首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the major intrinsic protein (MIP) family, described in plants as water-selective channels (aquaporins), can also transport small neutral solutes in other organisms. In the present work, we characterize the permeability of plant vacuolar membrane (tonoplast; TP) and plasma membrane (PM) to non-electrolytes and evaluate the contribution of MIP homologues to such transport. PM and TP vesicles were purified from tobacco suspension cells by free-flow electrophoresis, and membrane permeabilities for a wide range of neutral solutes including urea, polyols of different molecular size, and amino acids were investigated by stopped-flow spectrofluorimetry. For all solutes tested, TP vesicles were found to be more permeable than their PM counterparts, with for instance urea permeabilities from influx experiments of 74.9 +/- 9.6 x 10(-6) and 1.0 +/- 0.3 x 10(-6) cm sec-1, respectively. Glycerol and urea transport in TP vesicles exhibited features of a facilitated diffusion process. This and the high channel-mediated permeability of the same TP vesicles to water suggested a common role for MIP proteins in water and solute transport. A cDNA encoding a novel tonoplast intrinsic protein (TIP) homologue named Nicotiana tabacum TIPa (Nt-TIPa) was isolated from tobacco cells. Immunodetection of Nt-TIPa in purified membrane fractions confirmed that the protein is localized in the TP. Functional expression of Nt-TIPa in Xenopus oocytes showed this protein to be permeable to water and solutes such as urea and glycerol. These features could account for the transport selectivity profile determined in purified TP vesicles. These results support the idea that plant aquaporins have a dual function in water and solute transport. Because Nt-TIPa diverges in sequence from solute permeable aquaporins characterized in other organisms, its identification also provides a novel tool for investigating the molecular determinants of aquaporin transport selectivity.  相似文献   

2.
Plasma membrane vesicles isolated by two-phase partitioning from the storage root of Beta vulgaris show atypically high water permeability that is equivalent only to those reported for active aquaporins in tonoplast or animal red cells (Pf=542 microm s(-1)). The values were determined from the shrinking kinetics measured by stopped-flow light scattering. This high Pf was only partially inhibited by mercury (HgCl2) but showed low activation energy (Ea) consistent with water permeation through water channels. To study short-term regulation of water transport that could be the result of channel gating, the effects of pH, divalent cations, and protection against dephosphorylation were tested. The high Pf observed at pH 8.3 was dramatically reduced by medium acidification. Moreover, intra-vesicular acidification (corresponding to the cytoplasmic face of the membrane) shut down the aquaporins. De-phosphorylation was discounted as a regulatory mechanism in this preparation. On the other hand, among divalent cations, only calcium showed a clear effect on aquaporin activity, with two distinct ranges of sensitivity to free Ca2+ concentration (pCa 8 and pCa 4). Since the normal cytoplasmic free Ca2+ sits between these ranges it allows for the possibility of changes in Ca2+ to finely up- or down-regulate water channel activity. The calcium effect is predominantly on the cytoplasmic face, and inhibition corresponds to an increase in the activation energy for water transport. In conclusion, these findings establish both cytoplasmic pH and Ca2+ as important regulatory factors involved in aquaporin gating.  相似文献   

3.
Volume changes were studied in Beta vulgaris storage root vacuoles, using video microscopy, when exposed to hypotonic conditions. The osmotic gradient was either step-applied or progressively imposed in perfusion experiments. Preincubation at low pH (6.6) or with HgCl2 strongly reduced the vacuoles' water permeability, measured in step experiments. Furthermore, the volumetric response depended on the rate with which the aniso-osmotic condition was established. In perfusion experiments a "plateau value" (osmotic equilibrium or steady-state volume value) was observed, which was significantly lower than the theoretically expected one. Furthermore, if vacuoles were preincubated in presence of HgCl2 or at low pH and then the hypo-osmotic challenge was applied in perfusion experiments, a still lower "plateau value" was observed. This reduction was concentration-dependent and completely reversible. In these conditions, when HgCl2 concentration was 300 mM or medium pH was 6.6, the volume change was abolished. In other experiments, when urea iso-osmotically replaced mannitol, a reversible, pH-dependent volumetric response was observed. These results can be interpreted accepting that 1) mercury-sensitive water channels, present in the studied structure, were blocked by low pH during the hypo-osmotic challenge; 2) modification of water permeability prevents excessive swelling during the osmotic shock; 3) the effectiveness of this last mechanism depended on the osmotic challenge rate; and 4) additionally, urea reflection coefficients were also modified by reduced medium pH.  相似文献   

