首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetics were determined for the four transients K590, L540, M410, O660 of the photochemical cycle of bacteriorhodopsin (BR570) both in 1H2O and in 2H2O over a wide temperature range. Breaks in the Arrhenius plots, observed at 25 degrees-32 degrees for the longest-lived transients coincide with a transition point in the microviscosity of the membrane as measured by depolarization of an added fluorescent probe. The earliest isotope effect occurs in the decay of L540, and is present in the subsequent formation and decay of M410 and O660. Thus in the light-driven proton pump of BR570, proton ejection from the Schiff base correlates with decay of L540 and reprotonation occurs with the decay of both M410 and O660 back to BR570.  相似文献   

2.
Quantum efficiency of the photochemical cycle of bacteriorhodopsin   总被引:4,自引:3,他引:1       下载免费PDF全文
Values in the literature for the quantum efficiency of the photochemical cycle of bacteriorhodopsin (bR) range from 0.25 to 0.79 and the sum of the quantum yields of the forward and back photoreactions [Formula: see text] has been proposed to be 1. In the present work, low intensity laser flashes (532 nm) and kinetic spectroscopy were used to determine the quantum efficiency of bR photoconversion, [UNK]bR, by measuring transient bleaching of bR at 610 nm in the millisecond time scale. Bovine rhodopsin (R) in 2% ammonyx LO was used as a photon counter. We find that the ratio of the quantum yields of bacteriorhodopsin photoconversion and bleaching of rhodopsin, [UNK]bR/[UNK]R, is 0.96 ± 0.04. Based on the quantum yield of the photobleaching of rhodopsin, 0.67, the quantum efficiency of bR photoconversion was determined to be 0.64 ± 0.04. The quantum yield of M formation was found to be 0.65 ± 0.06. From the transient bleaching of bR at 610 nm with a saturating laser flash (28 mJ/cm2) the maximum amount of bR cycling was estimated to be 47 ± 3%. From this value and the spectrum of K published in the literature, the ratio of the efficiencies of the forward and back light reactions, [UNK]1/[UNK]2, was estimated to be 0.67 ± 0.06 and so [UNK]2 ≈ 1 (0.94 ± 0.06). The sum of [UNK]1 + [UNK]2 ≈ 1.6. It was found that repeated high-intensity laser flashes (>20 mJ/cm2) irreversibly transformed bR into two stable photoproducts. One has its absorption maximum at 605 nm and the other has a well-resolved vibronic spectrum with maxima at 342, 359 (main peak), and 379 nm. The quantum yield of the formation of the photoproducts is ≈ 10-4.  相似文献   

3.
Picosecond studies of the primary photochemical events in the light-adapted bacteriorhodopsin, bR570, indicate that the first metastable intermediate K610 is formed with a rise time of 11 ps. Difference spectra obtained at 50 ps after excitation show that K610 is the same species as that trapped in low temperature glasses. A precursor species (S) of the K610 intermediate has been observed which is red shifted with respect to K610 and is formed within the 6-ps time width of the excitation pulse. The formation of the precursor has no observable thermal dependence between 298 degrees and 1.8 degrees K. The formation of K610 has a very low thermal barrier and at very low temperatures, the rate of formation becomes practically temperature independent which is characteristic of a tunneling process. The rate of formation becomes practically temperature independent which is characteristic of a tunneling process. The rate of formation of K610 has a moderate deuterium isotope effect of kH/kD approximately 1.6 at 298 degrees K and 2.4 at 4 degrees K. The mechanism for formation of K610 is found to involve a rate-limiting proton transfer which occurs by tunneling at low temperatures.  相似文献   

4.
The photochemical reaction cycle of bacteriorhodopsin was investigated by means of flash photometric methods. Three different intermediates with absorption maxima at about 630 nm, 411 nm, and 646 nm could be detected. Kinetic data of the occurrence of these intermediates were obtained from isolated purple membrane in different mediums and from intact halobacteria. An activation energy of 14.1±0.4 kcal·mol−1 and of about 19 kcal·mol−1 for the formation of bacteriorhodopsin 411 and of bacteriorhodopsin 565, resp., was calculated. pH-changes in the medium caused by the reaction cycle of bacteriorhodopsin were detected by use of the pH-indicator bromocresol green.  相似文献   

