首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
K M Brindle 《Biochemistry》1988,27(16):6187-6196
31P NMR magnetization-transfer measurements were used to measure flux between inorganic phosphate and ATP in the reactions catalyzed by phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase in anaerobic cells of the yeast Saccharomyces cerevisiae. Flux between ATP and Pi and glucose consumption and ethanol production were measured in cells expressing different levels of phosphoglycerate kinase activity. Overexpression of the enzyme was obtained by transforming the cells with a multicopy plasmid containing the phosphoglycerate kinase coding sequence and portions of the promoter element. Fluxes were also measured in cells in which the glyceraldehyde-3-phosphate dehydrogenase activity had been lowered by limited incubation with iodoacetate. These measurements showed that both enzymes have low flux control coefficients for glycolysis but that phosphoglycerate kinase has a relatively high flux control coefficient for the ATP----Pi exchange catalyzed by the two enzymes. The Pi----ATP exchange velocities observed in the cell were shown to be similar to those displayed by the isolated enzymes in vitro under conditions designed to mimic those in the cell with respect to the enzyme substrate concentrations.  相似文献   

2.
31P nuclear magnetic resonance (NMR) spectra were obtained from the forearm muscles of 5 subjects before and after performing a muscle stretching (eccentric) exercise routine. Spectra collected before and immediately after exercise showed normal resting phosphorylated metabolite levels and unchanged intracellular pH (pHi). Measurements made on the day following exercise, when muscular pain was apparent, revealed an elevated inorganic phosphate level. No significant changes in other metabolites or pHi were detected. This study gives the first indication of biochemical change following a form of exercise that is associated with considerable muscle pain and damage. The findings may help in understanding pathological processes resulting in pain and damage in muscle.  相似文献   

3.
The pseudo-first-order rate constant of rabbit muscle creatine kinase (CK), in the direction of ATP synthesis (kf), was determined by saturation-transfer 31P NMR. When pH was varied between 6.0 and 7.4, kf increased linearly at both 20 degrees C and 37 degrees c. The corresponding flux is very small between pH 6.0 and 6.5, in contrast to previous studies. Up to 50 h exposure of the CK enzyme to high concentrations of inorganic phosphate (Pi), a known inhibitor in certain situations, had negligible effect on enzymatic flux in the physiological pH range. Thus under in vivo conditions, such as in stroke, where pH falls as low as 6.2 and Pi rises to high levels, the rate of the CK reaction may be severely reduced due to pH but not due to high Pi concentrations.  相似文献   

4.
The internal pH of peroxisomes in the yeasts Hansenula polymorpha, Candida utilis and Trichosporon cutaneum X4 was estimated by 31P nuclear magnetic resonance (NMR) spectroscopy. 31P NMR spectra of suspensions of intact cells of these yeasts, grown under conditions of extensive peroxisomal proliferation, displayed two prominent Pi-peaks at different chemical shift positions. In control cells grown on glucose, which contain very few peroxisomes, only a single peak was observed. This latter peak, which was detected under all growth conditions, was assigned to cytosolic Pi at pH 7.1. The additional peak present in spectra of peroxisome-containing cells, reflected Pi at a considerably lower pH of approximately 5.8–6.0. Experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazon (CCCP) and the ionophores valinomycin and nigericin revealed that separation of the two Pi-peaks was caused by a pH-gradient across a membrane separating the two pools. Experiments with chloroquine confirmed the acidic nature of one of these pools. In a number of transfer experiments with the yeast H. polymorpha it was shown that the relative intensity of the Pi-signal at the low pH-position was correlated to the peroxisomal volume fraction. These results strongly suggest that this peak has to be assigned to Pi in peroxisomes, which therefore are acidic in nature. The presence of peroxisome-associated Pi was confirmed cytochemically.Abbreviations CCCP Carbonyl cyanide m-chlorophenylhydrazon - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

5.
31P NMR spectra of phosphate and phosphonate complexes of Escherichia coli alkaline phosphatase have been obtained by Fourier transform NMR methods. One equivalent of P1i, bound to Zn(II) alkaline phosphatase, pH 8, gives rise to a single 31P resonance 2 ppm downfield from that for Pi, and assignable to the noncovalent complex, E-P. Inorganic phosphate in excess of 1 eq per enzyme dimer gives rise to a resonance at the position expected for free Pi. At pH 5.1, a second resonance appears 8.5 ppm downfield from that for free Pi, and is assignable to the covalent complex, E-P. The large downfield shift suggests that the enzyme phosphoryl group is highly strained with an O-P-O bond angle of under 100 degrees.  相似文献   

