首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal experiments have shown that cryopreservation of the ovarian cortex, containing primordial follicles, could be used to preserve gametes thereby restoring fertility in humans and animals. During the last 100 years, many hundreds of species have been lost, and a third of the breeding animals are threatened with extinction. To preserve genetic diversity, notably for the conservation of endangered species, it is essential to conserve female and male gametes. Today, biotechnologies such as artificial insemination and embryo transfer are used in breeding programs and are well developed. However, even using these advanced techniques, there are problems due to the limited number of individuals used as the source of gametes, so that the risk of inbreeding is high, even in large populations. To preserve genetic diversity, it is necessary to create gene banks of male and female gametes and embryos, using a very large number of individual donors. Cryopreservation of ovarian tissue could present a means for enlarging the gene pool. Cryopreserved ovarian tissue could be used in auto- or xenografts, or for in vitro maturation (IVM) of primordial follicles. In this review, we describe the processes for cryopreservation of ovarian tissue and the various possibilities for using it.  相似文献   

2.
Cryopreservation of Human Ovarian Tissue   总被引:2,自引:0,他引:2  
New and often aggressive treatment schemes allow the successful healing of many young patients with cancer, but the price the young women have to pay is high: many of them lose ovarian function and fertility. Due to the improved long-term survival of adolescents and young women with malignancies undergoing gonadotoxic chemotherapy, preservation of future fertility has been the focus of recent ubiquitarian interest. A feasible solution is the cryopreservation of ovarian tissue. Ovarian tissue, after thawing, can be used in three different ways: 1. grafted into its normal site (orthotopic); 2. grafted into a site other than its normal position (heterotopic), necessitating recourse to in vitro fertilization (IVF); 3. grown and in vitro matured in order to obtain metaphase II oocytes for an IVF program. It is believed that protein supplementation, in cryopreservation solution, is essential for improving ovarian tissue cryopreservation. The aim of this study was to evaluate the ultrastructural appearance of human ovarian tissue cryopreserved in 1.5 M 1,2 propanediol (PROH), 0.2 M sucrose using different protein sources: fetal calf serum (FCS), plasmanate or syntetic serum substitute (SSS). Fresh and frozen/thawed ovarian tissues were compared by transmission electron microscope (TEM), to evaluate the appearance of stromal and follicle cells as affected by different protein sources. Our data indicate that FCS is a better protein support for ovarian tissue cryopreservation when compared to SSS or Plasmanate. In addition the follicles are more resistant to the cryopreservation with respect to stroma.  相似文献   

3.
Fundamental cryobiology of mammalian oocytes and ovarian tissue   总被引:21,自引:0,他引:21  
Embryo cryopreservation is a widely used and relatively well-established procedure. By contrast, ovarian tissue and unfertilized oocytes are only rarely cryopreserved, even though for germ line storage these often would be preferable to embryo cryopreservation. There are many reasons for this discrepancy. Unfertilized mature (MII) stage oocytes are more difficult to cryopreserve than cleavage stage embryos of the same species. Many factors contribute to this including the oocyte's surface to volume ratio, single membrane, temperature-sensitive metaphase spindle and zona, and its susceptibility to parthenogenetic activation and chill-injury. A completely different set of problems applies to primordial follicles. Oocytes in primordial follicles are very small and tolerate cryopreservation by slow cooling very well. The problem lies in the difficulty in producing mature oocytes from these primordial follicles. Better and/or more convenient cryopreservation procedures for both oocytes and ovarian tissue are being developed. This paper describes some of the advances in this area and outlines the relative merits and limitations of several currently available egg and ovarian tissue cryopreservation procedures.  相似文献   