4.
The osmotic water permeability ( P os) of cell membranes isolated from leaves of 40-, 50- and 60-day-old Mesembryanthemum crystallinum plants was estimated by measuring light-scattering kinetics using stopped-flow spectrophotometry. The measurements were performed on the plasma membrane (PM), purified tonoplast (TP), and TP-enriched vesicles. The PM and TP-enriched vesicles were obtained by partitioning the microsomal fraction in an aqueous polymer two-phase system, whereas the purified TP vesicles were prepared by microsomal vesicle flotation on a sucrose cushion. The P os of isolated membranes declined with plant age. The kinetic experiments showed that there was no difference between the P os of the PM and TP isolated from plants of all ages. A 24-h exposure of plants to 400 m M NaCl caused a decline in the P os as well. These findings suggest that, during M. crystallinum transition to CAM, which was induced by plant ageing or salinity, plant osmoregulatory responses included changes in the P os of the leaf-cell membranes. These variations in the P os are discussed in the context of adaptive mechanisms responsible for the maintenance of the water balance in the common ice plant.  相似文献   

5.
Characterization of Water Channels in Wheat Root Membrane Vesicles   总被引:20,自引:0,他引:20       下载免费PDF全文
The functional significance of water channels in wheat (Triticum aestivum L.) root membranes was assessed using light scattering to measure vesicle shrinking in response to osmotic gradients rapidly imposed in a stopped flow apparatus. Vesicles were obtained from both a plasma membrane fraction and a plasma membrane-depleted endomembrane fraction including tonoplast vesicles. Osmotic water permeability (Pos) in the endomembrane fraction was high (Pos= 86.0 [mu]m s-1) with a low activation energy (EA= 23.32 kJ mol-1 [plus or minus] 3.88 SE), and was inhibited by mercurials (K1= 40 [mu]M HgCl2, where K1 is the inhibition constant for half-maximal inhibition), suggesting participation of water channels. A high ratio of osmotic to diffusional permeability (Pd) (using D2O as a tracer, Pos/Pd = 7 [plus or minus] 0.5 SE) also supported this view. For the endomembrane fraction there was a marked decrease in Pos with increasing osmotic gradient that was not observed in the plasma membrane fraction. Osmotic water permeability in the plasma membrane fraction was lower (Pos= 12.5 [mu]m s-1) with a high activation energy (EA= 48.07 kJ mol-1 [plus or minus] 3.63 SE) and no mercury inhibition. Nevertheless, Pos/Pd was found to be substantially higher than one (Pos= 3 [plus or minus] 0.2 SE), indicating that water channels mediated water flow in this fraction, too. Possible distortion of the Pos/Pd value by unstirred layer effects was shown to be unlikely.  相似文献   

6.
7.
Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabolism (CAM) plant. The aquaporin content in the Graptopetalum tonoplast was approximately 1% of that of radish. The content was calculated to be about 3 microg mg(-1) of tonoplast protein. The level of PM aquaporin in Graptopetalum was determined to be less than 20% of that of radish, in which an aquaporin was a major protein of the PM. The PM aquaporin was detected in the mesophyll tissue of Graptopetalum leaf by tissue print immunoblotting. The osmotic water permeability of PM and tonoplast vesicles prepared from both plants was determined with a stopped-flow spectrophotometer. The water permeability of PM was lower than that of the tonoplast in both plants. The Graptopetalum PM vesicles hardly showed water permeability, although the tonoplast showed a relatively high permeability. The water permeability changed depending on the assay temperature and was also partially inhibited by a sulfhydryl reagent. Furthermore, measurement of the rate of swelling and shrinking in different mannitol concentrations revealed that the protoplasts of Graptopetalum showed low water permeability. These results suggest that the low content of aquaporins in PM and tonoplast is one of the causes of the low water permeability of GRAPTOPETALUM: The relationship between the water-storage function of succulent leaves of CAM plants and the low aquaporin level is also discussed.  相似文献   