6.
31P NMR chemical shifts of phosphate covalently bound to proteins   总被引:1,自引:0,他引:1  
31P nuclear magnetic resonance (NMR) spectroscopy for characterizing the nature of covalently bound phosphate in proteins is relatively unexploited by the biochemist. 31P NMR chemical shifts of phosphate covalently bound to naturally occurring phosphoproteins, phosphorylated enzyme intermediates and chemically phosphorylated proteins have been compiled in this review. The chemical shifts (31P NMR) of selected reference compounds are reported to assist in the assignment of 31P resonances of phosphate covalently attached to proteins. 31P NMR chemical shifts of phosphate and phospho compounds non-covalently bound to selected proteins as well as the pH dependence of 31P NMR resonance have also been compiled.  相似文献   

7.
《Insect Biochemistry》1989,19(3):323-326
High resolution 31P nuclear magnetic resonance spectroscopy (NMR) was successfully applied to 5th instar larvae of Manduca sexta. Conditions for in vivo analysis under non-saturating conditions are described. The 31P NMR spectrum of intact larvae was composed of six peaks. Their resonance frequencies are reported relative to orthophosphoric acid. Analysis of tissue extracts demonstrated the in vivo peaks to be composed of the β phosphorus resonance of nucleotide triphosphates (NTP) at −19.36 ppm; α phosphorus of NTP and nucleotide diphosphates (NDP) at −10.51 ppm; β and γ phosphorus of NDP and NTP, respectively, at −5.42 ppm; phosphoarginine (PA) at −3.45 ppm; inorganic phosphate (Pi) at +2.76 ppm and sugar phosphates at +3.34 ppm. The major sugar phosphate present in fat body extracts was trehalose-6-phosphate and this was the major phosphorus component of the spectrum of hemolymph. The spin-lattice relaxation times for each in vivo peak were determined.Titration of aqueous fat body and hemolymph extracts was carried out and the relationship between the chemical shift of Pi and pH determined. On this basis the pH of the hemolymph was estimated at approx. 6.7.The metabolic inhibitors, iodoacetate and dinitrophenol, had significant effects on the 31P NMR spectrum of intact larvae. Administration of iodoacetate caused a rapid increase in the levels of sugar phosphates together with decreases in NTP and PA. Dinitrophenol also caused declines in the relative levels of NTP and PA but sugar phosphates decreased as well. The experiments demonstrated the potential of in vivo NMR analysis for metabolic studies on high energy phosphate metabolites in M. sexta.  相似文献   

8.
Four different techniques, equilibrium dialysis, protection of enzymatic activity against chemical inactivation, 31P relaxation rats, and water proton relaxation rates, are used to study divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase, EC 3.6.1.1. A major new finding is that the binding of a third divalent metal ion per subunit, which has elsewhere been implicated as being necessary for enzymatic activity [Springs, B., Welsh, K. M., & Cooperman, B. S. (1981) Biochemistry (in press)], only becomes evident in the presence of added inorganic phosphate and that, reciprocally, inorganic phosphate binding to both its high- and low-affinity sites on the enzyme is markedly enhanced in the presence of divalent metal ions, with Mn2+ causing an especially large increase in affinity. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide evidence against divalent metal ion inner sphere binding to phosphate for enzyme subunits having one or two divalent metal ions bound per subunit and evidence for a conformational change restricting active-site accessibility to solvent on the binding of a third divalent metal ion per subunit.  相似文献   

9.
The effects of external pH, temperature, and Ca2+ and Mn2+ concentrations on the compartmentation and NMR visibility of inorganic phosphate (Pi) were studied in isolated rat liver mitochondria respiring on succinate and glutamate. Mitochondrial matrix Pi is totally visible by NMR at 8 degrees C and at low external concentrations of Pi. However, when the external Pi concentration is increased above 7 mM, the pH gradient decreases, the amount of matrix Pi increases, and the fraction not observed by NMR increases. Raising the temperature to 25 degrees C also decreases the pH gradient and the Pi fraction observed by NMR. At physiologically relevant concentrations, Ca2+ and Mn2+ do not seem to play a major role in matrix Pi NMR invisibility. For Ca2+ concentrations above 30 nmol/mg of protein, formation of insoluble complexes will cause loss of Pi signal intensity. For Mn2+ concentrations above 2 nmol/mg of protein, the Pi peak can be broadened sufficiently to preclude detection of a high-resolution signal. The results indicate that mitochondrial matrix Pi should be mostly observable up to 25 degrees C by high-resolution NMR. While the exact nature of the NMR-invisible phosphate in perfused or in vivo liver is yet to be determined, better success at detecting and resolving both Pi pools by NMR is indicated at high field, low temperature, and optimized pulsing conditions.  相似文献   

