首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During atherogenesis, excess amounts of low-density lipoproteins (LDL) accumulate in the subendothelial space where they undergo oxidative modifications. Oxidized LDL (oxLDL) alter the fragile balance between survival and death of vascular smooth muscle cells (VSMC) thereby leading to plaque instability and finally to atherothrombotic events. As protein kinase C δ (PKCδ) is pro-apoptotic in many cell types, we investigated its potential role in the regulation of VSMC apoptosis induced by oxLDL. We found that human VSMC silenced for PKCδ exhibited a protection towards oxLDL-induced apoptosis. OxLDL triggered the activation of PKCδ as shown by its phosphorylation and nuclear translocation. PKCδ activation was dependent on the reactive oxygen species generated by oxLDL. Moreover, we demonstrated that PKCδ participates in oxLDL-induced endoplasmic reticulum (ER) stress-dependent apoptotic signaling mainly through the IRE1α/JNK pathway. Finally, the role of PKCδ in the development of atherosclerosis was supported by immunohistological analyses showing the colocalization of activated PKCδ with ER stress and lipid peroxidation markers in human atherosclerotic lesions. These findings highlight a role for PKCδ as a key regulator of oxLDL-induced ER stress-mediated apoptosis in VSMC, which may contribute to atherosclerotic plaque instability and rupture.  相似文献   

3.
4.
Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine that promotes atherosclerosis and is a mediator of the response to arterial injury. We previously demonstrated that platelet-derived growth factor (PDGF) and angiotensin II (Ang) induce the accumulation of MCP-1 mRNA in vascular smooth muscle cells mainly by increasing mRNA stability. In the present study, we have examined the signaling pathways involved in this stabilization of MCP-1 mRNA. The effect of PDGF (BB isoform) and Ang on MCP-1 mRNA stability was mediated by the PDGF β and angiotensin II receptor AT1R, respectively, and did not involve transactivation between the two receptors. The effect of PDGF-BB was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of phosphoinositol 3-kinase (PI3K), Src, or NADPH oxidase (NADPHox). In contrast, the effect of Ang was blocked by inhibitors of Src, and PKC, but not by inhibitors of PI3 K, or NADPHox. The effect of PDGF BB on MCP-1 mRNA stability was blocked by siRNA directed against PKCδ and protein kinase D (PKD), whereas the effect of Ang was blocked only by siRNA directed against PKCδ. These results suggest that the enhancement of MCP-1 mRNA stability by PDGF-BB and Ang are mediated by distinct “proximal” signaling pathways that converge on activation of PKCδ. This study identifies a novel role for PKCδ in mediating mRNA stability in smooth muscle cells.  相似文献   

5.
vSMCs (vascular smooth muscle cells) lose differentiation markers and gain uncontrolled proliferative activity during the early stages of atherosclerosis. Previous studies have shown that OPN (osteopontin) mRNA and protein levels increase significantly on induction of proliferative activity by allylamine (an atherogenic amine) and that this response can be inhibited by OPN antibodies. We have investigated the role of OPN in vSMC differentiation. Primary cultures of aortic mouse vSMCs were transfected with an OPN expression plasmid and several vSMC differentiation markers including α-SM actin (α-smooth muscle actin), SM22-α, tropomyosin and calponin were monitored in this cellular model. α-SM actin and calponin protein levels were significantly decreased by OPN overexpression. Down-regulation of α-SM actin and calponin was also observed on extracellular treatment of mouse vSMCs with recombinant OPN. In addition, calponin mRNA was significantly decreased under serum-restricted conditions when OPN mRNA was dramatically increased, while α-SM actin mRNA remained unchanged. These data indicate that OPN down-regulates α-SM actin and calponin expression through an extracellular signalling pathway. Functional connectivity between OPN and vSMC differentiation markers has been established. Since vSMCs lose differentiation features during early atherosclerosis, a mechanistic basis for OPN functions as a critical regulator of proliferative cardiovascular disease has been presented.  相似文献   

