首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wiskott-Aldrich syndrome protein (WASP) and neural WASP (N-WASP) are key players in regulating actin cytoskeleton via the Arp2/3 complex. It has been widely reported that the WASP proteins are activated by Rho family small GTPase Cdc42 and that Rac1 acts through SCAR/WAVE proteins. However, a systematic study of the specificity of different GTPases for different Arp2/3 activators has not been conducted. In this study, we have expressed, purified, and characterized completely soluble, highly active, and autoinhibited full-length human WASP and N-WASP from mammalian cells. We show a novel N-WASP activation by Rho family small GTPase Rac1. This GTPase exclusively stimulates N-WASP and has no effects on WASP. Rac1 is a significantly more potent N-WASP activator than Cdc42. In contrast, Cdc42 is a more effective activator of WASP than N-WASP. Lipid vesicles containing PIP2 significantly improve actin nucleation by the Arp2/3 complex and N-WASP in the presence of Rac1 or Cdc42. PIP2 vesicles have no effect on WASP activity alone. Moreover, the inhibition of WASP-stimulated actin nucleation in the presence of Cdc42 and PIP2 vesicles has been observed. We found that adaptor proteins Nck1 or Nck2 are the most potent WASP and N-WASP activators with distinct effects on the WASP family members. Our in vitro data demonstrates differential regulation of full-length WASP and N-WASP by cellular activators that highlights fundamental differences of response at the protein-protein level.  相似文献   

2.
The mammalian genome encodes multiple Wiskott-Aldrich syndrome protein (WASP)/WASP-family Verprolin homologous (WAVE) proteins. Members of this family interact with the actin related protein (Arp) 2/3 complex to promote growth of a branched actin network near the plasma membrane or the surface of moving cargos. Arp2/3 mediated branching can further lead to formation of comet tails (actin rockets). Despite their similar domain structure, different WASP/WAVE family members fulfill unique functions that depend on their subcellular location and activity levels. We measured the relative efficiency of actin nucleation promotion of full-length WASP/WAVE proteins in a cytoplasmic extract from primary human umbilical vein endothelial cells (HUVEC). In this assay WAVE2 and WAVE3 complexes showed higher nucleation efficiency than WAVE1 and N-WASP, indicating distinct cellular controls for different family members. Previously, WASP and N-WASP were the only members that were known to stimulate comet formation. We observed that in addition to N-WASP, WAVE3 also induced short actin tails, and the other WAVEs induced formation of asymmetric actin shells. Differences in shape and structure of actin-based growth may reflect varying ability of WASP/WAVE proteins to break symmetry of the actin shell, possibly by differential recruitment of actin bundling or severing (pruning or debranching) factors.  相似文献   

3.
Wiskott-Aldrich syndrome protein (WASP)/Scar family proteins promote actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex. While Scar/WAVE proteins are thought to be involved in lamellipodia protrusion, the hematopoietic WASP has been implicated in various actin-based processes such as chemotaxis, podosome formation, and phagocytosis. Here we show that the ubiquitously expressed N-WASP is essential for actin assembly at the surface of endomembranes induced as a consequence of increased phosphatidylinositol 4,5-biphosphate (PIP2) levels. This process resulting in the motility of intracellular vesicles at the tips of actin comets involved the recruitment of the Src homology 3 (SH3)-SH2 adaptor proteins Nck and Grb2 as well as of WASP interacting protein (WIP). Reconstitution of vesicle movement in N-WASP-defective cells by expression of various N-WASP mutant proteins revealed three independent domains capable of interaction with the vesicle surface, of which both the WH1 and the polyproline domains contributed significantly to N-WASP recruitment and/or activation. In contrast, the direct interaction of N-WASP with the Rho-GTPase Cdc42 was not required for reconstitution of vesicle motility. Our data reveal a distinct cellular phenotype for N-WASP loss of function, which adds to accumulating evidence that the proposed link between actin and membrane dynamics may, at least partially, be reflected by the actin-based movement of vesicles through the cytoplasm.  相似文献   

