首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O-Acetylserine sulfhydrylase catalyzes the final step of the biosynthesis of l-cysteine, the replacement of the β-acetoxy group of O-acetyl-l-serine (OAS) by a thiol. The 5′-phosphate of the PLP cofactor is very tightly bound to the enzyme; it accepts 8 hydrogen bonds from enzyme side chains and a pair of water molecules, and is in close proximity to a helix dipole. Histidine-152 (H152) is one of the residues that, via a water molecule, is responsible for positioning the 5′-phosphate. Mutation of H152 to alanine was predicted to increase the freedom of the 5′-phosphate, and as a result the cofactor, giving a decrease in the overall rate of the reaction. The H152A mutant enzyme was thus prepared and characterized by UV-visible absorbance, fluorescence, visible CD, and 31P NMR spectral studies, as well as steady state and pre-steady state kinetic studies. UV-visible absorbance and visible CD spectra are consistent with a shift in the ketoeneamine to enolimine tautomeric equilibrium toward the neutral enolimine in the internal Schiff base of the free enzyme (ISB), the amino acid external Schiff base (ESB), and the α-aminoacrylate intermediate (AA). 31P NMR spectra clearly indicate the presence of two conformers (presumably open and closed forms of the enzyme) that interconvert slowly on the NMR time scale in the ISB and ESB. Kinetic data suggest the decreased rate of the enzyme likely reflects a decrease in the amount of active enzyme as a result of an increased flexibility of the cofactor which results in substantial nonproductive binding of OAS in its external Schiff base, and a stabilization of the external Schiff bases of OAS and S-carboxynitrophenyl-l-cysteine. The nonproductive binding and stabilization of the external Schiff bases are thus linked to the shift in the tautomeric equilibrium and increase in the rate of interconversion of the open and closed forms of the enzyme. The location of the 5′-phosphate in the cofactor-binding site determines additional interactions between the cofactor and enzyme in the closed (ESB) form of the enzyme, consistent with an increased rate of interconversion of the open and closed forms of the enzyme upon increasing the rate of flexibility of the cofactor.  相似文献   

2.
The interaction of aminooxy compounds such as aminooxyacetate (AAA), L-canaline, and hydroxylamine with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) was studied by absorption spectra and stopped-flow spectrophotometry and compared with the unique feature of interaction of O-amino-D-serine (OADS) with the enzyme [Baskaran, N., Prakash, V., Appu Rao, A. G., Radhakrishnan, A. N., Savithri, H. S., & Appaji Rao, N. (1989) Biochemistry (preceding paper in this issue)]. The reaction of AAA (0.5 mM) with the Schiff base of the enzyme resulted in the formation of pyridoxal 5'-phosphate (PLP) and was biphasic with rate constants of 191 and 19 s-1. The formation of the PLP-AAA oxime measured by decrease in absorbance at 388 nm on interaction of AAA with the enzyme had a rate constant of 5.2 M-1 s-1. On the other hand, the reaction of L-canaline with the enzyme was slower as measured by the disruption of enzyme-Schiff base than the reaction of OADS and AAA. In contrast, the formation of PLP as an intermediate could not be detected upon the interaction of hydroxylamine with the enzyme. The reaction of D-cycloserine with the enzyme was much slower (1.6 x 10(2) M-1 s-1) than the aminooxy compounds. These observations indicate that the aminooxy compounds that are structural analogues of serine (OADS, AAA, and canaline) formed PLP as an intermediate prior to the formation of oxime, whereas with hydroxylamine such an intermediate could not be detected.  相似文献   