4.
Cancer survivorship rates have drastically increased due to improved efficacy of oncologic treatments. Consequently, clinical concerns have shifted from solely focusing on survival to quality of life, with fertility preservation as an important consideration. Among fertility preservation strategies for female patients, ovarian tissue cryopreservation and subsequent reimplantation has been the only clinical option available to cancer survivors with cryopreserved tissue. However, follicle atresia after transplantation and risk of reintroducing malignant cells have prevented this procedure from becoming widely adopted in clinics. Herein, we investigated the encapsulation of ovarian follicles in alginate hydrogels that isolate the graft from the host, yet allows for maturation after transplantation at a heterotopic (i.e., subcutaneous) site, a process we termed in vivo follicle maturation. Survival of multiple follicle populations was confirmed via histology, with the notable development of the antral follicles. Collected oocytes (63%) exhibited polar body extrusion and were fertilized by intracytoplasmic sperm injection and standard in vitro fertilization procedures. Successfully fertilized oocytes developed to the pronucleus (14%), two‐cell (36%), and four‐cell (7%) stages. Furthermore, ovarian follicles cotransplanted with metastatic breast cancer cells within the hydrogels allowed for retrieval of the follicles, and no mice developed tumors after removal of the implant, confirming that the hydrogel prevented seeding of disease within the host. Collectively, these findings demonstrate a viable option for safe use of potentially cancer‐laden ovarian donor tissue for in vivo follicle maturation within a retrievable hydrogel and subsequent oocyte collection. Ultimately, this technology may provide novel options to preserve fertility for young female patients with cancer.  相似文献   

5.
The cryopreservation of human oocytes is an important strategy to spare fertility in women submitted to gonadotoxic therapy, ovarian surgery, or even to allow gestation by assisted reproduction technology after natural ovarian senescence. Methods to predict oocyte resistance to cryopreservation are still based on qualitative morphological assessment. In this study we evaluated whether morphometric characteristics of mature oocytes before vitrification and after warming are related to successful fertilization by intracytoplasmic sperm injection (ICSI). This was a prospective cohort study including 28 infertile women and 71 oocytes. Morphometric assessments included oocyte diameter, perivitelline space (PS), zona pellucida (ZP) and first polar body (PB). Out of 49 warmed oocytes, 27 (55%) survived cryopreservation and their pre-vitrification measures were similar to those of the 22 oocytes that perished. However, the oocytes that eventually failed to be fertilized had undergone more enlargement of the total diameter (p = 0.029) and shrinking of the PS (p = 0.033) after cryopreservation, compared to oocytes that were successfully fertilized. These findings suggest that the morphometric characteristics of fresh oocytes do not predict their survival to vitrification, while fertilization failure is associated with oocyte enlargement and PS shrinking after cryopreservation.  相似文献   

6.
Female cancer patients who seek fertility preservation but cannot undergo ovarian stimulation and embryo preservation may consider 1) retrieval of immature oocytes followed by in vitro maturation (IVM) or 2) ovarian tissue cryopreservation followed by transplantation or in vitro follicle culture. Conventional IVM is carried out during the follicular phase of menstrual cycle. There is limited evidence demonstrating that immature oocyte retrieved during the luteal phase can mature in vitro and be fertilized to produce viable embryos. While in vitro follicle culture is successful in rodents, its application in nonhuman primates has made limited progress. The objective of this study was to investigate the competence of immature luteal-phase oocytes from baboon and to determine the effect of follicle-stimulating hormone (FSH) on baboon preantral follicle culture and oocyte maturation in vitro. Oocytes from small antral follicle cumulus-oocyte complexes (COCs) with multiple cumulus layers (42%) were more likely to resume meiosis and progress to metaphase II (MII) than oocytes with a single layer of cumulus cells or less (23% vs. 3%, respectively). Twenty-four percent of mature oocytes were successfully fertilized by intracytoplasmic sperm injection, and 25% of these developed to morula-stage embryos. Preantral follicles were encapsulated in fibrin-alginate-matrigel matrices and cultured to small antral stage in an FSH-independent manner. FSH negatively impacted follicle health by disrupting the integrity of oocyte and cumulus cells contact. Follicles grown in the absence of FSH produced MII oocytes with normal spindle structure. In conclusion, baboon luteal-phase COCs and oocytes from cultured preantral follicles can be matured in vitro. Oocyte meiotic competence correlated positively with the number of cumulus cell layers. This study clarifies the parameters of the follicle culture system in nonhuman primates and provides foundational data for future clinical development as a fertility preservation option for women with cancer.  相似文献   

