首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Burkholderia pseudomallei, a Gram-negative bacterium that causes melioidosis may be differentiated from closely related species of Burkholderia mallei that causes glanders and non-pathogenic species of Burkholderia thailandensis by multiplex PCR. The multiplex PCR consists of primers that flank a 10-bp repetitive element in B. pseudomallei and B. mallei amplifying PCR fragment of varying sizes between 400-700 bp, a unique sequence in B. thailandensis amplifying a PCR fragment of 308 bp and the metalloprotease gene amplifying a PCR fragment of 245 bp in B. pseudomallei and B. thailandensis. The multiplex PCR not only can differentiate the three Burkholderia species but can also be used for epidemiological typing of B. pseudomallei and B. mallei strains.  相似文献   

2.
Glanders and melioidosis are severe infectious diseases of people and animals. The causative agents of these infections refer to the potential agents of bioterrorism of group B. In this work the possibility of use of flagellin-based primers for the identification of B. mallei and B. pseudomallei and for diagnosis of experimental glanders and melioidosis was studied. The obtained results permit to make a conclusion that PCR using the developed primers may be recommended for the incorporation in the scheme of laboratory diagnosis of glanders and melioidosis both for the identification of clean cultures and in experimental clinical material.  相似文献   

3.
Amotile Burkholderia mallei and motile Burkholderia pseudomallei display a high similarity with regard to phenotype and clinical syndromes, glanders and melioidosis. The aim of this study was to establish a fast and reliable molecular method for identification and differentiation. Despite amotility, the gene of the filament forming flagellin (fliC) could be completely sequenced in two B. mallei strains. Only one mutation was identified discriminating between B. mallei and B. pseudomallei. A polymerase chain reaction-restriction fragment length polymorphism assay was designed making use of the absence of an AvaII recognition site in B. mallei. All seven B. mallei, 12 out of 15 B. pseudomallei and 36 closely related apathogenic Burkholderia thailandensis strains were identified correctly. However, in three B. pseudomallei strains a point mutation at gene position 798 (G to C) disrupted the AvaII site. Therefore, molecular systems based on the fliC sequence can be used for a reliable proof of strains of the three species but not for the differentiation of B. mallei and B. pseudomallei isolates.  相似文献   

4.
The biopolymer composition, immunotropic and immunogenic properties of the fractions of B. pseudomallei and B. mallei were under study. The first two capsular fractions of these agents were found to be similar in their biopolymer composition that was indicative of their close relations. At the same time the causative agents of glanders proved to have decreased content of high molecular glycoproteids and LPS fragments. In the causative agents of melioidosis, capsular fractions K3 and K4 were characterized by the domination of proteins with a molecular weight of 42-25 kD. Fraction K4 in B. pseudomallei and fraction K1 in B. mallei had pronounced immunosuppressing properties ensuring the protection of encapsulated microbial cells in the body. The biopolymers forming fractions K1, K2, K3 in B. pseudomallei and fraction K2 in B. mallei were characterized by immunomodulating properties.  相似文献   

5.
The authors present the results of in vitro determination of the sensitivity of the causative agent of glanders and melioidosis to 8 preparations-5-nitrofuran derivatives, and also to negram and PASK. The most active against M. mallei and Ps. pseudomallei were furazonal and furacrillin; negram was less active. No naturally resistanct strains to furacrylin and furazonal were revealed among the M. mallei and Ps. pseudomallei strains studied.  相似文献   

6.
Burkholderia pseudomallei and Burkholderia mallei are causative agents of distinct diseases, namely, melioidosis and glanders, respectively. The two species are very closely related, based on DNA-DNA homology, base sequence of the 16S rRNA, and phenotypic characteristics. Based on the use of polyclonal antisera, B. pseudomallei and B. mallei are also found to be antigenically closely related to one another. We previously reported the production of monoclonal antibodies (MAbs) against B. pseudomallei antigens; one group was specific for the 200-kDa exopolysaccharide present on the surface of all B. pseudomallei isolates, and the other was specific for the lipopolysaccharide (LPS) structure present on more than 95% of the B. pseudomallei tested. In the present study, we showed that the MAbs against 200-kDa antigen of B. pseudomallei cross-reacted with a component present also in some B. mallei isolates (3/6), but the positive immunoblot reaction was noted below the 200-kDa position. On the other hand, none of the six B. mallei isolates reacted with the MAb specific for B. pseudomallei LPS. It was of interest to observe that only the 3 exopolysaccharide-positive B. mallei isolates reacted with a commercial MAb against B. mallei LPS. The data presented suggest that B. mallei can be classified antigenically into two types based on their reactivities with different MAbs, i.e., the presence or absence of exopolysaccharide and the types of lipopolysaccharide. The heterogeneity of the LPS from these two closely related organisms is most likely related to the differences in its O-polysaccharide side chain.  相似文献   