6.
7.
INTRODUCTIONLivercirrhosisisoftencomplicatedbyhyperdynamiccirculation,whichischaracterizedbyadecreaseinarterialbloodpressureandperipheralvascularresistanceandanincreaseincardiacoutputandsplanchnicbloodnow[1].Thesehaemodynamicdisturbancesareproposedtocontributetothedevelopmelltofportalhypertension,retentionofsodiumandwater,ascitesformationandcorrelatewithprognosisoflivercirrhosis[2].Ithasbeensuggestedthatprimaryarterialvasodilationmayinducethishyperdynamiccirculation[3].Buttheunderlyingmec…  相似文献   

8.
Ma KT  Li XZ  Li L  Zhang ZS  Shi WY  Si JQ 《生理学报》2011,63(6):549-554
The aim of the present study was to investigate the effect of 18β-glycyrrhetinic acid (18βGA) on the membrane current of vascular smooth muscle cells (VSMCs) in arteriole. Guinea pig anterior inferior cerebellar artery (AICA) and mesenteric artery (MA) were isolated, and single VSMCs were harvested using digestion with papain and collagenase IA. Outward currents of the VSMCs were recorded by whole-cell patch clamp technique. Results were shown as below: (1) 1 mmol/L 4-AP and 1 mmol/L TEA both could partially inhibit the whole-cell current of VSMCs in arterioles. (2) 18βGA inhibited the outward current of VSMCs in a concentration-dependent manner. The inhibitory rates of 10, 30 and 100 μmol/L 18βGA on the membrane current of VSMCs (+40 mV) were (25.3 ± 7.1)%, (43.1 ± 10.4)% and (68.4 ± 3.9)% respectively in AICA, and (13.2 ± 5.6)%, (34.2 ± 4.0)% and (59.3 ± 7.3)% respectively in MA. There was no significant difference between the inhibitory effects of 18βGA on AICA and MA. 18βGA also inhibited the outward current of VSMCs in a voltage-dependent manner. 18βGA induced a more pronounced inhibition of the outward current from 0 to +40 mV, especially at +40 mV. (3) With the pretreatment of 10 mmol/L TEA, the inhibitory effect of 18βGA on the membrane current of VSMCs was significantly abolished. These results suggest that the outward current of VSMCs in arterioles is mediated by voltage-dependent K(+) channels (K(v)) and big conductance calcium-activated K(+) channels (BK(Ca)), which can be inhibited by 18βGA in concentration- and voltage-dependent way.  相似文献   

9.
Experimental measurements of cellular mechanical properties have shown large variability in whole-cell mechanical properties between cells from a single population. This heterogeneity has been observed in many cell populations and with several measurement techniques but the sources are not yet fully understood. Cell mechanical properties are directly related to the composition and organization of the cytoskeleton, which is physically coupled to neighboring cells through adherens junctions and to underlying matrix through focal adhesion complexes. This high level of heterogeneity may be attributed to varying cellular interactions throughout the sample. We tested the effect of cell-cell and cell-matrix interactions on the mechanical properties of vascular smooth muscle cells (VSMCs) in culture by using antibodies to block N-cadherin and integrin β1 interactions. VSMCs were cultured on substrates of varying stiffness with and without tension. Under each of these conditions, cellular mechanical properties were characterized by performing atomic force microscopy (AFM) and cellular structure was analyzed through immunofluorescence imaging. As expected, VSMC mechanical properties were greatly affected by the underlying culture substrate and applied tension. Interestingly, the cell-to-cell variation in mechanical properties within each sample decreased significantly in the antibody conditions. Thus, the cells grown with blocking antibodies were more homogeneous in their mechanical properties on both glass and soft substrates. This suggests that diversified adhesion binding between cells and the ECM is responsible for a significant amount of mechanical heterogeneity that is observed in 2D cell culture studies.  相似文献   

