilic C-terminal region preferably with two to four cationic groups. These factors result in the ability of peptide to bind to cell membranes. Analogs that possess these features are good immunogens whereas those lacking any of these features are weak immunogens.  相似文献   

10.
The interaction of bee venom melittin with erythrocyte membrane ghosts has been investigated by means of fluorescence quenching of membrane tryptophan residues, fluorescence polarization and ESR spectroscopy. It has been revealed that melittin induces the disorders in lipid-protein matrix both in the hydrophobic core of bilayer and at the polar/non-polar interface of melittin complexed with erythrocyte membranes. The peptide has been found to act most efficiently at the concentration of the order of 10(-10) mol/mg membrane protein. The apparent distance separating the membrane tryptophan and bound 1-anilino-8-naphthalenesulphonate (ANS) molecules is decreased upon melittin binding, which results in a significant increase of the maximum energy transfer efficiency. Significant changes in the fluorescence anisotropy of both 1,6-diphenyl-1,3,5-hexatriene and 1-anilino-8-naphthalenesulphonate bound to erythrocyte ghosts, which have been observed in the presence of melittin and crude venom, indicate membrane lipid bilayer rigidization. The effect of crude honey bee venom has been found to be of similar magnitude as the effect of pure melittin at the concentration of 10(-10) mol/mg membrane protein. Using two lipophilic spin labels, methyl 5-doxylpalmitate and 16-doxylstearic acid, we found that melittin at its increasing concentrations induces a well marked rigidization in the deeper regions of lipid bilayer, whereas the effect of rigidization near the membrane surface maximizes at the melittin concentration of 10(-10) mol/mg (10(-4) mol melittin per mole of membrane phospholipid). The decrease in the ratio hw/hs of maleimide and the rise in relative rotational correlation time (tau c) of iodacetamid spin label, indicate that melittin effectively immobilizes membrane proteins in the plane of the lipid bilayer. We conclude that melittin-induced rigidization of the lipid bilayer may induce a reorganization of lipid assemblies as well as the rearrangements in membrane protein pattern and consequently the alterations in lipid-protein interactions. Thus, the interaction of melittin with erythrocyte membranes is supposed to produce local conformational changes in membranes, which are discussed in the connection with their significance during the synergistic action of melittin and phospholipase of bee venom on red blood cells.  相似文献   

11.
Sea anemones produce a family of 18-20 kDa proteins, the actinoporins, which lyse cells by forming pores in cell membranes. Sphingomyelin plays an important role in their lytic activity, with membranes lacking this lipid being largely refractory to these toxins. As a means of characterising membrane binding by the actinoporin equinatoxin II (EqTII), we have used 19F NMR to probe the environment of Trp residues in the presence of micelles and bicelles. Trp was chosen as previous data from mutational studies and truncated analogues had identified the N-terminal helix of EqTII and the surface aromatic cluster including tryptophan residues 112 and 116 as being important for membrane interactions. The five tryptophan residues were replaced with 5-fluorotryptophan and assigned by site-directed mutagenesis. The 19F resonance of W112 was most affected in the presence of phospholipid micelles or bicelles, followed by W116, with further change induced by the addition of sphingomyelin. Although binding to phosphatidylcholine is not sufficient to enable pore formation in bilayer membranes, this interaction had a greater effect on the tryptophan residues in our studies than the subsequent interaction with sphingomyelin. Furthermore, sphingomyelin had a direct effect on EqTII in both model membranes, so its role in EqTII pore formation involves more than simply an indirect effect mediated via bulk lipid properties. The lack of change in chemical shift for W149 even in the presence of sphingomyelin indicates that, at least in the model membranes studied here, interaction with sphingomyelin was not sufficient to trigger dissociation of the N-terminal helix from the beta-sandwich, which forms the bulk of the protein.  相似文献   

12.
For bilayer systems consisting of 1,2-dimyristoyl phosphatidylcholine (DMPC) incubated with melittin, a polypeptide capable of integrating itself within the membrane, temperature profiles derived from Raman spectroscopic data indicate the existence of an immobilized lipid annulus surrounding the polypeptide. In particular, temperature profiles derived from C--H, C--D and C--C stretching mode parameters for 25:1, 14:1 and 10:1 lipid:protein mole ratios exhibit two order-disorder transitions. The primary (lower) gel to liquid crystalline phase transition is depressed when polypeptide concentration is increased. The concentration-independent higher temperature transition is associated with a fluidization of the immobilized boundary lipids present at the lipid-polypeptide interface within the bilayer. We estimate that five to seven lipids are involved in this discrete boundary layer around the inserted membrane component. The behavior of the intrinsic hydrophobic (residues 1-19) and of the extrinsic hydrophilic (residues 20-26) portions of melittin in the bilayer is compared with the properties of the intact polypeptide. We emphasize evidence that both intrinsic and extrinsic components immobilize lipids contiguous to the polypeptide.  相似文献   