3.
4.
We have studied the kinetics of breakage of apurinic (AP) sites by the intercalating agent 9-aminoellipticine using fluorimetric methods with single (ss)- and double (ds)-stranded apurinic DNA. In order to understand the chemical process, high performance liquid chromatography was used to follow the reaction kinetics with the apurinic oligonucleotide model T(AP)T. The unstable intermediate, which is responsible for the beta-elimination step, is a Schiff base resulting from the interaction of the amino group of the aromatic amine with the aldehyde function of the deoxyribose moiety (AP site). Fluorescence occurs simultaneously with the breakage of both ss and ds DNA and of the oligonucleotide and arises from the formation of a conjugated double bond on the Schiff base through the beta-elimination reaction. In optimal conditions, the second order rate constant for the fluorescence build up is 15 x 10(3) min-1 M-1 for ds DNA and 0.105 x 10(3) min-1 M-1 for T(AP)T. The ability of 9-aminoellipticine to induce fluorescence and breakage of ss DNA and T(AP)T shows that intercalation is not essential for this reaction to occur. Nevertheless, the greater rate constant with DNA suggests that stacking is an important parameter for the reaction of the aromatic amine with the AP site.  相似文献   

5.
Schiff base formation during reconstitution of D-serine dehydratase (Escherichia coli) from its apoenzyme and pyridoxal 5'-phosphate (pyridoxal-P) has been studied by rapid kinetic techniques using absorbance changes at 436 nm. Three distinct reaction phases have been observed. The first is a very rapid change during which pyridoxal-P is initially bound to the apoenzyme. This step has an equilibrium constant of 1500 M-1 and a forward reaction rate of the order of 2.6 x 10(6) M-1 s-1. The second phase shows a first-order rate constant with a value dependent on pyridoxal-P and corresponds to a first-order step with a forward rate constant of 3.04 s-1 interacting with the initial equilibrium. The final phase is a slow first-order reaction, the rate constant of which is approximately 0.01 s-1 and is independent of pyridoxal-P concentration. The active pyridoxal species has been shown to be the free pyridoxal-P as opposed to hemiacetal or hemimercaptal forms.  相似文献   

6.
The photophysics of the complex forming reaction of Ca2+ and Fura-2 are investigated using steady-state and time-resolved fluorescence measurements. The fluorescence decay traces were analyzed with global compartmental analysis yielding the following values for the rate constants at room temperature in aqueous solution with BAPTA as Ca2+ buffer: k01 = 1.2 x 10(9)s-1, k21 = 1.0 x 10(11) M-1 s-1, k02 = 5.5 x 10(8) s-1, k12 = 2.2 x 10(7) s-1, and with EGTA as Ca2+ buffer: k01 = 1.4 x 10(9) s-1, k21 = 5.0 x 10(10) M-1 s-1, k02 = 5.5 x 10(8) s-1, k12 = 3.2 x 10(7) s-1. k01 and k02 denote the respective deactivation rate constants of the Ca2+ free and bound forms of Fura-2 in the excited state. k21 represents the second-order rate constant of binding of Ca2+ and Fura-2 in the excited state, whereas k12 is the first-order rate constant of dissociation of the excited Ca2+:Fura-2 complex. The ionic strength of the solution was shown not to influence the recovered values of the rate constants. From the estimated values of k12 and k21, the dissociation constant K*d in the excited state was calculated. It was found that in EGTA Ca2+ buffer pK*d (3.2) is smaller than pKd (6.9) and that there is negligible interference of the excited-state reaction with the determination of Kd and [Ca2+] from fluorimetric titration curves. Hence, Fura-2 can be safely used as an Ca2+ indicator. From the obtained fluorescence decay parameters and the steady-state excitation spectra, the species-associated excitation spectra of the Ca2+ free and bound forms of Fura-2 were calculated at intermediate Ca2+ concentrations.  相似文献   