10.
11.
Hyperproliferation of vascular smooth muscle cells (VSMC) is a major risk factor for cardiovascular diseases. Proper mitochondrial fission and fusion is involved with VSMC function. However, the role and mechanism of mitochondrial morphological changes in VSMC proliferation are not well understood. Here, we found that calcium sensing receptor (CaSR) was increased in the aortas from spontaneous hypertensive rats (SHRs) compared with age-matched Wistar Kyoto (WKY) rats. There was also an increase in mitochondrial fission and VSMC proliferation, which was attenuated by Calhex231. In primary rat VMSC, angiotensin II (Ang II) stimulation induced cytosolic [Ca2+]i increase, mitochondrial shortening and proliferation, all of which could be attenuated by pretreatment with mitochondrial division inhibitor-1 (Mdivi-1) and Calhex231. Our data indicate that CaSR-mediated mitochondrial fission could be a therapeutic target for hyperproliferative disorders.  相似文献   

12.
《Life sciences》1997,61(19):PL269-PL274
Arterial smooth muscle cell migration from the media to the intima is a crucial process in the pathogenesis of atherosclerosis. Platelet-derived growth factor (PDGF) has been proposed to play a key role in the development of advanced atherosclerotic lesions by stimulating the migration and proliferation of vascular smooth muscle cells. Polyunsaturated fatty acids (PUFA) of the ω-3 series, extracted from fish oil has been shown to have beneficial effects on atherosclerosis. In this study, we evaluated the effects of ω-3 PUFA on the migration of human aortic smooth muscle cell (hASMC) in vitro. The migration assay was performed according to the Capsoni's method using transwell culture plates. PDGF, fibrinogen or 10%FCS significantly stimulated hASMC migration, however, ω-3 PUFA significantly inhibited PDGF-induced migration of hASMC. These results suggest that the inhibitory effect of ω-3 PUFA on cell migration may be an important aspect by which ω-3 PUFA exerts its antiatherosclerotic influence.  相似文献   

13.
Collagen type I is the most abundant component of extracellular matrix in the arterial wall. Mice knocked out for the protein kinase C δ gene (PKCδ KO) show a marked reduction of collagen I in the arterial wall. The lack of PKCδ diminished the ability of arterial smooth muscle cells (SMCs) to secrete collagen I without significantly altering the intracellular collagen content. Moreover, the unsecreted collagen I molecules accumulate in large perinuclear puncta. These perinuclear structures colocalize with the trans-Golgi network (TGN) marker TGN38 and to a lesser degree with cis-Golgi marker (GM130) but not with early endosomal marker (EEA1). Associated with diminished collagen I secretion, PKCδ KO SMCs exhibit a significant reduction in levels of cell division cycle 42 (Cdc42) protein and mRNA. Restoring PKCδ expression partially rescues Cdc42 expression and collagen I secretion in PKCδ KO SMCs. Inhibition of Cdc42 expression or activity with small interfering RNA or secramine A in PKCδ WT SMCs eliminates collagen I secretion. Conversely, restoring Cdc42 expression in PKCδ KO SMCs enables collagen I secretion. Taken together, our data demonstrate that PKCδ mediates collagen I secretion from SMCs, likely through a Cdc42-dependent mechanism.  相似文献   

14.
INTRODUCTION In vascular smooth muscle, as in other types of muscle,an increase in intracellular Ca2 is the immediate triggerfor contraction, which ultimately determines vascular toneand peripheral resistance. In the past 12 years, investiga-tors have …  相似文献   

15.
Tumor necrosis factor-α (TNFα), a proinflammatory cytokine, causes vascular smooth muscle cell (VSMC) proliferation and migration and promotes inflammatory vascular lesions. Nuclear factor-kappa B (NF-κB) activation by TNFα requires endosomal superoxide production by Nox1. In endothelial cells, TNFα stimulates c-Jun N-terminal kinase (JNK), which inhibits NF-κB signaling. The mechanism by which JNK negatively regulates TNFα-induced NF-κB activation has not been defined. We hypothesized that JNK modulates NF-κB activation in VSMC, and does so via a Nox1-dependent mechanism. TNFα-induced NF-κB activation was TNFR1- and endocytosis-dependent. Inhibition of endocytosis with dominant-negative dynamin (DynK44A) potentiated TNFα-induced JNK activation, but decreased ERK activation, while p38 kinase phosphorylation was not altered. DynK44A attenuated intracellular, endosomal superoxide production in wild-type (WT) VSMC, but not in NADPH oxidase 1 (Nox1) knockout (KO) cells. siRNA targeting JNK1 or JNK2 potentiated, while a JNK activator (anisomycin) inhibited, TNFα-induced NF-κB activation in WT, but not in Nox1 KO cells. TNFα-stimulated superoxide generation was enhanced by JNK1 inhibition in WT, but not in Nox1 KO VSMC. These data suggest that JNK suppresses the inflammatory response to TNFα by reducing Nox1-dependent endosomal ROS production. JNK and endosomal superoxide may represent novel targets for pharmacologic modulation of TNFα signaling and vascular inflammation.  相似文献   