13.
Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, is the very first site of interactions with the antimicrobial peptides. In this work, we have determined a solution conformation of melittin, a well-known membrane active amphiphilic peptide from honey bee venom, by transferred nuclear Overhauser effect (Tr-NOE) spectroscopy in its bound state with lipopolysaccharide. The LPS bound conformation of melittin is characterized by a helical structure restricted only to the C-terminus region (residues A15-R24) of the molecule. Saturation transfer difference (STD) NMR studies reveal that several C-terminal residues of melittin including Trp19 are in close proximity with LPS. Isothermal titration calorimetry (ITC) data demonstrates that melittin binding to LPS or lipid A is an endothermic process. The interaction between melittin and lipid A is further characterized by an equilibrium association constant (Ka) of 2.85 × 106 M− 1 and a stoichiometry of 0.80, melittin/lipid A. The estimated free energy of binding (ΔG0), − 8.8 kcal mol− 1, obtained from ITC experiments correlates well with a partial helical structure of melittin in complex with LPS. Moreover, a synthetic peptide fragment, residues L13-Q26 or mel-C, derived from the C-terminus of melittin has been found to contain comparable outer membrane permeabilizing activity against Escherichia coli cells. Intrinsic tryptophan fluorescence experiments of melittin and mel-C demonstrate very similar emission maxima and quenching in presence of LPS micelles. The Red Edge Excitation Shift (REES) studies of tryptophan residue indicate that both peptides are located in very similar environment in complex with LPS. Collectively, these results suggest that a helical conformation of melittin, at its C-terminus, could be an important element in recognition of LPS in the outer membrane.  相似文献   

14.
The sting. Melittin forms channels in lipid bilayers   总被引:14,自引:2,他引:12       下载免费PDF全文
Melittin, a toxin of bee venom, is a cationic polypeptide composed of 26 amino acids. The six residues of the C-terminal end are polar and 19 of the 20 residues of the N-terminal end are hydrophobic. Exposure of the lecithin bilayer to melittin results in the formation of channels that are more permeable to anions that to cations. Unilateral addition of melittin produces a voltage-dependent increase in membrane conductance when the side where the polypeptide is present in made positive but not when it is made negative. At a fixed voltage, the conductance increases with the fourth power of the melittin concentration in the aqueous phase. At a fixed peptide concentration, the conductance increases approximately e-fold per 6-mV increase in the electrical potential difference across the membrane. These results suggest that four melittin monomers are needed to form a channel and, furthermore, that a minimum of four equivalent electronic charges need to be displaced by the electrical field to explain the voltage dependence of the conductance.  相似文献   

15.
The sequence of peptides necessary to inhibit melittin-induced lysis was studied using 13 peptide analogues of the inhibitor Ac-IVIFDC-NH2. Although this inhibitor is a disulfide-linked dimer, inhibition was equally effective if the thiol SH was blocked or replaced by methionine or lysine. The substitution of phenylalanine with other aromatic residues preserved activity, as did the replacement of aspartic acid by asparagine. The results suggest that the cytolytic activity of melittin can be inhibited by a short peptide of four hydrophobic residues followed by two other nonspecific residues. Fluorescence studies showed that the inhibitor caused a blue shift in the Trp emission spectrum. A spin label attached to the N-terminus of the inhibitor significantly quenched the fluorescence. These data confirmed the involvement of Trp 19 with the inhibitor, also predicted by molecular modeling of the probable binding site. Density gradient studies with large unilamellar vesicles indicated that the inhibitor prevented melittin from reacting with the lipid bilayer.  相似文献   

16.
Human 14-3-3 proteins contain two conserved tryptophan residues in each monomer, Trp60 and Trp233 in isoform γ. 14-3-3γ binds to negatively charged membranes and here we show that membrane binding can be monitored by steady-state intrinsic fluorescence spectroscopy. Measurements with W60F and W233F 14-3-3γ mutants revealed that Trp60 is the major contributor to the emission fluorescence, whereas the fluorescence of Trp233, which π-stacks with Tyr184, is quenched. The fluorescence is reduced and red-shifted upon specific binding of a phosphate ligand, and further red-shifted upon binding of 14-3-3γ to the membrane, compatible with solvent exposure of Trp60. Moreover, our results support that membrane binding involves the non-conserved, convex area of 14-3-3γ, and that Trp residues do not intercalate in the bilayer.  相似文献   