7.
Advancements of diagnosis and treatment have substantially improved cancer survival rates in the last few decades. The increasing number of survivors focuses attention on long-term effects caused by cancer treatment and its impact on quality of life. Ovarian failure is one of the major sequelae of cytotoxic chemotherapy and/or radiotherapy in female children and reproductive-age women. Oncologists should address the patients about fertility preservation options before therapy. Embryo cryopreservation is the only well-established method for females in preserving fertility; however other strategies including ovarian suppression, ovarian transposition and cryopreservation of oocytes and ovarian tissue are still experimental. Patients need advice and to know which are the most practical options for them. This article reviews the available fertility preservation methods in women, and the related issues including normal physiology of the ovary, effect of anticancer therapy on fertility, role of the oncologist and ethics. We performed a MEDLINE search from 1971 to 2011 in a similar way as Jensen et al. 2011, using the following MeSH terms: antineoplastic agents; ovarian failure; premature; infertility, female; fertility preservation; child and cancer; reproductive technologies, assisted.  相似文献   

8.
The recovery of viable follicles from cryopreserved ovarian tissue would be of benefit in many areas of assisted reproduction. Structural integrity needs to be maintained following cryopreservation of ovarian tissue in order to retrieve healthy follicles which can then be cultured in vitro to produce viable oocytes. We have assessed the effect of in vitro culture of bovine tissue for 0, 1, 4, 24, or 48 h after exposure to, or cryopreservation in, dimethylsulphoxide. Immediately after freezing, normality of primary and preantral follicles within the tissue was significantly lower than for tissue exposed to the cryoprotectant without freezing or for control tissue. After 4 h in culture, cryopreserved tissue appeared to have recovered from damage caused by freezing, although the percentage of tissue with normal morphology declined after 24 and 48 h of culture. There was no significant difference between percentage normality in control tissue and tissue exposed to the cryoprotectant without freezing for any of the culture times studied. These data indicate that it is possible to freeze/thaw bovine ovarian tissue while retaining a reasonable yield of morphologically intact follicles and that a short period of post-thaw culture may enhance follicle recovery.  相似文献   

9.
The caprine ovary is a rich source of potentially viable immature oocytes enclosed in preantral follicles (PF). Previous experiments showed that these oocytes can be successfully cryopreserved in ovarian tissue of several species. However, until now, no information about the caprine PF cryopreservation is available in the literature. The aim of the present research was to evaluate the structural and ultrastructural characteristics of caprine PF after treatment and cryopreservation of ovarian tissue with 1.5 and 3 M dimethylsulphoxide (DMSO) and propanediol (PROH). One fragment of ovarian tissue was immediately fixed for histological examination and ultrastructural analysis, after slaughter (control). Four fragments were equilibrated at 20 degrees C/20 min in 1.8 ml of minimum essential medium (MEM) containing 1.5 or 3 M DMSO or PROH for the toxicity test, and the other four fragments were slowly frozen in each cryoprotectant at the concentrations previously described. After toxicity test and freezing/thawing procedures, the ovarian fragments were fixed for histological examination. The results showed that after toxicity test and cryopreservation of ovarian tissue using both cryoprotectants, the percentage of normal PF was less (P < 0.05) as compared with the control group. The present study revealed that the percentage of normal PF after toxicity test and cryopreservation in 1.5 M DSMO was significantly greater (P < 0.05) as compared with results obtained with 3 M DMSO or 1.5 and 3 M PROH. This result was confirmed by transmission electron microscopy, which showed that the PF were preserved in a higher quality state with 1.5 M DMSO. In conclusion, the present study demonstrated that caprine PF can be cryopreserved in ovarian tissue using 1.5 M DMSO.  相似文献   