10.
The time course of oxygen-18 exchange between [18O]Pi and normal water, catalyzed by myosin subfragment 1 in the presence of MgADP, was followed using the shift in 31P NMR caused by the presence of oxygen-18 bound to the phosphorus. Essentially all molecules of [18O]Pi that bind to the enzyme undergo complete exchange and are released as [16O4]Pi. Exchange probably occurs by formation of myosin.ATP from a myosin.ADP.Pi complex and is rapid relative to release of Pi from this complex. The kinetics of exchange give a value for the rate constant for binding Pi to myosin.ADP of 0.23 M-1 S-1 (pH 8.0, 22 degrees C). This value is consistent with exchange occurring by reversal of the ATP-ase reaction back to the myosin.ATP complex.  相似文献   

11.
P M Kilby  J L Allis  G K Radda 《FEBS letters》1990,272(1-2):163-165
The phosphodiester peak in 31P nuclear magnetic resonance spectra of human brain in vivo is often the most prominent feature of the spectrum. We have demonstrated that this resonance exhibits bi-exponential spin-spin relaxation, giving relaxation times of 2 and 10 ms. We interpret this in terms of the two components which make up the peak, bilayer lipids and the small cytosolic phosphates glycerophosphoethanolamine and glycerophosphocholine. Using the relaxation times and the relative peak heights of the two components we have also been able to quantitate the concentration of the bilayer lipids as 20-40 times that of ATP.  相似文献   

12.
13.
Unknown phosphate resonances at 0 and -21.6 ppm have been identified in 31P NMR spectra of tail muscle of unanesthetized newts which do not correspond to known phosphate-bearing compounds in skeletal muscle cells. The concentrations of both unknowns decrease markedly during muscular activity and severe hypoxia (conditions associated with decreased intracellular pH and increased cellular levels of inorganic phosphate). The unknown at 0 ppm increases in concentration with imposition of moderate hypoxia. Our data suggest that these unknowns may be liable storage compounds for a high energy phosphate bond, and are involved in newt skeletal muscle phosphogen metabolism.  相似文献   

14.
H Degani  A Shaer  T A Victor  A M Kaye 《Biochemistry》1984,23(12):2572-2577
Changes in the concentrations of high-energy phosphate metabolites were measured by 31P NMR spectroscopy of surviving rat uteri from 0-48 h following estrogen administration. Concentrations (millimoles per kilogram wet weight) of these metabolites in the untreated immature uterus, measured at 4 degrees C, were found to be the following: creatine phosphate (CP), 2.1 +/- 0.2; nucleoside triphosphates, mainly adenosine 5'-triphosphate (ATP), 4.6 +/- 0.4; phospho monoesters, primarily sugar phosphates (SP), 5.4 +/- 0.7; and inorganic phosphate (Pi), 0.8 +/- 0.4. Adenosine 5'-diphosphate (ADP) concentration was estimated to be approximately 40 mumol/kg wet weight from the assumed equilibrium of the creatine kinase reaction. The concentration of CP, and to lesser extent ATP and SP, declined within the first 1.5-3 h after injection of 17 beta-estradiol, returned to control values between 6 and 12 h, and then increased, reaching maximal concentrations at 24 h. From the fractions of the total soluble ATP in free and Mg2+-bound forms, [free Mg2+] in the untreated uterus was estimated to be 0.2-0.4 mmol/kg wet weight. An increase in [free Mg2+] in the uterus was detected 1.5 h after estrogen injection. A subsequent parallel increase in the ratio of ATP to CP concentrations suggests that estrogen can also affect the apparent creatine kinase equilibrium by modulating [free Mg2+].  相似文献   