17.
Voltage-dependent orientation of membrane proteins   总被引:1,自引:0,他引:1  
In order to study the influence of electrostatic forces on the disposition of proteins in membranes, we have examined the interaction of a receptor protein and of a membrane-active peptide with black lipid membranes. In the first study we show that the hepatic asialoglycoprotein receptor can insert spontaneously into lipid bilayers from the aqueous medium. Under the influence of a trans-positive membrane potential, the receptor, a negatively charged protein, appears to change its disposition with respect to the membrane. In the second study we consider melittin, an amphipathic peptide containing a generally hydrophobic stretch of 19 amino acids followed by a cluster of four positively charged residues at the carboxy terminus. The hydrophobic region contains two positively charged residues. In response to trans-negative electrical potential, melittin appears to assume a transbilayer position. These findings indicate that electrostatic forces can influence the disposition, and perhaps the orientation, of membrane proteins. Given the inside-negative potential of most or all cells, we would expect transmembrane proteins to have clusters of positively charged residues adjacent to the cytoplasmic ends of their hydrophobic transmembrane segments, and clusters of negatively charged residues just to the extracytoplasmic side. This expectation has been borne out by examination of the few transmembrane proteins for which there is sufficient information on both sequence and orientation. Surface and dipole potentials may similarly affect the orientation of membrane proteins.  相似文献   

18.
Melittin is a major (approximately 50%) protein component of bee venom. This peptide is an amphiphilic protein, because, while the amino acid residues 1-20 are predominantly hydrophobic (with the exception of Lys-7), residues 21-26 are hydrophilic. The binding properties to vesicles and lipid bilayers of melittin have provided much useful information regarding biological (hemolytic) activity (Habermann, E., 1972, Science [Wash. DC], 177:314-322). Recent studies have convincingly established that the melittin monolayer (at air-water interface) model membrane system allows one to analyze the various forces present in such structures. We present comparative monolayer studies of melittin and the peptide fragment 8-26 regarding the channel formation for the selective anion (Cl-) penetration in monolayers, analogous to melittin (tetramer) channel function in lipid bilayer. The differences in surface pressure and surface potential of monolayers between native melittin and the 8-26 fragment suggest that these may be ascribed to Lys-7.  相似文献   

19.
Melittin is a cytolytic peptide whose biological activity is lost upon binding to a six-residue peptide, Ac-IVIFDC-NH(2), with which it forms a highly insoluble complex. As a result, the structural analysis of the interaction between the two peptides is difficult. Solid-state NMR spectroscopy was used to study the interaction between melittin and the peptide inhibitor. Location of the binding site in the melittin-inhibitor complex was determined using lanthanide ions, which quench NMR resonances from molecular sites that are in close proximity to the unique ion binding site. Our results indicated that the inhibitor binding site in melittin is near Leu13, Leu16 and Ile17, but not near Leu6 or Val8. On the basis of these data we propose that the inhibitor binds to melittin in the vicinity of Ala15 to Trp19 and prevents insertion of melittin into cell membranes by disrupting the helical structure. Supporting evidence for this model was produced by determining the distance, using rotational resonance NMR, between the [1-(13)C] of Leu13 in melittin and the [3-(13)C] of Phe4 in the inhibitor.  相似文献   

20.
蜂毒肽的溶血作用与红细胞膜上两种酶活性变化的关系   总被引:1,自引:0,他引:1  
从蜂毒肽作用于红细胞膜上的Na-K-ATPase和葡萄糖-6-磷酸脱氢酶(G-6-PD)活性变化的角度,利用分光光度法测定酶活性,研究蜂毒肽与红细胞及膜作用过程中可能的靶点,讨论了蜂毒肽溶血过程与RBC膜上2种酶活性的变化.结果发现,蜂毒肽抑制RBC膜上酶活性的主要模式为附着/插入质膜与游离态并存模式,附着/插入质膜中的作用大于游离态的作用.Na-K-ATPase的K+结合位点是蜂毒肽的1个作用靶点.蜂毒肽插膜过程与其对此酶的作用随时间延长同步发生.蜂毒肽通过作用于葡萄糖-6-磷酸和NADP使G-6-PD的催化受到缓慢抑制,蜂毒肽形成四聚体的程度与酶活性密切相关.EDTA抑制蜂毒肽聚集,干扰蜂毒肽作用于G-6-P,蜂毒肽作用于底物G-6-P及辅酶NADP的生化机理相似,蜂毒肽抑制作用与G-6-PD的结构无关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号