7.
1. Pyridoxal 5'-phosphate is a cofactor essential for the enzymic activity of aminolaevulinate synthetase from Rhodopseudomonas spheroides. It also aids activation of the low-activity enzyme by trisulphides such as cystine trisulphide, whereas inactivation of enzyme is facilitated by its absence. 2. The fluorescence spectrum of purified high-activity enzyme is that expected for a pyridoxal phosphate--Schiff base, but the firmly bound cofactor does not appear to be at the active centre. In dilute solutions of enzyme this grouping is inaccessible to nucleophiles such as glycine, hydroxylamine, borohydride and cyanide, at pH 7.4. 3. An active-centre Schiff base is formed between enzyne and added pyridoxal phosphate, which is accessible to nucleophiles. Concentrated solutions of this enzyme--Schiff base on treatment with glycine yield apo- and semi-apoenzyme, which can re-bind pyridoxal phosphate. 4. Two types of binding of pyridoxal phosphate are distinguishable in dilute solution of enzyme, but these become indistinguishable when concentrated solutions are treated with cofactor. A change occurs in the susceptibility towards borohydride of the fluorescence of the "structural" pyridoxal phosphate. 5. One or two molecules of cofactor are bound per subunit of mol. wt. 50 000 in semiapo- or holo-enzyme. The fluorescence of pyridoxamine phosphate covalently bound to enzyme also indicates one to two nmol of reducible Schiff base per 7000 units of activity in purified and partially purified samples of enzyme. 6. Cyanide does not convert high-activity into low-activity enzyme, but with the enzyme-pyridoxal phosphate complex it forms a yellow fluorescent derivative that is enzymically active.  相似文献   

8.
The effect of the organophosphoric inhibitor, SA-152, on the fibrinogen-coagulating and TAME-esterase activity of bovine alpha-thrombin was studied. The irreversible inhibition constants (k11 = 1.1 x 10(4) M-1.min-1,Ki = 0.7 x 10(-4) M, k2 = 0.8 min-1 towards the coagulating activity and kII = 0.7 x 10(4) M-1.min-1, Ki = 0.3 x 10(-4) M, k2 = 0.2 min-1 towards the esterase activity) were determined. The SA-152 inactivated alpha-thrombin was dialyzed and incubated with 0.5 M and 2.5 M NaCl and 10 mM TAME. There was no reconstitution of activity of the SA-152 modified alpha-thrombin after dialysis and treatment with high concentrations of NaCl and TAME. Heparin interactions with the anion-binding site of the high molecular weight recognition center in the alpha-thrombin molecule did not significantly influence the values of the kinetic constants for the enzyme inhibition by SA-152. This finding is consistent with the hypothesis on the irreversible binding of SA-152 in the active center of the enzyme.  相似文献   

9.
S N Ali  H D Zeller  M K Calisto  M S Jorns 《Biochemistry》1991,30(45):10980-10986
Sarcosine oxidase contains 1 mol of covalently bound plus 1 mol of noncovalently bound FAD per active site. The first phase of the anaerobic reduction of the enzyme with sarcosine converts oxidized enzyme to an equilibrium mixture of two-electron-reduced forms (EH2) and occurs at a rate (2700 min-1, pH 8.0) similar to that determined for the maximum rate of aerobic turnover in steady-state kinetic studies (2600 min-1). The second phase of the anaerobic half-reaction converts EH2 to the four-electron-reduced enzyme (EH4) and occurs at a rate (k = 350 min-1) which is 7-fold slower than aerobic turnover. Reaction of EH2 with oxygen is 1.7-fold faster (k = 4480 min-1) than aerobic turnover and 13-fold faster than the anaerobic conversion of EH2 to EH4. The results suggest that the enzyme cycles between fully oxidized and two-electron-reduced forms during turnover with sarcosine. The long wavelength absorbance observed for EH2 is attributable to a flavin biradical (FADH.FAD.-) which is generated in about 50% yield at pH 8.0 and in nearly quantitative yield at pH 7.0. The rate of biradical formation is determined by the rate of electron transfer from sarcosine to the noncovalent flavin since electron equilibration between the two flavins (k = 750 s-1 or 45,000 min-1, pH 8.0) is nearly 20-fold faster, as determined in pH-jump experiments. Only two of the three possible isoelectronic forms of EH2 are likely to transfer electrons to oxygen since the reaction is known to occur at the covalent flavin. However, equilibration among EH2 forms is probably maintained during reoxidation, consistent with the observed monophasic kinetics, since interflavin electron transfer is 10-fold faster than electron transfer to oxygen.  相似文献   