7.
Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively. As iron regulation of gene expression is common in bacteria, in the present studies, we have used microarray analysis to examine the effects of growth in different iron concentrations on the regulation of gene expression in B. pseudomallei and B. mallei. Gene expression profiles for these two bacterial species were similar under high and low iron growth conditions irrespective of growth phase. Growth in low iron led to reduced expression of genes encoding most respiratory metabolic systems and proteins of putative function, such as NADH-dehydrogenases, cytochrome oxidases, and ATP-synthases. In contrast, genes encoding siderophore-mediated iron transport, heme-hemin receptors, and a variety of metabolic enzymes for alternative metabolism were induced under low iron conditions. The overall gene expression profiles suggest that B. pseudomallei and B. mallei are able to adapt to the iron-restricted conditions in the host environment by up-regulating an iron-acquisition system and by using alternative metabolic pathways for energy production. The observations relative to the induction of specific metabolic enzymes during bacterial growth under low iron conditions warrants further experimentation.  相似文献   

8.
Pathogenic Burkholderia--Burkholderia mallei and Burkholderia pseudomallei--are causative agents of glanders and melioidosis, severe infectious diseases of man and animals. They are regarded as potential agents of bioterrorism. The existing bacteriological and immunological methods of identification of B. mallei and B. pseudomallei are not efficient enough for the rapid diagnosis and typing of strains. Described in the paper are molecular methods of detection of the agents by PCR, hybridization and strain typing made on the basis of bacterial total cell protein profiles, RAPD, ribotyping as well as of plasmid and DNA microrestriction analyses.  相似文献   

9.
Burkholderia pseudomallei and its host-adapted deletion clone Burkholderia mallei cause the potentially fatal human diseases melioidosis and glanders, respectively. The antibiotic resistance profile and ability to infect via aerosol of these organisms and the absence of protective vaccines have led to their classification as major biothreats and select agents. Although documented infections by these bacteria date back over 100 years, relatively little is known about their virulence and pathogenicity mechanisms. We used in silico genomic subtraction to generate their virulome, a set of 650 putative virulence-related genes shared by B. pseudomallei and B. mallei but not present in five closely related nonpathogenic Burkholderia species. Although most of these genes are clustered in putative operons, the number of targets for mutant construction and verification of reduced virulence in animal models is formidable. Therefore, Galleria mellonella (wax moth) larvae were evaluated as a surrogate host; we found that B. pseudomallei and B. mallei, but not other phylogenetically related bacteria, were highly pathogenic for this insect. More importantly, four previously characterized B. mallei mutants with reduced virulence in hamsters or mice had similarly reduced virulence in G. mellonella larvae. Site-specific inactivation of selected genes in the computationally derived virulome identified three new potential virulence genes, each of which was required for rapid and efficient killing of larvae. Thus, this approach may provide a means to quickly identify high-probability virulence genes in B. pseudomallei, B. mallei, and other pathogens.  相似文献   

