首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipose tissue contains a heterogeneous population of mature adipocytes, endothelial cells, immune cells, pericytes, and preadipocytic stromal/stem cells. To date, a majority of proteomic analyses have focused on intact adipose tissue or isolated adipose stromal/stem cells in vitro. In this study, human subcutaneous adipose tissue from multiple depots (arm and abdomen) obtained from female donors was separated into populations of stromal vascular fraction cells and mature adipocytes. Out of 960 features detected by 2-D gel electrophoresis, a total of 200 features displayed a 2-fold up- or down-regulation relative to each cell population. The protein identity of 136 features was determined. Immunoblot analyses comparing SVF relative to adipocytes confirmed that carbonic anhydrase II was up-regulated in both adipose depots while catalase was up-regulated in the arm only. Bioinformatic analyses of the data set determined that cytoskeletal, glycogenic, glycolytic, lipid metabolic, and oxidative stress related pathways were highly represented as differentially regulated between the mature adipocytes and stromal vascular fraction cells. These findings extend previous reports in the literature with respect to the adipose tissue proteome and the consequences of adipogenesis. The proteins identified may have value as biomarkers for monitoring the physiology and pathology of cell populations within subcutaneous adipose depots.  相似文献   

2.
3.

Background

Endorepellin, the C-terminal domain V of the heparan sulfate proteoglycan perlecan, exhibits powerful and targeted anti-angiogenic activity on endothelial cells. To identify proteins involved with endorepellin anti-angiogenic action, we performed an extensive comparative proteomic analysis between vehicle- and endorepellin-treated human endothelial cells.

Results

Proteomic analysis of endorepellin influence on human umbilical vein endothelial cells identified five differentially expressed proteins, three of which (β-actin, calreticulin, and chaperonin/Hsp60) were down-regulated and two of which (vimentin and the β subunit of prolyl 4-hydroxylase also known as protein disulfide isomerase) were up-regulated in response to endorepellin treatment—and associated with a fold change (endorepellin/control) ≤ 0.75 and ≥ 2.00, and a statistically significant p-value as determined by Student's t test.

Conclusion

The proteins identified represent potential target areas involved with endorepellin anti-angiogenic mechanism of action. Further elucidation as such will ultimately provide useful in utilizing endorepellin as an anti-angiogenic therapy in humans.  相似文献   

4.
The predominant surface proteins of biofilm and planktonic Actinomyces naeslundii, a primary colonizer of the tooth surface, were examined. Seventy-nine proteins (the products of 52 genes) were identified in biofilm cells, and 30 of these, including adhesins, chaperones, and stress-response proteins, were significantly up-regulated relative to planktonic cells.  相似文献   

5.
It is known that replicative senescence of endothelium in vivo contributes at least partially to age-related vascular disorders such as arteriosclerosis. However, the genes involved in this process remain to be identified. In this study, we employed a proteomics-based approach to identify candidate genes using in vitro cultured human umbilical vein endothelial cells (HUVECs) as an experimental model for replicative senescence. By comparing protein spots from young and senescent HUVECs using two-dimensional electrophoresis, we identified three up-regulated proteins and five down-regulated proteins in senescent HUVECs as compared to young HUVECs, whose alteration was not observed during replicative senescence of primary human fibroblasts. Consistent results were obtained in Western blotting analysis using specific antibodies raised against some of these proteins, whereas there were no significant changes in the mRNA levels of these genes during senescence of HUVECs. Among them, cathepsin B, a protease participating in both intracellular proteolysis and extracellular matrix remodeling was observed to be dramatically up-regulated in senescent HUVECs and whose activity is known to be up-regulated in atherosclerotic lesions with senescence-associated phenotypes in vivo. Additional proteins, including cytoskeletal proteins and proteins involved in the processes of synthesis, turnover and modification of protein, were identified, whose function in endothelium was previously unsuspected. These proteins identified by a proteomics-based approach using cultured HUVECs may be involved not only in replicative senescence but also in functional alterations in vascular endothelial cells with senescence-associated phenotypes and may serve as molecular markers for these processes.  相似文献   

6.
Endothelial progenitor cells (EPCs) can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU) assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP), PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15) or pro-angiogenic (galectin-3) properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP) was the most up-regulated gene.  相似文献   