4.
Background: Assembly and organization of actin filaments are required for many cellular processes, including locomotion and division. In many cases, actin assembly is initiated when proteins of the WASP/Scar family respond to signals from Rho family G proteins and stimulate the actin-nucleating activity of the Arp2/3 complex. Two questions of fundamental importance raised in the study of actin dynamics concern the molecular mechanism of Arp2/3-dependent actin nucleation and how different signaling pathways that activate the same Arp2/3 complex produce actin networks with different three-dimensional architectures?Results: We directly compared the activity of the Arp2/3 complex in the presence of saturating concentrations of the minimal Arp2/3-activating domains of WASP, N-WASP, and Scar1 and found that each induces unique kinetics of actin assembly. In cell extracts, N-WASP induces rapid actin polymerization, while Scar1 fails to induce detectable polymerization. Using purified proteins, Scar1 induces the slowest rate of nucleation. WASP activity is 16-fold higher, and N-WASP activity is 70-fold higher. The data for all activators fit a mathematical model in which one activated Arp2/3 complex, one actin monomer, and an actin filament combine into a preactivation complex which then undergoes a first-order activation step to become a nucleus. The differences between Scar and N-WASP activity are explained by differences in the rate constants for the activation step. Changing the number of actin binding sites on a WASP family protein, either by removing a WH2 domain from N-WASP or by adding WH2 domains to Scar1, has no significant effect on nucleation activity. The addition of a three amino acid insertion found in the C-terminal acidic domains of WASP and N-WASP, however, increases the activity of Scar1 by more than 20-fold. Using chemical crosslinking assays, we determined that both N-WASP and Scar1 induce a conformational change in the Arp2/3 complex but crosslink with different efficiencies to the small molecular weight subunits p18 and p14.Conclusion: The WA domains of N-WASP, WASP, and Scar1 bind actin and Arp2/3 with nearly identical affinities but stimulate rates of actin nucleation that vary by almost 100-fold. The differences in nucleation rate are caused by differences in the number of acidic amino acids at the C terminus, so each protein is tuned to produce a different rate of actin filament formation. Arp2/3, therefore, is not regulated by a simple on-off switch. Precise tuning of the filament formation rate may help determine the architecture of actin networks produced by different nucleation-promoting factors.  相似文献   

5.
WASP family proteins activate nucleation by the Arp2/3 complex, inducing rapid actin polymerization in vitro. Although the C-terminal portion of WASP family proteins (VCA) activates nucleation by the Arp2/3 complex in pure systems, we find that this fragment lacks activity in cell extracts. Thus, polystyrene beads coated with VCA did not move in brain cytosol, while beads coated with N-WASP or WAVE2 did move. The basic clusters between the WH1 domain and the CRIB domain of N-WASP were critical for movement since beads coated with N-WASP or WAVE2 constructs missing the basic clusters (Delta basic) also did not move. Furthermore, VCA and N-WASP/WAVE2 Delta basic constructs were much less able than wild-type N-WASP and WAVE2 to induce actin polymerization in cytosol. All of the proteins, with or without the basic domain, were potent activators of nucleation by purified Arp2/3 complex.  相似文献   

6.
WAVE/SCAR protein was identified as a protein which has similarity to WASP and N-WASP, especially in its C terminal. Recently, WAVE/SCAR protein has been shown to cooperate with the Arp2/3 complex, a nucleation core for actin polymerization in vitro. However, in spite of its general function, WAVE/SCAR expression is mainly restricted to the brain, suggesting the existence of related molecule(s). We here identified two human WAVE/SCAR homologues, which cover other organs. We named the original WAVE1 and newly identified ones WAVE2 and WAVE3. WAVE2 had a very wide distribution with strong expression in peripheral blood leukocytes and mapped on chromosome Xp11.21, next to the WASP locus. WAVE3 and WAVE1 had similar distributions. WAVE3 was strongly expressed in brain and mapped on chromosome 13q12. WAVE1 was mapped on chromosome 6q21-22. Ectopically expressed WAVE2 and WAVE3 induced actin filament clusters in a similar manner with WAVE1. These actin cluster formations were suppressed by deletion of their C-terminal VPH (verproline homology)/WH2 (WASP homology 2) domain. Further, WAVE2 and WAVE3 associate with the Arp2/3 complex as does WAVE1. Our identification of WAVE homologues suggests that WAVE family proteins have general function for regulating the actin cytoskeleton in many tissues.  相似文献   