8.
The electrogenicity of H+/Ca2+ exchange in vacuolar membrane (tonoplast) vesicles from Beta was studied to elucidate the role of this transport system in vacuolar Ca2+ accumulation. To overcome the inherently high proton permeability of tonoplast vesicles, the pH difference established by the primary H(+)-ATPase was titrated to a uniform value by variation of the concentration either of ATP or of a permanent anion (Cl-). This enabled manipulation of membrane potential independently of the transmembrane pH difference, with a higher inside-positive membrane potential produced at lower Cl- concentrations. The rate and the extent of uncoupler-sensitive Ca2+ uptake are both stimulated about 2-fold in conditions of more positive membrane potential, suggesting that the transport system translocates positive charge outward during Ca2+ uptake. A minimum integral H+:Ca2+ stoichiometry of 3 results in a driving force for Ca2+ accumulation in the vacuole amounting to -140 mV in typical physiological conditions. It is concluded that the antiporter is thermodynamically competent to account for Ca2+ accumulation in plant vacuoles and that its reversal in vivo is unlikely.  相似文献   

9.
Effect of exogenous ABA and an inhibitor of energy metabolism NaN3 on water permeability of the desmotubules and tonoplast as the structural elements of vacuolar symplast ensuring water permeability of this transport system was investigated. The methodological approach based on the use of NMR with magnetic field pulse gradient is described in detail. It was shown that ABA affects water permeability of the vacuolar symplast in the root cells of maize (Zea mays L.) seedlings by temporary increase in water permeability of its membrane (tonoplast) and does not modify water permeability of desmotubules. At the same time, the effect of sodium azide is related to the disturbance of water permeability in the latter, and this evidence is corroborated by the additivity in the effects of the two above-mentioned agents on diffusion decay of spin echo produced by vacuolar symplast water molecules. ABA effect was detected only at high exogenous concentrations (10?4 M). The effect of ABA on water permeability of the tonoplast did not depend on or was weakly related to intracellular concentration of ATP, whereas the open state of desmotubules was ATP-dependent. Observations were made on the role of aquaporins in the ABA influence on tonoplast water permeability and the physiological role of high ABA concentrations.  相似文献   

10.
Targeting of water channels in renal epithelia may involve trafficking of clathrin-coated vesicles. We have isolated and measured the osmotic water permeability (Pf) of purified clathrin-coated vesicles from bovine kidney cortex and inner medulla, and bovine brain, a tissue not expected to contain "water channels." Brain-coated vesicles had a diameter of 80 nm in negatively stained preparations. Pf was measured by a stopped-flow light scattering technique. In brain-coated vesicles, water transport was functionally homogeneous with a low Pf of 0.0016 +/- 0.0001 cm/s (seven preparations, 23 degrees C). Pf was independent of osmotic gradient size (25-300 mOsm), not inhibited by mercurials, and not altered by removal of the clathrin coat. The activation energy (Ea) for Pf was high (11 +/- 1 kcal/mol less than 34 degrees C, 17 +/- 2 kcal/mol greater than 34 degrees C). Therefore, water channels are absent from brain-coated vesicles. In contrast, there were two functional populations of vesicles in coated vesicle preparations from both kidney cortex and medulla. One population of vesicles had low water permeability and no water channels, whereas a second population had high Pf (0.02 cm/s, 21 degrees C) that was inhibited by HgCl2, and low Ea (2-3 kcal/mol). The fraction of vesicles with high Pf was 52 +/- 3% (S.D., n = 3, cortical vesicles) and 26 +/- 3% (medullary vesicles). These results provide evidence that functional water channels are not present in clathrin-coated vesicles from the brain, whereas they are found in a population of coated vesicles from kidney cortex and medulla, tissues in which water channels are recycled between the plasma membrane, and an intracellular compartment.  相似文献   