7.
Proteome analysis of human umbilical endothelial cells was performed to identify proteins that are modified during vascular endothelial cell growth factor (VEGF)-induced transition from the quiescent into the proliferating-migrative phenotype. Subtractive analysis of two-dimensional gel patterns of human endothelial cells, before and after stimulation with VEGF(165), revealed differences in 85 protein spots. All proteins were identified by peptide sequencing and peptide mass fingerprinting using an electrospray spectrometer. The proteins identified were members of specific families including Ca(2+)-binding proteins, fatty-acid binding proteins, structural proteins, and chaperones. Remarkably, there was a massive activation of cellular machinery for both protein synthesis and protein degradation. Thus, among up-regulated proteins there were members of all groups of heat shock proteins (HSPs; HSP 27, HSP 60, HSP 70p5, HSP 70p8, HSP 90, and HSP 96) and some other proteins showing either chaperone activity or which participate in assembly of multimolecular structures (TCP-1, desmoplakins, junction plakoglobin, GRP 94, thioredoxin related protein, and peptidylprolyl isomerase). The increased expression of HSPs was confirmed at the mRNA level at different stages of treatment with VEGF. Similarly, components of the proteolytic machinery for the degradation of misfolded proteins (ER-60, cathepsin D, proteasome subunits, and protease inhibitor 6) were also up-regulated. On the other hand, changes in the expression of structural proteins (T-plastin, vimentin, alpha tubulin, actin, and myosin) could account, at least in part, for the different morphologies displayed by migrating endothelial cells. In summary, our data show that VEGF levels similar to those during physiological stresses induce a number of genes and multiple endogenous pathways seem to be engaged in restoring cellular homeostasis. To ensure cell survival, the molecular chaperones (the heat shock family of stress proteins) are highly up-regulated providing protein-folding machinery to repair or degrade misfolded proteins.  相似文献   

8.
The predominant surface proteins of biofilm and planktonic Actinomyces naeslundii, a primary colonizer of the tooth surface, were examined. Seventy-nine proteins (the products of 52 genes) were identified in biofilm cells, and 30 of these, including adhesins, chaperones, and stress-response proteins, were significantly up-regulated relative to planktonic cells.  相似文献   

9.
Abnormal expression of annexin A2 contributes to metastasis and infiltration of cancer cells.To elucidate the cause of abnormal expression of annexin A2,Western blotting,immunoproteomics and immunohistochemical staining were performed to analyze differentially ubiquitinated proteins between fresh breast cancer tissue and its adjacent normal breast tissue from five female volunteers.We detected an ubiquitinated protein that was up-regulated in the cancer tissue,which was further identified as annexin A2 by mass spectrometry.These results suggest that abnormal ubiquitination and/or degradation of annexin A2 may lead to presence of annexin A2 at high level,which may further promote metastasis and infiltration of the breast cancer cells.  相似文献   

10.
Angiogenesis requires an increase in endothelial cell proliferation to support an increase in mass of blood vessels. We designed an in vitro endothelial cell model to functionally screen for genes that regulate endothelial cell proliferation. A gain of function screen for genes that bypass p53 endothelial cell arrest identified Rem2, a Ras-like GTPase. We show that ectopic Rem2 suppresses p14(ARF) (human) or p19(ARF) (mouse) expression that leads to increased endothelial cell proliferation. Conversely, loss of ectopic Rem2 by RNA interference restores p19(ARF) expression in endothelial cells. We further show that Rem2-interacting 14-3-3 proteins are involved in the cell localization of Rem2, regulation of p19(ARF) expression, and endothelial cell proliferation. Finally, we demonstrate using the RIP1 tag2 mouse model of pancreatic disease that Rem2 is up-regulated in endothelial cells of stage IV disease. The data unravel a possible molecular mechanism for Rem2-induced angiogenesis and suggests Rem2 as a potential novel target for treating pathological angiogenesis.  相似文献   

11.
Borrelia burgdorferi, the agent of Lyme disease, spreads from the site of the tick bite to tissues such as heart, joints and the nervous tissues. Host glycosaminoglycans, highly modified repeating disaccharides that are present on cell surfaces and in extracellular matrix, are common targets of microbial pathogens during tissue colonization. While several dermatan sulfate‐binding B. burgdorferi adhesins have been identified, B. burgdorferi adhesins documented to promote spirochetal binding to heparan sulfate have not yet been identified. OspEF‐related proteins (Erps), a large family of plasmid‐encoded surface lipoproteins that are produced in the mammalian host, can be divided into the OspF‐related, OspEF‐leader peptide (Elp) and OspE‐related subfamilies. We show here that a member of the OspF‐related subfamily, ErpG, binds to heparan sulfate and when produced on the surface of an otherwise non‐adherent B. burgdorferi strain, ErpG promotes heparan sulfate‐mediated bacterial attachment to the glial but not the endothelial, synovial or respiratory epithelial cells. Six other OspF‐related proteins were capable of binding heparan sulfate, whereas representative OspE‐related and Elp proteins lacked this activity. These results indicate that OspF‐related proteins are heparan sulfate‐binding adhesins, at least one of which promotes bacterial attachment to glial cells.  相似文献   