10.
Stopped-flow kinetic data have been obtained for a rapid electron-transfer reaction between the component proteins of nitrogenase from Klebsiella pneumoniae, which was induced by MgATP. Up to three equivalents of the Fe-containing protein were rapidly oxidized by one equivalent of the Fe-Mo-containing protein in a unimolecular reaction, k2 = 2 x 10(2)S-1. Evidence for a tight complex between the component proteins, KD(complex) less than 0.5 muM, which was formed with a rate k1 greater than 1 x 10(7)M-1-S-1, has been obtained. MgATP bound to either the Fe-containing protein or to the two-protein complex with a rate k3 greater than 2.5 x 10(6)M-1-S-1 and with KD(MgATP) = 0.4mM, before the electron-transfer reaction.  相似文献   

11.
Laser flash photolysis has been used to investigate the kinetics of reduction of trimethylamine dehydrogenase by substoichiometric amounts of 5-deazariboflavin semiquinone, and the subsequent intramolecular electron transfer from the FMN cofactor to the Fe4S4 center. The initial reduction event followed second-order kinetics (k = 1.0 x 10(8) M-1 s-1 at pH 7.0 and 6.4 x 10(7) M-1 s-1 at pH 8.5) and resulted in the formation of the neutral FMN semiquinone and the reduced iron-sulfur cluster (in a ratio of approximately 1:3). Following this, a slower, protein concentration independent (and thus intramolecular) electron transfer was observed corresponding to FMN semiquinone oxidation and iron-sulfur cluster reduction (k = 62 s-1 at pH 7.0 and 30 s-1 at pH 8.5). The addition of the inhibitor tetramethylammonium chloride to the reaction mixture had no effect on these kinetic properties, suggesting that this compound exerts its effect on the reduced form of the enzyme. Treatment of the enzyme with phenylhydrazine, which introduces a phenyl group at the 4a-position of the FMN cofactor, decreased both the rate constant for reduction of the protein and the extent of FMN semiquinone production, while increasing the amount of iron-sulfur center reduction, consistent with the results obtained with the native enzyme. Experiments in which the kinetics of reduction of the enzyme were determined during various stages of partial reduction were also consistent with these results, and further indicated that the FMN semiquinone form of the enzyme is more reactive toward the deazariboflavin reductant than is the oxidized FMN.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Allan BW  Reich NO  Beechem JM 《Biochemistry》1999,38(17):5308-5314
The absolute temporal couplings between DNA binding and base flipping were examined for the EcoRI DNA methyltransferase. The binding event (monitored using rhodamine-x fluorescence anisotropy) was monophasic with a second-order on-rate of 1.1 x 10(7) M-1 s-1 相似文献   

13.
Replacement of glycine by aspartic acid at either of two sites in a conserved, glycine-rich region inactivates the pyridoxal 5'-phosphate-dependent enzyme D-serine dehydratase (DSD) from Escherichia coli. To investigate why aspartic acid at position 279 or 281 causes a loss of activity, we measured the affinity of the G----D variants for pyridoxal 5'-phosphate and a cofactor:substrate analog complex and compared the UV, CD, and fluorescence properties of wild-type D-serine dehydratase and the inactive variants. The two G----D variants DSD(G279D) and DSD (G281D) displayed marked differences from wild-type D-serine dehydratase and from each other with respect to their affinity for pyridoxal 5'-phosphate and for a pyridoxal 5'-phosphate:glycine Schiff base. Compared to the wild-type enzyme, the cofactor affinity of DSD(G279D) and DSD(G281D) was decreased 225- and 50-fold, respectively, and the ability to retain a cofactor:glycine complex was decreased 765- and 1970-fold. The spectral properties of the inactive variants suggest that they form a Schiff base linkage with pyridoxal 5'-phosphate but do not hold the cofactor in a catalytically competent orientation. Moreover, the amount of cofactor aldamine in equilibrium with cofactor Schiff base is increased in DSD(G279D) and DSD(G281D) relative to that in wild-type DSD. Collectively, our findings indicate that introduction of a carboxymethyl side chain at G-279 or G-281 directly or indirectly disrupts catalytically essential protein-cofactor and protein-substrate interactions and thereby prevents processing of the enzyme bound cofactor:substrate complex. The conserved glycine-rich region is thus either an integral part of the D-serine dehydratase active site or conformationally linked to it.  相似文献   