11.
The regulation of transepithelial water permeability in toad urinary bladder is believed to involve a cycling of endocytic vesicles containing water transporters between an intracellular compartment and the cell luminal membrane. Endocytic vesicles arising from luminal membrane were labeled selectively in the intact toad bladder with the impermeant fluid-phase markers 6-carboxyfluorescein (6CF) or fluorescein-dextran. A microsomal preparation containing labeled endocytic vesicles was prepared by cell scraping, homogenization, and differential centrifugation. Osmotic water permeability was measured by a stopped-flow fluorescence technique in which microsomes containing 50 mM mannitol, 5 mM K phosphate, pH 8.5 were subject to a 60-mM inwardly directed gradient of sucrose; the time course of endosome volume, representing osmotic water transport, was inferred from the time course of fluorescence self-quenching. Endocytic vesicles were prepared from toad bladders with hypoosmotic lumen solution treated with (group A) or without (group B) serosal vasopressin at 23 degrees C, and bladders in which endocytosis was inhibited by treatment with vasopressin at 0-2 degrees C (group C), or with vasopressin plus sodium azide at 23 degrees C (group D). Stopped-flow results in all four groups showed a slow rate of 6CF fluorescence decrease (time constants 1.0-1.7 s for exponential fit) indicating a component of nonendocytic 6CF entrapment into sealed vesicles. However, in vesicles from group A only, there was a very rapid 6CF fluorescence decrease (time constant 9.6 +/- 0.2 ms, SEM, 18 separate preparations) with an osmotic water permeability coefficient (Pf) of greater than 0.1 cm/s (18 degrees C) and activation energy of 3.9 +/- 0.8 kcal/mol (16 kJ/mol). Pf was inhibited reversibly by greater than 60% by 1 mM HgCl2. The rapid fluorescence decrease was absent in vesicles in groups B, C, and D. These results demonstrate the presence of functional water transporters in vasopressin-induced endocytic vesicles from toad bladder, supporting the hypothesis that water channels are cycled to and from the luminal membrane and providing a functional marker for the vasopressin-sensitive water channel. The calculated Pf in the vasopressin-induced endocytic vesicles is the highest Pf reported for any biological or artificial membrane.  相似文献   

12.
Wan X  Zwiazek JJ 《Plant physiology》1999,121(3):939-946
HgCl(2) (0.1 mM) reduced pressure-induced water flux and root hydraulic conductivity in the roots of 1-year-old aspen (Populus tremuloides Michx.) seedlings by about 50%. The inhibition was reversed with 50 mM mercaptoethanol. Mercurial treatment reduced the activation energy of water transport in the roots from 10.82 +/- 0.700 kcal mol(-1) to 6.67 +/- 0.193 kcal mol(-1) when measured over the 4 degrees C to 25 degrees C temperature range. An increase in rhodamine B concentration in the xylem sap of mercury-treated roots suggested a decrease in the symplastic transport of water. However, the apoplastic pathway in both control and mercury-treated roots constituted only a small fraction of the total root water transport. Electrical conductivity and osmotic potentials of the expressed xylem sap suggested that 0.1 mM HgCl(2) and temperature changes over the 4 degrees C to 25 degrees C range did not induce cell membrane leakage. The 0.1 mM HgCl(2) solution applied as a root drench severely reduced stomatal conductance in intact plants, and this reduction was partly reversed by 50 mM mercaptoethanol. In excised shoots, 0.1 mM HgCl(2) did not affect stomatal conductance, suggesting that the signal that triggered stomatal closure originated in the roots. We suggest that mercury-sensitive processes in aspen roots play a significant role in regulating plant water balance by their effects on root hydraulic conductivity.  相似文献   

13.
14.
The vacuolar membrane (tonoplast) of higher plant cells contains an abundant 27 kDa protein called TIP (tonoplast intrinsic protein) that occurs in different isoforms and belongs to a large family of homologous channel-like proteins found in bacteria, plants and animals. In the present study, we identified and characterized the function of gamma-TIP from Arabidopsis thaliana by expression of the protein in Xenopus oocytes. gamma-TIP increased the osmotic water permeability of oocytes 6- to 8-fold, to values in the range 1-1.5 x 10(-2) cm/s. Similar results were obtained with the homologous human erythrocyte protein CHIP28, recently identified as the erythrocyte water channel. The bacterial homolog GlpF did not affect the osmotic water permeability of oocytes, but facilitated glycerol uptake, in accordance with its known function. By contrast, gamma-TIP did not promote glycerol permeability. Voltage clamp experiments provided evidence showing that gamma-TIP induced no electrogenic ion transport in oocytes, especially during osmotic challenge that resulted in massive transport of water. These results allow us to conclude that the various protein members of the MIP family have unique and specific transport functions and that the plant protein gamma-TIP likely functions as a water specific channel in the vacuolar membrane.  相似文献   