12.
Basic fibroblast growth factor (bFGF) is a known mitogen for vascular smooth muscle cells and has been implicated as having a role in a number of proliferative vascular disorders. Binding of bFGF to heparin or heparan sulfate has been demonstrated to both stimulate and inhibit growth factor activity. The activity, towards bFGF, of heparan sulfate proteoglycans present within the vascular system is likely related to the chemical characteristics of the glycosaminoglycan as well as the structure and pericellular location of the intact proteoglycans. We have previously shown that endothelial conditioned medium inhibits both bFGF binding to vascular smooth muscle cells and bFGF stimulated cell proliferation in vitro. In the present study, we have isolated proteoglycans from endothelial cell conditioned medium and demonstrated that they are responsible for the bFGF inhibitory activity. We further separated endothelial secreted proteoglycans into two fractions, PG-A and PG-B. The larger sized fraction (PG-A) had greater inhibitory activity than did PG-B for both bFGF binding and bFGF stimulation of vascular smooth muscle cell proliferation. The increased relative activity of PG-A was attributed, in part, to larger heparan sulfate chains which were more potent inhibitors of bFGF binding than the smaller heparan sulfate chains on PG-B. Both proteoglycan fractions contained perlecan-like core proteins; however, PG-A contained an additional core protein (approximately 190 kDa) that was not observed in PG-B. Both proteoglycan fractions bound bFGF directly, and PG-A bound a significantly greater relative amount of bFGF than did PG-B. Thus the ability of endothelial heparan sulfate proteoglycans to bind bFGF and prevent its association with vascular smooth muscle cells appears essential for inhibition of bFGF-induced mitogenesis. The production of potent bFGF inhibitory heparan sulfate proteoglycans by endothelial cells might contribute to the maintenance of vascular homeostasis. J. Cell. Physiol. 172:209–220, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
High doses of ionising radiation damage the heart by an as yet unknown mechanism. A concern for radiological protection is the recent epidemiological data indicating that doses as low as 100-500 mGy may induce cardiac damage. The aim of this study was to identify potential molecular targets and/or mechanisms involved in the pathogenesis of low-dose radiation-induced cardiovascular disease. The vascular endothelium plays a pivotal role in the regulation of cardiac function and is therefore a potential target tissue. We report here that low-dose radiation induced rapid and time-dependent changes in the cytoplasmic proteome of the human endothelial cell line EA.hy926. The proteomes were investigated at 4 and 24 h after irradiation at two different dose rates (Co-60 gamma ray total dose 200 mGy; 20 mGy/min and 190 mGy/min) using 2D-DIGE technology. Differentially expressed proteins were identified, after in-gel trypsin digestion, by MALDI-TOF/TOF tandem mass spectrometry, and peptide mass fingerprint analyses. We identified 15 significantly differentially expressed proteins, of which 10 were up-regulated and 5 down-regulated, with more than ±1.5-fold difference compared with unexposed cells. Pathways influenced by the low-dose exposures included the Ran and RhoA pathways, fatty acid metabolism and stress response.  相似文献   

14.
The endothelium is a metabolically active organ that regulates the interaction between blood or lymph and the vessel or the surrounding tissue. Blood endothelium has been the object of many investigations whereas lymphatic endothelium biology is yet poorly understood. This report deals with a proteomic approach to the characterization and comparative analysis of lymphatic and blood vessel endothelial cells (ECs). By 2-DE we visualized the protein profiles of EC extracts from the thoracic aorta, inferior vena cava, and thoracic duct of Bos taurus. The three obtained electropherograms were then analyzed by specific software, and 113 quantitative and 25 qualitative differences were detected between the three endothelial gels. The cluster analysis of qualitative and quantitative differences evidenced the protein pattern of lymphatic ECs to be more similar to the venous than to the arterial one. Moreover, venous ECs were interestingly found showing a protein expression profile more similar to the lymphatic ECs than to the arterial ones. We also identified 64 protein spots by MALDI-TOF MS and ESI-IT MS/MS and three reference maps of bovine endothelium were obtained. The functional implications of the identified proteins in vascular endothelial biology are discussed.  相似文献   