7.
WASP family proteins are nucleation promoting factors that bind to and activate the Arp2/3 complex in order to stimulate nucleation of branched actin filaments. The WASP family consists of WASP, N-WASP, WAVE1-3, WASH, and the novel family members WHAMM and JMY. Each of the family members contains a C-terminus responsible for their nucleation promoting activity and unique N-termini that allow for them to be regulated in a spatiotemporal manner. Upon activation they reorganize the cytoskeleton for different cellular functions depending on their subcellular localization and regulatory protein interactions. Emerging evidence indicates that WASH, WHAMM, and JMY have functions that require the coordination of both actin polymerization and microtubule dynamics. Here, we review the mechanisms of regulation for each family member and their associated in vivo functions including cell migration, vesicle trafficking, and neuronal development.  相似文献   

8.
Cell motility and cell polarity are essential for morphogenesis, immune system function, and tissue repair. Many animal cells move by crawling, and one main driving force for movement is derived from the coordinated assembly and disassembly of actin filaments. As tissue culture cells migrate to close a scratch wound, this directional extension is accompanied by Golgi apparatus reorientation, to face the leading wound edge, giving the motile cell inherent polarity aligned relative to the wound edge and to the direction of cell migration. Cellular proteins essential for actin polymerization downstream of Rho family GTPases include the Arp2/3 complex as an actin nucleator and members of the Wiskott-Aldrich Syndrome protein (WASP) family as activators of the Arp2/3 complex. We therefore analyzed the involvement of the Arp2/3 complex and WASP-family proteins in in vitro wound healing assays using NIH 3T3 fibroblasts and astrocytes. In NIH 3T3 cells, we found that actin and Arp2/3 complex contributed to cell polarity establishment. Moreover, overexpression of N-terminal fragments of Scar2 (but not N-WASP or Scar1 or Scar3) interfere with NIH 3T3 Golgi polarization but not with cell migration. In contrast, actin, Arp2/3, and WASP-family proteins did not appear to be involved in Golgi polarization in astrocytes. Our results thus indicate that the requirement for Golgi polarity establishment is cell-type specific. Furthermore, in NIH 3T3 cells, Scar2 and the Arp2/3 complex appear to be involved in the establishment and maintenance of Golgi polarity during directed migration.  相似文献   

9.
The WASP-WAVE protein network: connecting the membrane to the cytoskeleton   总被引:2,自引:0,他引:2  
Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are scaffolds that link upstream signals to the activation of the ARP2/3 complex, leading to a burst of actin polymerization. ARP2/3-complex-mediated actin polymerization is crucial for the reorganization of the actin cytoskeleton at the cell cortex for processes such as cell movement, vesicular trafficking and pathogen infection. Large families of membrane-binding proteins were recently found to interact with WASP and WAVE family proteins, therefore providing a new layer of membrane-dependent regulation of actin polymerization.  相似文献   