10.
Paris MC  Snow M  Cox SL  Shaw JM 《Theriogenology》2004,61(2-3):277-291
The transplantation of reproductive organs, including ovaries and ovarian tissue, was pioneered over 100 years ago. In the 1960s, ovarian grafting was used as a tool to investigate ovarian function, but with the recent development of more effective cryopreservation protocols for ovarian tissue, germline preservation and propagation have now become realistic goals. This review describes progress in ovarian banking and ovarian tissue transplantation, with emphasis on how fresh and frozen ovarian tissue can be used in assisted reproduction for both humans and animals. This paper focuses most closely on the potential value of xenotransplantation, the transplantation of gonads from one species to another, to conserve rare and endangered species. Specific attention is drawn to the use of xenotransplantation as a strategy for generating viable gametes that can be used to produce live fertile offspring. Other upcoming xenogeneic technologies that may be of potential significance in animal conservation, such as transplantation of whole ovaries or isolated growing follicles, and even male germ cells, are discussed.  相似文献   

11.
IntroductionIn vitro activation and growth of primordial dormant follicles to produce fertilizable oocytes would provide a useful instrument for fertility preservation. The employment of Phosphatase and TENsin homolog (PTEN) inhibitors, in combination with Protein kinase B (Akt) stimulating molecules, has been previously employed to increase follicular activation through the stimulation of the PTEN-Akt pathway.MethodsWe aim to establish improved in vitro activation also for cancer patients whose ovarian tissue has already been cryopreserved. Fresh and previously cryopreserved human ovarian cortex were exposed to short-term, low-concentration and ovary-specific treatment with only a PTEN inhibitor.ResultsOur in vitro activation protocol enhances the activation mechanisms of primordial follicles in both fresh and cryopreserved samples, and enlarges growing populations without inducing apoptosis in either follicles or the surrounding stroma. Treatment augments estradiol secretion and restores the expression levels of the previously diminished Anti-Müllerian hormone by means of cryopreservation procedures. Genomic modulation of the relative expression of PTEN pathway genes was found in treated samples.ConclusionThe in vitro activation protocol offers new alternatives for patients with cryopreserved tissue as it increases the pool of viable activated follicles available for in vitro growth procedures. The combination of ovarian tissue cryopreservation and in vitro activation of primordial follicles, the main ovarian reserve component, will be a major advancement in fertility preservation.  相似文献   

12.
Fundamental cryobiology of reproductive cells and tissues   总被引:5,自引:0,他引:5  
During the last half of the 20th century there have been considerable advancements in mammalian reproductive technologies, including in vitro production of pre-implantation embryos and embryo sexing, and even cloning in some species. However, in most cases, management of non-cryopreserved reproductive cells (i.e., spermatozoa or oocytes) and tissues (i.e., testicular tissue or ovarian tissue) is problematic due to difficulties in donor-recipient synchronization and the potential for transmission of infectious pathogens, which cumulatively limits widespread application of these techniques. Therefore, there is an urgent need for the development of optimum cryopreservation methods for reproductive cells and tissues from many species. Today frozen-thawed spermatozoa and embryos have become an integral component of animal agriculture, laboratory animal genome banking, and human sperm banking and infertility programs. However, although widely implemented, the protocols currently used to cryopreserve bull sperm, for example, are still suboptimal, and cannot readily be extrapolated to other species' sperm. Similarly, embryo-freezing protocols successfully used for mouse and cattle have yielded little success when applied to some other species' embryos, or to a related cell type, oocytes. To date, with the exception of mouse oocytes, almost all mammalian species' oocytes studied have proven very difficult to successfully cryopreserve. Currently, there is a growing interest to understand the underlying cryobiological fundamentals responsible for these low survival rates in an effort to develop better cryopreservation methods for oocytes. Additionally, there is growing interest in developing technologies for the optimal isolation and cryopreservation of the earliest stage of male (spermatogonia, spermatids) and female (primordial follicle) germ cells, with subsequent maturation to the desired stage in vitro. Female gamete maturation, fertilization, and embryo development entirely under in vitro conditions from primordial follicles has been achieved in mice, however techniques for this and other species are still very early in their development. Furthermore, with the recent advances made in intracytoplasmic sperm injection (ICSI), and gamete isolation and maturation, close attention has been given to cryopreservation of gametes in the form of gonadal tissue (i.e., testicular tissue and ovarian tissue) containing various developmental stages of male (spermatogonia, spermatids, and spermatozoa) and female (primordial, secondary) germ lines.  相似文献   