5.
The effects of amino acid substitutions in helix F of bacteriorhodopsin on the photocycle of this light-driven proton pump were studied. The photocycles of Ser-183----Ala and Glu-194----Gln mutants were qualitatively similar to that of wild-type bacteriorhodopsin produced in Escherichia coli and bacteriorhodopsin from Halobacterium halobium. The substitution of a Phe for either Trp-182 or Trp-189 significantly reduced the fraction of photocycling bacteriorhodopsin. The amino acid substitutions Tyr-185----Phe and Ser-193----Ala substantially increased the lifetime of the photocycle without substantially increasing the lifetime of the M photocycle intermediate. Similar results were also obtained with the Pro-186----Gly substitution. In contrast, replacing Pro-186 with the larger residue Leu inhibited the formation of the M photocycle intermediate. These results are consistent with a structural model of the retinal-binding pocket suggested by low-temperature UV/visible and Fourier transform infrared difference spectroscopies that has Trp-182, Tyr-185, Pro-186, and Trp-189 forming part of the binding pocket.  相似文献   

6.
The application of kinetic isotope effects and molecular modeling to characterize three enzyme-catalyzed reactions is presented; the mechanism of the chloroacid dehalogenase catalyzed reaction is approached using chlorine kinetic isotope effects and solvent kinetic isotope effects. The pre-steady-state phase of the reaction catalyzed by methylmalonyl-CoA mutase is approached by different QM/MM schemes and the results are validated by comparison with the experimental value of the deuterium kinetic isotope effect. Finally, a procedure for improving QM/MM calculations is illustrated by analysis of the trihydroxynaphthalene reductase-catalyzed reaction.  相似文献   

7.
1H NMR signals of the retinal moiety in detergent-solubilizedbacteriorhodopsin are assigned, enabling the interpretation of NOEs within thechromophore. To achieve this, a number of differently labelled samples wereprepared to test the applicability of the various assignment and distancemeasurement strategies. In measurements with and without light,1H and 13C chemical shifts of the retinal in thenative protein were partially assigned for both the dark- and thelight-adapted states. Additionally, samples with residue-specific1H amino acids and/or retinal in an otherwise deuterated proteinwere prepared to measure the distances between either two kinds of amino acidsor between individual amino acids and the retinal moiety. With the observationof NOE within the bound retinal and between retinal and its neighbouring aminoacids, an important step towards the elucidation of distance constraints inthe binding pocket of the proton pump is made.  相似文献   

8.
Rigorous mathematical modeling of carbon-labeling experiments allows estimation of fluxes through the pathways of central carbon metabolism, yielding powerful information for basic scientific studies as well as for a wide range of applications. However, the mathematical models that have been developed for flux determination from 13C labeling data have commonly neglected the influence of kinetic isotope effects on the distribution of 13C label in intracellular metabolites, as these effects have often been assumed to be inconsequential. We have used measurements of the 13C isotope effects on the pyruvate dehydrogenase enzyme from the literature to model isotopic fractionation at the pyruvate node and quantify the modeling errors expected to result from the assumption that isotope effects are negligible. We show that under some conditions kinetic isotope effects have a significant impact on the 13C labeling patterns of intracellular metabolites, and the errors associated with neglecting isotope effects in 13C-metabolic flux analysis models can be comparable in size to measurement errors associated with GC–MS. Thus, kinetic isotope effects must be considered in any rigorous assessment of errors in 13C labeling data, goodness-of-fit between model and data, confidence intervals of estimated metabolic fluxes, and statistical significance of differences between estimated metabolic flux distributions.  相似文献   

9.
In contrast to steady-state kinetic isotope effects (KIEs), transient-state tKIEs are both time and signal dependent and therefore require a very different form of theory for their interpretation. We have previously provided such a theory for the case of single-step isotopic substitutions. No such properly derived theory applicable to the analysis of multiple-step isotopic substitutions required by transient-state solvent isotope effect studies has been available up to this time. Here, we set forth a more general form of that theory which is applicable to multiple-step substituted cases. We prove three theorems: 1. the observed transient-state KIE for any given reactive component in the reaction sequence evaluated at zero time (tKIE(0)) is in fact the arithmetic product of the intrinsic KIEs of all the steps that precede the formation of that component. 2. The observed tKIE(0) is completely independent of the intrinsic KIEs of any reverse step in the reaction. 3. The intrinsic KIE of any step may be obtained by dividing the value of the tKIE(0) for that step by the value of the tKIE(0) of the immediately preceding step in the reaction sequence.  相似文献   