14.
In this study, we report two high‐resolution structures of the pyridoxal 5′ phosphate (PLP)‐dependent enzyme kynurenine aminotransferase‐I (KAT‐I). One is the native structure with the cofactor in the PLP form bound to Lys247 with the highest resolution yet available for KAT‐I at 1.28 Å resolution, and the other with the general PLP‐dependent aminotransferase inhibitor, aminooxyacetate (AOAA) covalently bound to the cofactor at 1.54 Å. Only small conformational differences are observed in the vicinity of the aldimine (oxime) linkage with which the PLP forms the Schiff base with Lys247 in the 1.28 Å resolution native structure, in comparison to other native PLP‐bound structures. We also report the inhibition of KAT‐1 by AOAA and aminooxy‐phenylpropionic acid (AOPP), with IC50s of 13.1 and 5.7 μM, respectively. The crystal structure of the enzyme in complex with the inhibitor AOAA revealed that the cofactor is the PLP form with the external aldimine linkage. The location of this oxime with the PLP, which forms in place of the native internal aldimine linkage of PLP of the native KAT‐I, is away from the position of the native internal aldimine, with the free Lys247 substantially retaining the orientation of the native structure. Tyr101, at the active site, was observed in two conformations in both structures.  相似文献   

15.
The cofactor pyridoxal phosphate bound through an aldimine linkage to lysine residues of the enzyme cystathionase (L-Cystathione cysteine-lyase (deaminating), EC 4.4.1.1) is very stable to irradiation with light of 420 nm. The catalytic function of the enzyme remains unaffected indicating that the cofactor is not an efficient photosensitizer of essential amino acid residues. This unusual stability of the cofactor to irradiation can be ascribed to the presence of aldimine linkages as demonstrated by studies conducted on model compounds. The binding of a reversible inhibitor (L-allylglycine) to the catalytic site of the enzyme does not facilitate photooxidation of the cofactor. On the contrary, irradiation of the cofactor in the presence of the inhibitor results in photodestruction of the inhibitor.  相似文献   

16.
Abstract— The kinetic behavior of glutamate decarboxylase from mouse brain was analyzed in a wide range of glutamate and pyridoxal 5′-phosphate concentrations, approaching three limit conditions: (I) in the absence of glutamate-pyridoxal phosphate Schiff base; (II) when all glutamate is trapped in the form of Schiff base; (III) when all pyridoxal phosphate is trapped in the form of Schiff base. The experimental results in limit condition (I) are consistent with the existence of two different enzyme activities, one dependent and the other independent of free pyridoxal phosphate. The results obtained in limit conditions (II) and (III) give further support to this postulation. These data show that the free pyridoxal phosphate-dependent activity can be abolished when either all substrate or all cofactor are in the form of Schiff base. The free pyridoxal phosphate-independent activity is also abolished when all substrate is trapped as Schiff base, but it is not affected by the conversion of free pyridoxal phosphate into the Schiff base. A kinetic and mechanistic model for brain glutamate decarboxylase activity, which accounts for these observations as well as for the results of previous dead end-inhibition studies, is postulated. Computer simulations of this model, using the experimentally obtained kinetic constants, reproduced all the observed features of the enzyme behavior. The possible implications of the kinetic model for the regulation of the enzyme activity are discussed.  相似文献   