10.
The capsular structures of Burkholderia pseudomallei, B. mallei, B. cepacia and their avirulent noncapsular mutants were studied with the use of electron ahd immunocytochemical techniques. For this purpose, antimelio-idosis monoclonal antibodies (McAb) G11 and 1 G2, epitope-aimed at capsular glycopyotein of 200 kD and outer-membrane proteins of 42 and 39 kD, were used. As revealed in this study, the typical causative agents of melioidosis and glanders formed the capsule and exhibited high virulence due to the antiphagocytic activity of 200 kD glycoprotein, whose epitopes were found to be incorporated into the capsule, in contrast to avirulent variants and B. cepacia, found to have no such structure. The recognition of the membrane determinants of McAb 1 G2 on the outer-membrane surface of the non-capsular variants of microbes known to be the causative agents of melioidosis and glanders was indicative of absence of the capsule in these microbial cells. These data concerning the role of 200 kD antigen in virulence, its structural and functional characteristics may be efffectively used in the study of the pathogenetic mechanisms of melioidosis and glanders, as well as in the construction of preparations for their immunodiagnostics and prophylaxis.  相似文献   

11.
Burkholderia pseudomallei-like microorganisms have been isolated from soil and water in regions with endemic melioidosis. These strains have biochemical and antigenic profiles identical to melioidosis agents, except that they differ by virulence and L-arabinose (vir-, ara+). There are minor differences between these species by rRNA sequence. DNA hybridization and, more so, positive transformation of DNA auxotrophic mutants of B. pseudomallei by cell lysates of B. thailandensis and B. mallei confirmed the homology of these species' genomes. These members of the Burkholderia genus (pseudomallei, mallei, and thailandensis) can be regarded as a supraspecies taxon: pseudomallei group. B. thailandensis strains are not virulent for guinea pigs and slightly virulent for golden hamsters. Immunization with live cultures of B. thailandensis protected more than 50% guinea pigs challenged with 200 LD50 B. pseudomallei 100. B. thailandensis is suggested as a potential melioidosis vaccine.  相似文献   

12.
Test-system using index of phagocytosis of noncapsulated mutant loaded by one of the several capsular antigenic complexes was developed and used for screening for both immunogenic and protective capsular antigens of B. mallei. Direct correlation between index of phagocytosis, level of delayed-type hypersensivity, and protective effect of capsular antigens has been shown on the model of experimental melioidosis in susceptible white mice, guinea pigs and white rats. Obtained results let to use the developed test-system for initial selection of B. mallei protective capsular antigens and their further study as potential components of preparations for specific prophylaxis of glanders and melioidosis.  相似文献   

13.
Burkholderia pseudomallei is a biothreat agent and an important natural pathogen, causing melioidosis in humans and animals. A type III secretion system (TTSS-3) has been shown to be critical for virulence. Because TTSS components from other pathogens have been used successfully as diagnostic agents and as experimental vaccines, it was investigated whether this was the case for BipB, BipC and BipD, components of B. pseudomallei's TTSS-3. The sequences of BipB, BipC and BipD were found to be highly conserved among B. pseudomallei and B. mallei isolates. A collection of monoclonal antibodies (mAbs) specific for each Bip protein was obtained. Most recognized both native and denatured Bip protein. Burkholderia pseudomallei or B. mallei did not express detectable BipB or BipD under the growth conditions used. However, anti-BipD mAbs did recognize the TTSS needle structures of a Shigella strain engineered to express BipD. The authors did not find that BipB, BipC or BipD are protective antigens because vaccination of mice with any single protein did not result in protection against experimental melioidosis. Enzyme-linked immunosorbent assay (ELISA) studies showed that human melioidosis patients had antibodies to BipB and BipD. However, these ELISAs had low diagnostic accuracy in endemic regions, possibly due to previous patient exposure to B. pseudomallei.  相似文献   

14.
Stimuli of glanders belong to the potential agents of biological terror. The possibility to use various primers in the identification of B. mallei was investigated and the significance of polymerase chain reaction (PCR) was defined within the scheme of laboratory glanders diagnosis in the offered paper. The constructed amplifying test-systems can be used to detect the glanders both in the environmental objects contaminated with B. mallei and in experimental clinical material.  相似文献   