10.
WASP family proteins induce actin polymerization through a C-terminal verprolin homology, cofilin homology, and acidic (VCA) region by activating the Arp2/3 complex. The N-WASP VCA region is the most potent activator of the Arp2/3 complex. In addition, full-length WAVE1 and a WAVE1 VCA fragment show differential activity. The mechanisms underlying these differences are poorly understood. We examined the activities of various N-WASP and WAVE1 VCA mutant proteins with several types of fusion moieties. When fused to GST, maltose-binding protein, or the WAVE1 proline-rich domain, N-WASP VCA and WAVE1 VCA mutant proteins with two V motifs showed stronger activities than wild-type WAVE1 VCA with one V motif, demonstrating the importance of two V motifs for strong VCA activity. A WAVE1 VCA fragment tagged with six histidines (His) showed markedly reduced activity compared to GST-fused VCA, whereas His-tagged N-WASP VCA showed similar activity to GST-fused VCA. An additional V motif failed to enhance WAVE1 VCA activity in the His-tagged form. Thus, the WAVE1 VCA fragment may exist in an unfavorable conformation to activate the Arp2/3 complex, implying the existence of a structural difference between WAVE1 and N-WASP VCAs in addition to the number of V motifs.  相似文献   

11.
Members of the Wiskott-Aldrich syndrome protein (WASP) family link Rho GTPase signaling pathways to the cytoskeleton through a multiprotein assembly called Arp2/3 complex. The C-terminal VCA regions (verprolin-homology, central hydrophobic, and acidic regions) of WASP and its relatives stimulate Arp2/3 complex to nucleate actin filament branches. Here we show by differential line broadening in NMR spectra that the C (central) and A (acidic) segments of VCA domains from WASP, N-WASP and Scar bind Arp2/3 complex. The C regions of these proteins have a conserved sequence motif consisting of hydrophobic residues and an arginine residue. Point mutations in this conserved sequence motif suggest that it forms an amphipathic helix that is required in biochemical assays for activation of Arp2/3 complex. Key residues in this motif are buried through contacts with the GTPase binding domain in the autoinhibited structure of WASP and N-WASP, indicating that sequestration of these residues is an important aspect of autoinhibition.  相似文献   

12.
Rho GTPases are well known to regulate actin dynamics. They activate two types of actin nucleators, WASP/WAVE proteins and Diaphanous-related formins (DRFs), which induce different types of actin organization. Their ability to interact with membranes allows them to target actin polymerization to discrete sites on the plasma membrane and to intracellular membrane compartments and thereby induce membrane protrusions or regulate vesicle movement. Most studies have concentrated on just three of the 22 mammalian Rho proteins, RhoA, Rac1 and Cdc42. However, recent research indicates that several other members of the Rho family, including Rif, RhoD, TC10 and Wrch1, and also related Rho-of-plants proteins (ROPs) in plants, stimulate actin polymerization and affect plasma membrane protrusion and/or vesicular traffic.  相似文献   

13.
ActA is a bacterially encoded protein that enables Listeria monocytogenes to hijack the host cell actin cytoskeleton. It promotes Arp2/3-dependent actin nucleation, but its interactions with cellular components of the nucleation machinery are not well understood. Here we show that two domains of ActA (residues 85-104 and 121-138) with sequence similarity to WASP homology 2 domains bind two actin monomers with submicromolar affinity. ActA binds Arp2/3 with a K(d) of 0.6 microm and competes for binding with the WASP family proteins N-WASP and Scar1. By chemical cross-linking, ActA, N-WASP, and Scar1 contact the same three subunits of the Arp2/3 complex, p40, Arp2, and Arp3. Interestingly, profilin competes with ActA for binding of Arp2/3, but actophorin (cofilin) does not. The minimal Arp2/3-binding site of ActA (residues 144-170) is C-terminal to both actin-binding sites and shares sequence homology with Arp2/3-binding regions of WASP family proteins. The maximal activity at saturating concentrations of ActA is identical to the most active domains of the WASP family proteins. We propose that ActA and endogenous WASP family proteins promote Arp2/3-dependent nucleation by similar mechanisms and require simultaneous binding of Arp2 and Arp3.  相似文献   