15.
A marked increase in water permeability can be induced in Xenopus oocytes by injection of mRNA from tissues that express water channels, suggesting that the water channel is a protein. In view of this and previous reports which showed that proteinases may interfere with mercurial inhibition of water transport in red blood cells (RBC), we examined the influence of trypsin, chymotrypsin, papain, pronase, subtilisin and thermolysin on water permeability as well as on ATPase activity, H(+)-pump, passive H+ conductance, and Na+/H+ exchange in apical brush-border vesicles (BBMV) and endosomal (EV) vesicles from rat renal cortex. H+ transport was measured by Acridine orange fluorescence quenching and water transport by stopped-flow light scattering. As measured by potential-driven H+ accumulation in BBMV and EV, proteinase treatment had little effect on vesicle integrity. In BBMV, ecto-ATPase activity was inhibited by 15-30%, Na+/H+ exchange by 20-55%, and H+ conductance was unchanged. Osmotic water permeability (Pf) was 570 microns/s and was inhibited 85-90% by 0.6 mM HgCl2; proteinase treatment did not affect Pf or the HgCl2 inhibition. In EV, NEM-sensitive H+ accumulation and ATPase activity were inhibited by greater than 95%. Pf (140 microns/s) and HgCl2 inhibition (75-85%) were not influenced by proteinase treatment. SDS-PAGE showed selective digestion of multiple polypeptides by proteinases. These results confirm the presence of water channels in BBMV and EV and demonstrate selective inhibition of ATPase function and Na+/H+ exchange by proteinase digestion. The lack of effect of proteinases on water transport by mercurials. We conclude that the water channel may be a small integral membrane protein which, unlike the H(+)-ATPase and Na+/H+ exchanger, has no functionally important membrane domains that are sensitive to proteolysis.  相似文献   

16.
Monoclonal antibodies were raised in mice against a highly purified tonoplast fraction from isolated red beet (Beta vulgaris L. ssp. conditiva) root vacuoles. Positive hybridoma clones and sub-clones were identified by prescreening using an enzyme-linked immunosorbent assay (ELISA) and by postscreening using a functional assay. This functional assay consisted of testing the impact of hybridoma supernatants and antibody-containing ascites fluids on basal and ATP-stimulated sugar uptake in vacuoles, isolated from protoplasts, as well as in tonoplast vesicles, prepared from tissue homogenates of red beet roots. Antibodies from four clones were particularly positive in ELISAs and they inhibited sucrose uptake significantly. These antibodies were specific inhibitors of sucrose transport, but they exhibited relatively low membrane and species specificity since uptake into red beet root protoplasts and sugarcane tonoplast vesicles was inhibited as well. Fast protein liquid chromatography assisted size exclusion chromatography on Superose 6 columns yielded two major peaks in the 55 to 65-kD regions and in the 110- to 130-kD regions of solubilized proteins from red beet root tonoplasts, which reacted positively in immunoglobulin-M(IgM)-specific ELISAs with anti-sugarcane tonoplast monoclonal IgM antibodies. Only reconstituted proteoliposomes containing polypeptides from the 55- to 65-kD band took up [14C]-sucrose with linear rates for 2 min, suggesting that this fraction contains the tonoplast sucrose carrier.  相似文献   

17.
Modification of our previous procedure for the isolation of microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue allowed the recovery of sealed membrane vesicles displaying proton transport activity sensitive to both nitrate and orthovanadate. In the absence of a high salt concentration in the homogenization medium, contributions of nitrate-sensitive (tonoplast) and vanadate-sensitive (plasma membrane) proton transport were roughly equal. The addition of 0.25 M KCl to the homogenization medium increased the relative amount of nitrate-inhibited proton transport activity while the addition of 0.25 M KI resulted in proton pumping vesicles displaying inhibition by vanadate but stimulation by nitrate. These effects appeared to result from selective sealing of either plasma membrane or tonoplast membrane vesicles during homogenization in the presence of the two salts. Following centrifugation on linear sucrose gradients it was shown that the nitrate-sensitive, proton-transporting vesicles banded at low density and comigrated with nitrate-sensitive ATPase activity while the vanadate-sensitive, proton-transporting vesicles banded at a much higher density and comigrated with vanadate-sensitive ATPase. The properties of the vanadate-sensitive proton pumping vesicles were further characterized in microsomal membrane fractions produced by homogenization in the presence of 0.25 M KI and centrifugation on discontinuous sucrose density gradients. Proton transport was substrate specific for ATP, displayed a sharp pH optimum at 6.5, and was insensitive to azide but inhibited by N'-N-dicyclohexylcarbodiimide, diethylstilbestrol, and fluoride. The Km of proton transport for Mg:ATP was 0.67 mM and the K0.5 for vanadate inhibition was at about 50 microM. These properties are identical to those displayed by the plasma membrane ATPase and confirm a plasma membrane origin for the vesicles.  相似文献   