15.
16.
31P NMR spin-transfer in the phosphoglyceromutase reaction   总被引:3,自引:0,他引:3  
The rate of exchange of phosphoryl groups between 2- and 3-phosphoglycerate catalysed by (a) high concentrations (approximately equal to 5.0 mg protein ml-1) of rabbit muscle phosphoglyceromutase and (b) lysed human erythrocytes was measured using saturation and inversion transfer techniques with 31P-NMR spectroscopy. This is the first reported application of these techniques to a study of this particular enzymic reaction either in vitro or in situ in a cell cytosol. Selective irradiation of resonances was achieved by the DANTE pulse sequence which had not previously been used for spin-transfer studies. New equilibrium exchange theory was developed for the simplest model of a two-reactant enzyme-catalysed reaction and this was used to calculate turnover rates for the enzymes. There was a close similarity between the turnover rates calculated from the spin-transfer data obtained from the systems in vitro and in situ and those obtained by conventional enzymic assays, at low enzyme concentrations. This suggested an absence of any homogeneous enzyme-enzyme interactions which modify the kinetics at high protein concentrations either in lysates or in the system in vitro.  相似文献   

17.
K Brindle  P Braddock  S Fulton 《Biochemistry》1990,29(13):3295-3302
Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creatine kinase activities similar to those found in mammalian heart muscle. 31P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts.  相似文献   

18.
In pioneering studies on the 31P NMR spectra of MgADP bound to the "molecular motor" myosin subfragment 1 (S1) in the temperature range of 0 to 25 degrees C, Shriver and Sykes [Biochemistry 20 (1981) 2004-2012/6357-6362; Biochemistry 21 (1982) 3022-3028], proposed that MgADP binds to myosin S1 as a mixture of two interconvertible conformers with different chemical shifts for the beta-P resonance of the S1-bound MgADP and that the concentrations of these conformers are related by an equilibrium constant K(T). Their model implied that the weighted average of the chemical shifts of the beta-P(MgADP) for S1-bound MgADP asymptotically approaches a high temperature limit. Here, and in our earlier paper [K. Konno, K. Ue, M. Khoroshev, H., Martinez, B.D. Ray, M.F. Morales, Proc. Natl. Acad. Sci. USA 97 (2000) 1461-1466], we report experimental similarities to Shriver and Sykes, but diverge from them (especially at 0 degrees C) in not finding two distinct peaks and in finding that the average chemical shift does not change with temperature. Our observations can be explained by chemical exchange of beta-P(MgADP) of S1-bound MgADP between two nearly energetically equivalent environments.  相似文献   

19.
The influence of different yeast (Saccharomyces cerevisiae) cellular fractions was studied in an attempt to gain knowledge on the feasibility of trehalose crystallization in yeast cells. Certain constituents of S. cerevisiae cells inhibited/delayed trehalose crystallization upon humidification at high relative humidities.  相似文献   

20.
It is now possible to unambiguously assign all 31P resonances in the 31P NMR spectra of oligonucleotides by either two-dimensional NMR techniques or site-specific 17O labeling of the phosphoryl groups. Assignment of 31P signals in tetradecamer duplexes, (dTGTGAGCGCTCACA)2, (dTAT-GAGCGCTCATA)2, (dTCTGAGCGCTCAGA)2, and (dTGTGTGCGCACACA)2, and the dodecamer duplex d(CGTGAATTCGCG)2 containing one base-pair mismatch, combined with additional assignments in the literature, has allowed an analysis of the origin of the sequence-specific variation in 31P chemical shifts of DNA. The 31P chemical shifts of duplex B-DNA phosphates correlate reasonably well with some aspects of the Dickerson/Calladine sum function for variation in the helical twist of the oligonucleotides. Correlations between experimentally measured P-O and C-O torsional angles and results from molecular mechanics energy minimization calculations show that these results are consistent with the hypothesis that sequence-specific variations in 31P chemical shifts are attributable to sequence-specific changes in the deoxyribose phosphate backbone. The major structural variation responsible for these 31P shift perturbations appears to be P-O and C-O backbone torsional angles which respond to changes in the local helical structure. Furthermore, 31P chemical shifts and JH3'-P coupling constants both indicate that these backbone torsional angle variations are more permissive at the ends of the double helix than in the middle. Thus 31P NMR spectroscopy and molecular mechanics energy minimization calculations appear to be able to support sequence-specific structural variations along the backbone of the DNA in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号