14.
Shigella , the causative agent of bacillary dysentery, is capable of directing its movement within host cells by forming an actin comet tail. The VirG (IcsA) pro-tein expressed at one pole of the bacterium recruits neural Wiskott–Aldrich syndrome protein (N-WASP), a member of the WASP family, which in turn stimulates actin-related protein (Arp) 2/3 complex-mediated actin polymerization. As all the WASP family proteins induce actin polymerization by recruiting Arp2/3 complex, we investigated their involvement in Shigella motility. Here, we show that VirG binds to N-WASP but not to the other WASP family proteins. Using a series of chimeras obtained by swapping N-WASP and WASP domains, we demonstrated that the specificity of VirG to interact with N-WASP lies in the N-terminal region containing the pleckstrin homology (PH) domain and calmodulin-binding IQ motif of N-WASP. A conformational change in N-WASP was important for the VirG–N-WASP interaction, as elimination of the C-terminal acidic region, which is responsible for the intramolecular interaction with the central basic region of N-WASP, affected the specific binding to VirG. We observed that, in haematopoietic cells such as macrophages, polymorphonuclear leucocytes (PMNs) and platelets, WASP was predominantly expressed, whereas the expression of N-WASP was greatly suppressed. Indeed, unlike Listeria , Shigella was unable to move in macrophages at all, although the movement was restored as N-WASP was expressed ectopically. Thus, our findings demonstrate that N-WASP is a specific ligand of VirG, which determines the host cell type allowing actin-based spreading of Shigella .  相似文献   

15.
Background: The actin-related proteins Arp2 and Arp3 are part of a seven-protein complex which is localized in the lamellipodia of a variety of cell types, and in actin-rich spots of unknown function. The Arp2/3 complex enhances actin nucleation and causes branching and crosslinking of actin filaments in vitro; in vivo it is thought to drive the formation of lamellipodia and to be a control center for actin-based motility. The Wiskott–Aldrich syndrome protein, WASP, is an adaptor protein implicated in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Scar1 is a member of a new family of proteins related to WASP, and it may also have a role in regulating the actin cytoskeleton. Scar1 is the human homologue of Dictyostelium Scar1, which is thought to connect G-protein-coupled receptors to the actin cytoskeleton. The mammalian Scar family contains at least four members. We have examined the relationships between WASP, Scar1, and the Arp2/3 complex.Results: We have identified WASP and its relative Scar1 as proteins that interact with the Arp2/3 complex. We have used deletion analysis to show that both WASP and Scar1 interact with the p21 subunit of the Arp2/3 complex through their carboxyl termini. Overexpression of carboxy-terminal fragments of Scar1 or WASP in cells caused a disruption in the localization of the Arp2/3 complex and, concomitantly, induced a complete loss of lamellipodia and actin spots. The induction of lamellipodia by platelet-derived growth factor was also suppressed by overexpression of the fragment of Scar1 that binds to the Arp2/3 complex.Conclusions: We have identified a conserved sequence domain in proteins of the WASP family that binds to the Arp2/3 complex. Overexpression of this domain in cells disrupts the localization of the Arp2/3 complex and inhibits lamellipodia formation. Our data suggest that WASP-related proteins may regulate the actin cytoskeleton through the Arp2/3 complex.  相似文献   

16.
Although small GTP-binding proteins of the Rho family have been implicated in signaling to the actin cytoskeleton, the exact nature of the linkage has remained obscure. We describe a novel mechanism that links one Rho family member, Cdc42, to actin polymerization. N-WASP, a ubiquitously expressed Cdc42-interacting protein, is required for Cdc42-stimulated actin polymerization in Xenopus egg extracts. The C terminus of N-WASP binds to the Arp2/3 complex and dramatically stimulates its ability to nucleate actin polymerization. Although full-length N-WASP is less effective, its activity can be greatly enhanced by Cdc42 and phosphatidylinositol (4,5) bisphosphate. Therefore, N-WASP and the Arp2/3 complex comprise a core mechanism that directly connects signal transduction pathways to the stimulation of actin polymerization.  相似文献   