10.
Millisecond photocycle kinetics were measured at room temperature for 13 site-specific bacteriorhodopsin mutants in which single aspartic acid residues were replaced by asparagine, glutamic acid, or alanine. Replacement of aspartic acid residues expected to be within the membrane-embedded region of the protein (Asp-85, -96, -115, or -212) produced large alterations in the photocycle. Substitution of Asp-85 or Asp-212 by Asn altered or blocked formation of the M410 photointermediate. Substitution of these two residues by Glu decreased the amount of M410 formed. Substitutions of Asp-96 slowed the decay rate of the M410 photointermediate, and substitutions of Asp-115 slowed the decay rate of the O640 photointermediate. Corresponding substitutions of aspartic acid residues expected to be in cytoplasmic loop regions of the protein (Asp-36, -38, -102, or -104) resulted in little or no alteration of the photocycle. Our results indicate that the defects in proton pumping which we have previously observed upon substitution of Asp-85, Asp-96, Asp-115, and Asp-212 [Mogi, T., Stern, L. J., Marti, T., Chao, B. H., & Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 4148-4152] are closely coupled to alterations in the photocycle. The photocycle alterations observed in these mutants are discussed in relation to the functional roles of specific aspartic acid residues at different stages of the bacteriorhodopsin photocycle and the proton pumping mechanism.  相似文献   

11.
Semiempirical methods have been used in an attempt to predict theoretically the experimentally observed value of 0.9840 for the oxygen isotope effect on binding of oxamate to lactate dehydrogenase. The overall strategy involved vibrational analysis of oxamate in two different environments; that of the active site residues and in aqueous solution. The comparison of calculated values with the experimentally determined isotope effect proved the AM1 Hamiltonian to be superior to the PM3 Hamiltonian in this modelling. While most tested methods of accounting for solvent effects on the vibrational frequencies of the solute yielded similar results it turned out that what was crucial for the purpose of determination of the isotope effect was the model of oxamate in the active site of the enzyme. In particular, the major factor responsible for the inverse value of this isotope effect can be ascribed to the formation of an ordered, bifurcated hydrogen bond between the oxamate carboxylate and the guanidinium group of the active site histidine. Correspondence to: P. Paneth  相似文献   

12.
We have used the desiccation-tolerant lichen Flavoparmelia caperata, containing the green algal photobiont Trebouxia gelatinosa, to examine H/D isotope effects in Photosystem II in vivo. Artifact-free H/D isotope effects on both PSII primary charge separation and water oxidation yields were determined as a function of flash rate from chlorophyll-a variable fluorescence yields. Intact lichens could be reversibly dehydrated/re-hydrated with H2O/D2O repeatedly without loss of O2 evolution, unlike all isolated PSII preparations. Above a threshold flash rate, PSII charge separation decreases sharply in both D2O and H2O, reflecting loss of excitation migration and capture by PSII. Changes in H/D coordinates further slow charge separation in D2O (?23% at 120?Hz), attributed to reoxidation of the primary acceptor QA?. At intermediate flash rates (5–50?Hz) D2O decreases water oxidation efficiency (O2 evolution) by ?2–5%. No significant isotopic difference is observed at slow flash rates (<5?Hz) where charge recombination dominates. Slower D2O diffusion, changes in hydrogen bonding networks, and shifts in the pKa's of ionizable residues may all contribute to these systematic variations of H/D isotope effects. Lichens' reversible desiccation tolerance allows highly reproducible H/D exchange kinetics in PSII reactions to be studied in vivo for the first time.  相似文献   