13.
Cryopreservation of reproductive cells (i.e., oocytes, spermatozoa) and tissues (i.e., ovarian and testicular tissue) is a developing technology that has tremendous implications for rapid advancement of biomedical research in general. Since the early 1980s, advances have been made in establishing optimal conditions for in vitro oocyte maturation, fertilization, and culture of resulting embryos. These in vitro systems have contributed significantly to the utilization of these cells and tissues after thawing and have made it possible to evaluate protocols designed to cryopreserve such biomaterials more effectively. Although cryopreservation of preimplantation embryos from various species including mouse, human, and farm animals has been successful, cryopreservation of oocytes from most mammalian species has been more challenging due to their extreme sensitivity to suboptimal conditions during the cryopreservation process. Cryopreservation on mouse oocytes have been well documented and have resulted in greater success than studies with other mammalian species. Ovarian tissue cryopreservation and transplantation techniques have recently received much scientific and public attention due to their great potential use in human infertility treatment, in safeguarding the reproductive potential of the endangered species, and in genome banking of genetically important lab animal strains. A review of past and current research in the field of oocyte and ovarian tissue cryopreservation and transplantation and discussion of possible strategies for oocyte and ovarian tissue banking are provided.  相似文献   

14.
A decrease in cancer deaths has resulted in the possibility of child bearing for many young adult cancer survivors. Most antitumor treatment modalities are detrimental to female fertility, and methods for fertility preservation before gonadotoxic treatment, including cryopreservation of oocytes, embryos and ovarian tissue, have therefore been developed. This review focuses on the ovarian function of cancer patients, the safety and efficacy of fertility preservation methods, and the pregnancy outcomes of these patients. Breast cancer and hematological tumors constitute the majority of cancers in reproductive-aged female oncology patients. Ovarian function may not be impacted by breast cancer cells, while in patients with hematological malignancies, decreases in anti-Müllerian hormone and antral follicle counts have been demonstrated. In most cases, patients can undergo ovarian stimulation without delaying treatment, and a new stimulation protocol known as dual stimulation, which may be more efficient, has now been developed. Birth outcomes are also acceptable in cancer patients.  相似文献   

15.
During cryopreservation of ovarian tissue, the conditions of freezing and thawing are big factors controlling the survival rate of oocytes obtained. However, the conditions and procedures as they pertain to ovarian follicles and oocytes have not been established. Thus, we tried to determine the appropriate freeze-thaw times using the vitrification method with ethylene glycol and DMSO as cryoprotective agents and dd Y female mouse ovaries. The maturity rate from GV to the metaphase-II (MII) stage was 62.8% with ethylene glycol and 69.3% using DMSO, while the controls (GV oocytes obtained from a fresh ovary) showed a maturation rate of 83.6% (46/55). MII oocytes obtained by culturing GV oocytes in vitro showed a 64.3% (18/28) fertility rate via in vitro fertilization and a developmental rate into a 2 cell stage embryo of 35.7% (10/28) and into a 4-cell stage, 7.1% (2/28). However, development beyond the 8 cell stage embryo was not observed. A significant difference was not recognized between control (fresh) and ovarian tissues that had been frozen/thawed with respect to their ability to produce hormones. It is concluded that the vitrification method was effective for both freezing ovarian tissues and preserving its functional ability (maturation and capacitation).  相似文献   