18.
Endocytic vesicles that are involved in the vasopressin-stimulated recycling of water channels to and from the apical membrane of kidney collecting duct principal cells were isolated from rat renal papilla by differential and Percoll density gradient centrifugation. Fluorescence quenching measurements showed that the isolated vesicles maintained a high, HgCl2-sensitive water permeability, consistent with the presence of vasopressin-sensitive water channels. They did not, however, exhibit ATP-dependent luminal acidification, nor any N-ethylmaleimide-sensitive ATPase activity, properties that are characteristic of most acidic endosomal compartments. Western blotting with specific antibodies showed that the 31- and 70-kD cytoplasmically oriented subunits of the vacuolar proton pump were not detectable in these apical endosomes from the papilla, whereas they were present in endosomes prepared in parallel from the cortex. In contrast, the 56-kD subunit of the proton pump was abundant in papillary endosomes, and was localized at the apical pole of principal cells by immunocytochemistry. Finally, an antibody that recognizes the 16-kD transmembrane subunit of oat tonoplast ATPase cross-reacted with a distinct 16-kD band in cortical endosomes, but no 16-kD band was detectable in endosomes from the papilla. This antibody also recognized a 16-kD band in affinity-purified H+ ATPase preparations from bovine kidney medulla. Therefore, early endosomes derived from the apical plasma membrane of collecting duct principal cells fail to acidify because they lack functionally important subunits of a vacuolar-type proton pumping ATPase, including the 16-kD transmembrane domain that serves as the proton-conducting channel, and the 70-kD cytoplasmic subunit that contains the ATPase catalytic site. This specialized, non-acidic early endosomal compartment appears to be involved primarily in the hormonally induced recycling of water channels to and from the apical plasma membrane of vasopressin-sensitive cells in the kidney collecting duct.  相似文献   

19.
水分吸收过程是根系重要的生理过程。水孔蛋白在根系水分径向运输中起着重要的作用,根系水流导度(Lp)的测定是研究水孔蛋白的重要途径。该研究采用压力流的方法,对相同生长条件下的水曲柳(Fraxinus mandshurica)幼苗根系进行研究,测定了根系在去离子水和不同浓度NH4NO3溶液中的Lp。结果表明:未经处理的水曲柳幼苗根系,Lp随NH4NO3浓度的增加而上升,而且NH4NO3溶液中的Lp比去离子水中的Lp平均高77%;经HgCl2处理后,水曲柳幼苗根系的Lp仍然随NH4NO3浓度的增加而增大,但是根系Lp在去离子水下降了22%,而在NH4NO3溶液中下降了68%,与以前的研究相比发现,经HgCl2处理后,以营养液为吸水基质的根系Lp的降低值普遍高于以去离子水为基质的试验。因此,基质中养分离子的存在对根系中水孔蛋白活性产生了重要的影响,进而影响根系水分的吸收过程。  相似文献   

20.
Mechanisms that regulate water channels in the plant plasma membrane (PM) were investigated in Arabidopsis suspension cells. Cell hydraulic conductivity was measured with a cell pressure probe and was reduced 4-fold as compared to control values when calcium was added in the pipette and in bathing solution. To assess the significance of these effects in vitro, PM vesicles were isolated by aqueous two-phase partitioning and their water transport properties were characterized by stopped-flow spectrophotometry. Membrane vesicles isolated in standard conditions exhibited reduced water permeability (P(f)) together with a lack of active water channels. In contrast, when prepared in the presence of chelators of divalent cations, PM vesicles showed a 2.3-fold higher P(f) and active water channels. Furthermore, equilibration of purified PM vesicles with divalent cations reduced their P(f ) and water channel activity down to the basal level of membranes isolated in standard conditions. Ca2+ was the most efficient with a half-inhibition of P(f) at 50-100 microM free Ca2+. Water transport in purified PM vesicles was also reversibly blocked by H+, with a half-inhibition of P(f )at pH 7.2-7.5. Thus, both Ca2+ and H+ contribute to a membrane-delimited switch from active to inactive water channels that may allow coupling of water transport to cell signalling and metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号