15.
Differential protein profiling by 2‐D PAGE is generally useful in biomarker discovery, proteome analysis and routine sample preparation prior to analysis by MS. The goal of this study was to compare 2‐D PAGE‐resolved protein profile of lymphatic endothelial cells to those of venous, and arterial endothelial cells isolated from lymphatic and blood vessels of bovine mesentery (bm). Three 2‐D PAGE electrophoretograms were produced for each of the three cell types and quantitatively analyzed. Protein identification by LC‐MS/MS was performed to identify 39 proteins found to be present at statistically significantly different levels in the three cell types (p<0.05). Most of the 39 proteins have not been previously reported in EC proteomic studies of 2‐D PAGE electrophoretograms. Three proteins, HSPA1B (HSP70 family member), HSPB1 (HSP27 family member), and UBE2D3 (a member of E2 ubiquitin‐conjugating enzymes) found to be at highest levels in bm arterial endothelial cells, bm venous endothelial cells, and bm lymphatic endothelial cells, respectively, were validated by immunoblotting with appropriate antibodies. The lack of substantial overlap between our results and those of other groups' comparative studies are discussed. Functional implications of differences in levels of various proteins identified in the three cell types are also discussed.  相似文献   

16.
Organization of endothelium as the lining of the cardiovascular system is supported by basement membrane. The important role of laminin and other basement membrane proteins is assumed in the angiogenesis. We show here that cultured endothelial cells produce two forms of laminin, and their relative levels are changed by antiangiogenic steroids. The synthesis of laminin subunits by endothelial cells isolated from bovine aorta and from bovine pulmonary artery was studied by metabolic labeling with [35S]methionine. Both endothelial cells produced a novel laminin-related polypeptide (A' subunit) in addition to the A, B1, and B2 subunits. Two-dimensional sodium dodecyl sulfate gel electrophoretic analysis showed that the B1B2 complex was first formed and the A subunit joined it to form the AB1B2 complex or the A' subunit joined it to form A'B1B2 complex. This mechanism implied that replacement of subunits in the complex by a corresponding variant produces variety in the structure and function of laminin. The A'B1B2 complex was the major product in endothelial cells under normal culture conditions. An angiostatic steroid, medroxyprogesterone, suppressed the A' synthesis and stimulated the A synthesis. Consequently, the major product of bovine aorta endothelial cells was converted to AB1B2. Two types of intracellular precursors were identified for each laminin-related polypeptide. Since the precursors in a given complex were synchronized with regard to maturation, the assembly of AB1B2 and A'B1B2 complexes was suggested to occur at an early step of intracellular processing.  相似文献   

17.
18.
Legionella pneumophila, which is a causative pathogen of Legionnaires'' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE) combined with Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry (MALDI-TOF-MS). Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB) biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins) were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs). Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.  相似文献   

19.
Cerebral ischemia causes functional alteration of the blood-brain barrier, formed by brain capillary endothelial cells (BCEC). Changes in protein expression and activity of selected differentially expressed enzymes were investigated in BCEC subjected to hypoxia (24 h) alone or followed by a 24-h reoxygenation. BCEC proteins were isolated, separated by 2-DE, and identified by MALDI-MS. Computer-based 2-D gel analysis identified 21 up-regulated proteins and 4 down-regulated proteins after hypoxia alone and 9 proteins that were further up-regulated after posthypoxic reoxygenation. The expression of the majority of hypoxia-induced proteins was reduced toward control levels during reoxygenation. The most prominent changes were identified for glycolytic enzymes (e.g., phosphoglycerate kinase), proteins of the ER (e.g., calreticulin), and cytoskeletal (e.g., vimentin) proteins. The results indicate that BCEC respond to hypoxia/reoxygenation by adaptive up-regulation of proteins involved in the glycolysis, protein synthesis, and stress response.  相似文献   

20.
Although the sulfate/anion transporter (sat-1; SLC26A1) was isolated from a rat liver cDNA library by expression cloning, localization of sat-1 within the liver and its contribution to the transport of sulfate and organo sulfates have remained unresolved. In situ hybridization and immunohistochemical studies were undertaken to demonstrate the localization of sat-1 in liver tissue. RT-PCR studies on isolated hepatocytes and liver endothelial and stellate cells in culture were performed to test for the presence of sat-1 in these cells. In sulfate uptake and efflux experiments, the substrate specificity of sat-1 was evaluated. Sat-1 mRNA was found in hepatocytes and endothelial cells. Sat-1 protein was localized in sinusoidal membranes and along the borders of hepatocytes. The canalicular region and bile capillaries were not stained. Sulfate uptake was only slightly affected by sulfamoyl diuretics or organo sulfates. Sulfate efflux from sat-1-expressing oocytes was enhanced in the presence of bicarbonate, indicating sulfate/bicarbonate exchange. Estrone sulfate was not transported by sat-1. Sat-1 may be responsible for the uptake of inorganic sulfate from the blood into hepatocytes to enable sulfation reactions. In hepatocytes and endothelial cells, sat-1 may also supply sulfate for proteoglycan synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号