16.
Luvoni GC 《Theriogenology》2006,66(1):101-111
Cryopreservation of gametes is an important tool for the improvement of assisted reproductive technologies. In-depth studies of spermatozoon and oocyte characteristics are required in order to define efficient protocols for the maintenance of viability, including fertilizing and developmental ability, of gametes after thawing. In the domestic cat, semen cryopreservation techniques still produce variable results, the cryopreservation of oocytes is at an experimental level and there have been only a few attempts at cryopreserving gonadal tissue. However, each procedure has generated promising results and has important implications, both for improving reproductive performance of valuable breeds of domestic cats and for conservation of biodiversity in endangered felids by reclamation of valuable male and female germplasm.  相似文献   

17.
This study was undertaken to assess dissection/puncture combined technique for collecting large number of oocytes from bovine ovaries and to determine the effect of ovarian tissue cryopreservation on the oocytes capability to undergo in vitro maturation, fertilization and subsequent embryonic development. Ovaries (n=31) of slaughtered cows were cut into small fragments using a scalpel blade and the ovarian tissues were randomly assigned to cryopreserved by slow freezing and vitrification and non cryopreserved (fresh) groups. Oocytes were collected from non-atretic follicles from fresh and post-thawing ovarian tissue by the puncture method. The advantage of this technique appeared through morphologically good quality cumulus-oocyte complex (COC) recovery rate from fresh tissue (31.7±2.0 oocytes/ovary). However, the cryopreservation affected the post thawing total and good quality COC recovery rates from slow freezing (26.6±2.0 and 23.5±2.3 oocytes/ovary, respectively) and vitrification groups (21.7±1.1 and 17.6±1.8 oocyte/ovary, respectively). The maturation rate resulted in significant differences between the fresh tissue (94.1±1.1%) and the two cryopreservation groups. Moreover, this rate was significantly higher in the slow freezing group (80.1±1.3%) than in the vitrification group (73.0±1.9%). No statistical differences were observed in the cleavage and the embryonic developmental rates between fresh tissue group and cryopreservation groups. Furthermore the number of embryos produced per animal was statistically higher for fresh tissues than for slow freezing and the vitrification groups (34.4±1.4, 27.8±3.1 and 22.0±0.7, respectively). In conclusion, dissection method followed by puncture of bovine ovaries greatly maximizes the number of good quality oocytes recovered, as well as the number of embryos obtained per animal. Ovarian tissue can be successfully cryopreserved by slow freezing and vitrification.  相似文献   

18.
Since the first reported birth following in vitro fertilization in 1978, further developments in assisted reproductive technology (ART) treatments have produced at least 8 million babies worldwide. Cryopreservation techniques have been central to this treatment revolution, increasing cycle efficacy by allowing the banking of supernumerary embryos for later use, as well as affording the prospective patient more time in cases of anticipated fertility decline. Additionally, these techniques have demonstrated promise in increasing the safety of ART treatments, by reducing complications such as ovarian hyperstimulation, leading to increased support for the introduction of a ‘total freeze’ policy involving deferred embryo transfers. Importantly, the effective cryopreservation of both spermatozoa and oocytes has permitted long-term gamete storage without degradation of quality, facilitating gamete banking for personal use or fertility treatment. Here, we will summarise the indications for applying cryopreservation methods in clinical reproductive medicine, highlighting recent technical advances and examining the evidence base that supports the continued use of cryopreservation in ART.  相似文献   

19.
Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx). For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now). In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes). Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs). Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs), and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号