17.
Ornithine decarboxylase (ODC) is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the biosynthesis of the polyamine putrescine. Similar to other PLP-dependent enzymes, an active site Lys residue forms a Schiff base with PLP in the absence of substrate. The mechanistic role of this residue (Lys-69) in catalysis by Trypanosoma brucei ODC has been studied by analysis of the mutant enzymes, in which Lys-69 has been replaced by Arg (K69R ODC) and Ala (K69A ODC). Analysis of K69A ODC demonstrated that the enzyme copurified with amines (e.g. putrescine) that were tightly bound to the active site through a Schiff base with PLP. In contrast, on the basis of an absorption spectrum of K69R ODC, PLP is likely to be bound to this mutant enzyme in the aldehyde form. Pre-steady-state kinetic analysis of the reaction of K69R ODC with L-Orn and putrescine demonstrated that the rates of both the product release (k(off.Put) = 0.0041 s(-)(1)) and the decarboxylation (k(decarb) = 0.016 s(-)(1)) steps were decreased by10(4)-fold in comparison to wild-type ODC. Further, the rates of Schiff base formation between K69R ODC and either substrate or product have decreased by at least 10(3)-fold. Product release remains as the dominant rate-limiting step in the reaction (the steady-state parameters for K69R ODC are k(cat) = 0.0031 s(-)(1) and K(m) = 0.18 mM). The effect of mutating Lys-69 on the decarboxylation step suggests that Lys-69 may play a role in the proper positioning of the alpha-carboxylate for efficient decarboxylation. K69R ODC binds diamines and amino acids with higher affinity than the wild-type enzyme; however, Lys-69 does not mediate substrate specificity. Wild-type and K69R ODC have similar ligand specificity preferring to bind putrescine over longer and shorter diamines. Kinetic analysis of the binding of a series of diamines and amino acids to K69R ODC suggests that noncovalent interactions in the active site of K69R ODC promote selective ligand binding during Schiff base formation.  相似文献   

18.
The kinetics of bimolecular decay of alpha-tocopheroxyl free radicals (T) was studied by ESR mainly in ethanol and heptanol solvents. A second-order kinetic law was observed during the whole course of reaction (-d[T]/dt = 2k[T]2) and the following rate constants were determined with good accuracy in the temperature range 281-321 K: ethanol: log(2k) = 8.2 +/- 0.5--(6.6 +/- 0.7 kcal/mol)/(2.3RT) M-1.s-1; heptanol: log(2k) = 6.1 +/- 0.4--(4.3 +/- 0.6 kcal/mol)/(2.3RT) M-1.s-1. The global rate constant clearly increases with solvent polarity.  相似文献   

19.
Reversible thiol/disulfide exchange equilibria between rabbit muscle phosphofructokinase and glutathione redox buffers results in a dependence of the activity of the enzyme on the thiol to disulfide ratio of the redox buffer (Gilbert, H. F. (1982) J. Biol. Chem. 257, 12086-12091). The transition between fully reduced (active) and fully oxidized (inactive) enzyme is half complete at a [GSH]/[GSSG] ratio of 6.5 +/- 1 at pH 8.0 and 5.6 +/- 0.9 at pH 7.2. In the presence of excess GSSG approximately 40-50% of the activity is lost in a rapid process (k = 110 M-1 min-1), while the remaining activity is lost more slowly (k = 1.9 M-1 min-1). Two equivalents of radiolabeled glutathione are incorporated covalently, one coincident with each phase of inactivation. The most rapidly oxidized sulfhydryl group is also the most rapidly reduced by GSH in the reverse reaction (k = 150 M-1 min-1). Reduction of a more slowly reacting protein-glutathione mixed disulfide is required to regenerate the original activity (k = 0.33 M-1 min-1). The thiol/disulfide oxidation equilibrium constant (Kox) for the most rapidly oxidized sulfhydryl group is estimated to be 0.7 while that for the more slowly oxidized group is 6.1. The sulfhydryl group which is more easily oxidized kinetically is the more thermodynamically resistant to oxidation. The magnitude of the equilibrium constants for these reversible oxidations would suggest that the oxidation state (and activity) of phosphofructokinase would not be significantly affected by typical metabolic changes in the glutathione oxidation state in vivo.  相似文献   

20.
The guanidine hydrochloride-induced subunit dissociation and unfolding of thermostable alanine racemase from Bacillus stearothermophilus have been studied by circular dichroism, fluorescence and absorption spectroscopies, and gel filtration. The overall process was found to be reversible: more than 75% of the original activity was recovered upon reduction of the denaturant concentration. In the range of 0.6 to 1.5 M guanidine hydrochloride, the dimeric enzyme was dissociated into a monomeric form, which was catalytically inactive. The monomeric enzyme appeared to bind the cofactor pyridoxal phosphate by a non-covalent linkage, although the native dimeric enzyme binds the cofactor through an aldimine Schiff base linkage. The monomer was mostly unfolded, with the transition occurring in the range of 1.8 to 2.2 M guanidine hydrochloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号