15.
Cross-reacting antigens in B. mallei, B. pseudomallei, B. thailandensis, Francisella tularensis, Yersinia pestis and Mycobacterium tuberculosis were studied with the use of immuno- and electrophoretic techniques. The set of antigens was shown to be almost identical in the causative agents of glanders, melioidosis, as well as in B. thailandensis, though in the latter organism 200-kD glycoprotein was absent. The analysis of immuno- and proteinograms demonstrated the presence of cross-reactions in the representatives of the genus Burkholderia with the causative agents of plague, tularemia and tuberculosis, which served as the basis for making the scheme of their antigenic relationships. The use of immunosorption techniques with subsequent analysis of the preparations by means of the SDS polyacryl gel electrophoresis and immunoblotting made it possible to characterize cross-reacting antigens of the pathogenic microorganisms under study, to establish their molecular weights (81-15 kD) and to show that some detected antigens are analogous to B. pseudomallei outer membrane proteins (34 and 30 kD).  相似文献   

16.
Parameters of the infectious activity of B.mallei and B.pseudomallei for animals of various species were determined. Pathomorphological characteristics of the process of malleus and melioidosis were studied on golden hamsters, mice, guinea pigs, rats and monkeys. Tularemia, plague and salmonellosis vaccines were shown to have protective effects in experimental malleus and melioidosis. An insignificant cross immune response between the malleus and melioidosis pathogens was observed.  相似文献   

17.
Harley VS  Dance DA  Drasar BS  Tovey G 《Microbios》1998,96(384):71-93
Burkholderia pseudomallei causes melioidosis, a serious and often fatal bacterial infection. B. pseudomallei can behave as a facultatively intracellular organism and this ability may be important in the pathogenesis of both acute and chronic infection. The uptake of B. pseudomallei and other Burkholderia spp. by cells in tissue culture was examined by electron microscopy. B. pseudomallei can invade cultured cell lines including phagocytic lines such as RAW264, J774 and U937, and non-phagocytic lines such as CaCO-2, Hep2, HeLa, L929, McCoy, Vero and CHO. Uptake was followed by the intracellular multiplication of B. pseudomallei and the induction of cell fusion and multinucleate giant cell formation. Similar effects were produced by B. mallei and B. thailandensis.  相似文献   

18.
In experiments on guinea pigs immunized with Francisella tularensis 15, or live tularemia vaccine (LTV), the level of heterologous protective effect to dangerous infectious diseases caused by Yersinia pestis, Burkholderia pseudomallei, B. mallei, Mycobacterium tuberculosis was studied. The study revealed that during the first 4 weeks after the subcutaneous immunization with LTV the level of resistance of the immunized animals to heterologous infective agent reliably increased as indicated by the survival rate of the animals, as well as by the survival time of those killed by infection, in comparison with the controls. Later (on day 150 after immunization) differences in death rate between the groups perceptibly decreased. Nevertheless, the 1 1/2-fold increase of the survival time of the challenged immunized animals in comparison with the controls proved the possibility of using immunization with LTV for the urgent prophylaxis and treatment not only of tularemia, but also of plague, glanders, melioidosis and tuberculosis.  相似文献   

19.
BackgroundIn this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis.Conclusions/SignificanceAlthough further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis.  相似文献   

20.
Sensitivity of Pseudomonas to currently used antibacterial drugs   总被引:1,自引:0,他引:1  
Sensitivity of 184 strains of four Preudomonas species that are of importance from the medical viewpoint was studied. It was shown that all the studied strains were resistant to cefazolin and ampicillin. Sulfomonomethoxine was active only against P. mallei. Gentamicin inhibited the growth of all the strains of P. mallei and 60 per cent of the strains of P. aeruginosa. Among the four studied strains, the causative agent of glanders was the least resistant to the chemotherapeutic drugs. Eleven out of the 16 studied drugs were active against P. mallei. The strains of P. pseudomallei, the organism causing melioidosis were sensitive to 6 drugs: ceftazidime, imipenem, doxycycline, minocycline, chloramphenicol and biseptol. The dime, ceftriaxone, cefsulodin, cefoperazone, cefotaxime, piperacillin and imipenem. The strains of P. cepacia were the most resistant to all the chemotherapeutic drugs studied and only biseptol was active in the concentrations attained in blood of patients (MIC50 12.5 mg/l). 10 to 70 per cent of the strains were sensitive to ceftazidime, imipenem, doxycycline, minocycline and rifampicin. Therefore, imipenem and ceftazidime were the most active drugs with respect to the causative agents of pseudomonoses. Biseptol, doxycycline and minocycline are also worthy note.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号