13.
14.
15.
Deuterium kinetic isotope effects (KIE) were measured, and proton inventory plots were constructed, for the rates of reactions in the photocycles of wild-type bacteriorhodopsin and several site-specific mutants. Consistent with earlier reports from many groups, very large KIEs were observed for the third (and largest) rise component for the M state and for the decay of the O state, processes both linked to proton transfers in the extracellular region. The proton inventory plots (ratio of reaction rates in mixtures of H(2)O and D(2)O to that in H(2)O vs mole fraction of D(2)O) were approximately linear for the first and second M rise components and for M decay, as well as for O decay, indicating that the rates of these reactions are limited by simple proton transfer. Uniquely, the third rise component of M (and in the D96N mutant also a fourth rise component) exhibited a strongly curved proton inventory plot, suggesting that its rate, which largely accounts for the rate of deprotonation of the retinal Schiff base, depends on a complex multiproton process. This curvature is observed also in the E194Q, E204Q, and Y57F mutants but not in the R82A mutant. From these findings, and from the locations of bound water in the extracellular region in the crystal structure of the protein [Luecke, Schobert, Richter, Cartailler, and Lanyi (1999) J. Mol. Biol. 291, 899-911], we suspect that the effects of deuterium substitution on the formation of the M state originate from cooperative rearrangements of the extensively hydrogen-bonded water molecules 401, 402, and 406 near Asp-85 and Arg-82.  相似文献   

16.
The reduction thermodynamics of cytochrome c (cytc), determined electrochemically, are found to be sensitive to solvent H/D isotope effects. Reduction of cytochrome c is enthalpically more favored in D2O with respect to H2O, but is disfavored on entropic grounds. This is consistent with a reduction-induced strengthening of the H-bonding network within the hydration sphere of the protein. No significant changes in E° occur, since the above variations are compensative. As a main result, this work shows that the oxidation-state-dependent differences in protein solvation, including electrostatics and solvent reorganization effects, play an important role in determining the individual enthalpy and entropy changes of the reduction process. It is conceivable that this is a common thermodynamic feature of all electron transport metalloproteins. The isotope effects turn out to be sensitive to buffer anions which specifically bind to cytc. Evidence is gained that the solvation thermodynamics of both redox forms of cytc are sensibly affected by strongly hydrated anions.  相似文献   

17.
18.
The reaction of soybean lipoxygenase-1 with linoleic acid has been extensively studied and displays very large kinetic isotope effects. In this work, substrate and solvent kinetic isotope effects as well as the viscosity dependence of the oxidation of arachidonic acid were investigated. The hydrogen atom abstraction step was rate-determining at all temperatures, but was partially masked by a viscosity-dependent step at ambient temperatures. The observed KIEs on k(cat) were large ( approximately 100 at 25 degrees C).  相似文献   

19.
We report on a differential scanning calorimetry study of native purple membranes under the following solvent conditions: 50 mM carbonate-bicarbonate, 100 mM NaCl, pH 9.5 and 190 mM phosphate, pH 7.5. The calorimetric transitions for bacteriorhodopsin denaturation are highly scanning-rate dependent, which indicates that the thermal denaturation is under kinetic control. This result is confirmed by a spectrophotometric study on the kinetics of the thermal denaturation of this protein. The calorimetric data at pH 9.5 conform to the two-state irreversible model. Comments are made regarding the information obtainable from differential scanning calorimetry studies on bacteriorhodopsin denaturation and the effect of irreversibility on the stability of membrane proteins. Correspondence to: J. M. Sanchez-Ruiz  相似文献   

20.
1. Isotope effects on the catalytic activity of benzylamine oxidase at pH 7 and 9 have been studied by steady-state and transient-state kinetics methods, using [alpha,alpha-2H]benzylamine as the substrate. 2. Replacement of the alpha-hydrogen atoms in benzylamine by deuterium has no significant effect on substrate-binding to benzylamine oxidase, neither does it affect the rate of reoxidation of the reduced form of the enzyme. Conversion of the primarily formed enzyme-substrate complex into the reduced enzyme species, however, exhibits an isotope effect of about 3. 3. The data obtained are consistent with a mechanism in which reduction of benzylamine oxidase takes place by a rapid pre-equilibration between enzyme and substrate to form an amine-pyridoxal Schiff-base, which is then tautomerized by a comparatively slow prototropic shift to an amino aldehyde-pyridoxamine Schiff-base from which there is a rapid hydrolytic release of the aldehyde product corresponding to the amine substrate. Proton abstraction from the alpha-carbon of the amine moiety in the primary Schiff-base appears to be at least partially rate-limiting for the tautomerization step, and hence for the entire process of enzyme reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号