16.
Cellular senescence-associated changes in blood vessels have been implicated in aging and age-related cardiovascular disorders. Here, we demonstrate that peroxisome proliferator-activated receptor (PPAR) δ coordinates angiotensin (Ang) II-induced senescence of human vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly attenuated Ang II-induced generation of superoxides and suppressed senescence of VSMCs. A marked increase in the levels of p53 and p21 induced by Ang II was blunted by the treatment with GW501516. Ligand-activated PPARδ up-regulated expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and suppressed the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Knockdown of PTEN with siRNA abrogated the effects of PPARδ on cellular senescence, on PI3K/Akt signaling, and on generation of ROS in VSMCs treated with Ang II. Finally, administration of GW501516 to apoE-deficient mice treated with Ang II significantly reduced the number of senescent cells in the aorta, where up-regulation of PTEN with reduced levels of phosphorylated Akt and ROS was demonstrated. Thus, ligand-activated PPARδ confers resistance to Ang II-induced senescence by up-regulation of PTEN and ensuing modulation of the PI3K/Akt signaling to reduce ROS generation in vascular cells.  相似文献   

17.
18.
Decreased levels of the δ isozyme of diacylglycerol kinase (DGK) in skeletal muscle attenuate glucose uptake and, consequently, are critical for the pathogenesis of type 2 diabetes. We recently found that free myristic acid (14:0), but not free palmitic acid (16:0), increased the DGKδ protein levels and enhanced glucose uptake in C2C12 myotube cells. However, it has been unclear how myristic acid regulates the level of DGKδ2 protein. In the present study, we characterized the myristic acid-dependent increase of DGKδ protein. A cycloheximide chase assay demonstrated that myristic acid, but not palmitic acid, markedly stabilized DGKδ protein. Moreover, other DGK isozymes, DGKη and ζ, as well as glucose uptake-related proteins, such as protein kinase C (PKC) α, PKCζ, Akt and glycogen synthase kinase 3β, failed to be stabilized by myristic acid. Furthermore, DGKδ was not stabilized in cultured hepatocellular carcinoma cells, pancreas carcinoma cells or neuroblastoma cells, and only a moderate stabilizing effect was observed in embryonic kidney cells. A proteasome inhibitor and a lysosome inhibitor, MG132 and chloroquine, respectively, partly inhibited DGKδ degradation, suggesting that myristic acid prevents, at least in part, the degradation of DGKδ by the ubiquitin-proteasome system and the autophagy-lysosome pathway. Overall, these results strongly suggest that myristic acid attenuates DGKδ protein degradation in skeletal muscle cells and that this attenuation is fatty acid-, protein- and cell line-specific. These new findings provide novel insights into the molecular mechanisms of the pathogenesis of type 2 diabetes mellitus.  相似文献   

19.
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a major causative factor in atherosclerosis. Prostaglandins, secreted by endothelial cells, are reported to attenuate VSMC proliferation, but the mechanism through which this response is mediated is poorly denned. Here, the effect of prostaglandin receptor-selective agonists on the activity status of ERK and PKC, both known to modulate proliferative responses, was determined. The effect of the prostacyclin mimetic, iloprost, at inducing apoptosis was also investigated. VSMCs in culture were shown to express proteins that were detected by antibodies selective  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号