17.
In mammalian cells, actin dynamics is tightly controlled through small GTPases of the Rho family, WASP/Scar proteins and the Arp2/3 complex. We employed Cre/loxP-mediated gene targeting to disrupt the ubiquitously expressed N-WASP in the mouse germline, which led to embryonic lethality. To elucidate the role of N-WASP at the cellular level, we immortalized embryonic fibroblasts and selected various N-WASP-defective cell lines. These fibroblasts showed no apparent morphological alterations and were highly responsive to the induction of filopodia, but failed to support the motility of Shigella flexneri. In addition, enteropathogenic Escherichia coli were incapable of inducing the formation of actin pedestals in N-WASP-defective cells. Our results prove the essential role of this protein for actin cytoskeletal changes induced by these bacterial pathogens in vivo and in addition show for the first time that N-WASP is dispensible for filopodia formation.  相似文献   

18.
The Arp2/3 complex can be independently activated to initiate actin polymerization by the VCA domain of WASP family members and by the acidic N-terminal and F-actin-binding repeat region of cortactin, which possesses a C-terminal SH3 domain. Cortactin is a target for phosphorylation by Src tyrosine kinases and by serine/threonine kinases that include Erk. Here we demonstrate that cortactin binds N-WASP and WASP via its SH3 domain, induces in vitro N-WASP-mediated actin polymerization, and colocalizes with N-WASP and WASP at sites of active actin polymerization. Erk phosphorylation and a mimicking S405,418D double mutation enhanced cortactin binding and activation of N-WASP. In contrast, Src phosphorylation inhibited the ability of cortactin previously phosphorylated by Erk, and that of S405,418D double mutant cortactin, to bind and activate N-WASP. Furthermore, Y-->D mutation of three tyrosine residues targeted by Src (Y421, Y466, and Y482) inhibited the ability of S405,418D cortactin to activate N-WASP. We propose that Erk phosphorylation liberates the SH3 domain of cortactin from intramolecular interactions with proline-rich regions, causing it to synergize with WASP and N-WASP in activating the Arp2/3 complex, and that Src phosphorylation terminates cortactin activation of N-WASP and WASP.  相似文献   

19.
All eukaryotic cells need to reorganize their actin cytoskeleton to change shape, divide, move, and take up nutrients for survival. The Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are fundamental actin-cytoskeleton reorganizers found throughout the eukaryotes. The conserved function across species is to receive upstream signals from Rho-family small GTPases and send them to activate the Arp2/3 complex, leading to rapid actin polymerization, which is critical for cellular processes such as endocytosis and cell motility. Molecular and cell biological studies have identified a wide array of regulatory molecules that bind to the WASP and WAVE proteins and give them diversified roles in distinct cellular locations. Genetic studies using model organisms have also improved our understanding of how the WASP- and WAVE-family proteins act to shape complex tissue architectures. Current efforts are focusing on integrating these pieces of molecular information to draw a unified picture of how the actin cytoskeleton in a single cell works dynamically to build multicellular organization.  相似文献   

20.
We examined the role of the actin nucleation promoters neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE2 in cell protrusion in response to epidermal growth factor (EGF), a key regulator in carcinoma cell invasion. We found that WAVE2 knockdown (KD) suppresses lamellipod formation and increases filopod formation, whereas N-WASP KD has no effect. However, simultaneous KD of both proteins results in the formation of large jagged protrusions with lamellar properties and increased filopod formation. This suggests that another actin nucleation activity is at work in carcinoma cells in response to EGF. A mammalian Diaphanous-related formin, mDia1, localizes at the jagged protrusions in double KD cells. Constitutively active mDia1 recapitulated the phenotype, whereas inhibition of mDia1 blocked the formation of these protrusions. Increased RhoA activity, which stimulates mDia1 nucleation, was observed in the N-WASP/WAVE2 KD cells and was shown to be required for the N-WASP/WAVE2 KD phenotype. These data show that coordinate regulation between the WASP family and mDia proteins controls the balance between lamellar and lamellipodial protrusion activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号