首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The starch-binding domain from glucoamylase disrupts the structure of starch   总被引:11,自引:0,他引:11  
The full-length glucoamylase from Aspergillus niger, G1, consists of an N-terminal catalytic domain followed by a semi-rigid linker (which together constitute the G2 form) and a C-terminal starch-binding domain (SBD). G1 and G2 both liberate glucose from insoluble corn starch, although G2 has a rate 80 times slower than G1. Following pre-incubation of the starch with SBD, the activity of G1 is uniformly reduced with increasing concentrations of SBD because of competition for binding sites. However, increasing concentrations of SBD produce an initial increase in the catalytic rate of G2, followed by a decrease at higher SBD concentrations. The results show that SBD has two functions: it binds to the starch, but it also disrupts the surface, thereby enhancing the amylolytic rate.  相似文献   

2.
Starch-binding domain shuffling in Aspergillus niger glucoamylase   总被引:2,自引:0,他引:2  
Aspergillus niger glucoamylase (GA) consists mainly of two forms, GAI [from the N-terminus, catalytic domain + linker + starch-binding domain (SBD)] and GAII (catalytic domain + linker). These domains were shuffled to make RGAI (SBD + linker + catalytic domain), RGAIDeltaL (SBD + catalytic domain) and RGAII (linker + catalytic domain), with domains defined by function rather than by tertiary structure. In addition, Paenibacillus macerans cyclomaltodextrin glucanotransferase SBD replaced the closely related A.niger GA SBD to give GAE. Soluble starch hydrolysis rates decreased as RGAII approximately GAII approximately GAI > RGAIDeltaL approximately RGAI approximately GAE. Insoluble starch hydrolysis rates were GAI > RGAIDeltaL > RGAI > GAE approximately RGAII > GAII, while insoluble starch-binding capacities were GAI > RGAI > RGAIDeltaL > RGAII > GAII > GAE. These results indicate that: (i) moving the SBD to the N-terminus or replacing the native SBD somewhat affects soluble starch hydrolysis; (ii) SBD location significantly affects insoluble starch binding and hydrolysis; (iii) insoluble starch hydrolysis is imperfectly correlated with its binding by the SBD; and (iv) placing the P.macerans cyclomaltodextrin glucanotransferase SBD at the end of a linker, instead of closely associated with the rest of the enzyme, severely reduces its ability to bind and hydrolyze insoluble starch.  相似文献   

3.
The stability of three forms of glucoamylase from Aspergillus niger has been investigated by differential scanning and isothermal titration calorimetry: Glucoamylase 1 (GA1), which consists of a catalytic domain and a starch-binding domain (SBD) connected by a heavily O-glycosylated linker region; glucoamylase 2 (GA2), which lacks SBD; and a proteolytically cleaved glucoamylase (GACD), which contains the catalytic domain and part of the linker region. The structures of the catalytic domain with part of the linker region and of SBD are known from crystallography and NMR, respectively, but the precise spatial arrangement of the two domains in GA1 is unknown. To investigate the stability of the three glucoamylase forms, we unfolded the enzymes thermally by differential scanning calorimetry (DSC). Aggregation occurs upon heating GA1 and GA2 at pH values between 2.5 and 5.0, whereas no aggregation is observed at higher pH (5.5-7.5). At all pH values, the catalytic domain of GA1 and GA2 unfolds irreversibly, while SBD unfolds reversibly in the pH range 5. 5-7.5 where aggregation does not occur. The unfolding of the catalytic domain of all glucoamylase forms seems to follow an irreversible one-step mechanism with no observable reversible intermediates on the experimental time scale. SBD of GA1 unfolds reversibly, and the ratio between the van't Hoff and calorimetric enthalpies is 1.4 +/- 0.1. Assignment of peaks of the DSC profile to the domains at pH 7.5 is achieved by using two different ligands: Acarbose, a very strong inhibitor that binds exclusively to the catalytic domain, and beta-cyclodextrin, a small starch analogue of which 2 molecules bind solely to the two binding sites present in SBD. Differences are seen in the unfolding processes of GA1 and GA2 since the former unfolds with one peak at all pH values, while the calorimetric trace of the latter can be resolved into more peaks depending on pH and the chemical composition of the buffers. In general, peaks corresponding to unfolding of GA2 are more complex than the peaks of GA1 and GACD. Some part of GA2 unfolds before the rest of the molecule which may correspond to the linker region or a particular early unfolding part of the catalytic domain. This leads to the conclusion that the structure of the GA2 molecule has a larger cooperative unfolding unit and is less stable than the structures of GA1 and GACD and that the C-terminal part of the linker region has a destabilizing effect on the catalytic domain.  相似文献   

4.
Raw-starch-degrading glucoamylases have been known as multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain (SBD) by an O-glycosylated linker region. A molecular genetics approach has been chosen to find structural differences between two related glucoamylases, raw-starch-degrading Glm and nondegrading Glu, from the yeasts Saccharomycopsis fibuligera IFO 0111 and HUT 7212, respectively. We have found that Glm and Glu show a high primary (77%) and tertiary structure similarity. Glm, although possessing a good ability for raw starch degradation, did not show consensus amino acid residues to any SBD found in glucoamylases or other amylolytic enzymes. Raw starch binding and digestion by Glm must thus depend on the existence of a site(s) lying within the intact protein which lacks a separate SBD. The enzyme represents a structurally new type of raw-starch-degrading glucoamylase.  相似文献   

5.
High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha-amylase 1 (AMY1) fused C-terminally to this SBD via a 37 residue GA-I linker segment. AMY1-SBD was expressed in A. niger, secreted using the AMY1 signal sequence at 25 mg x L(-1) and purified in 50% yield. AMY1-SBD contained 23% carbohydrate and consisted of correctly N-terminally processed multiple forms of isoelectric points in the range 4.1-5.2. Activity and apparent affinity of AMY1-SBD (50 nM) for barley starch granules of 0.034 U x nmol(-1) and K(d) = 0.13 mg x mL(-1), respectively, were both improved with respect to the values 0.015 U x nmol(-1) and 0.67 mg x mL(-1) for rAMY1 (recombinant AMY1 produced in A. niger). AMY1-SBD showed a 2-fold increased activity for soluble starch at low (0.5%) but not at high (1%) concentration. AMY1-SBD hydrolysed amylose DP440 with an increased degree of multiple attack of 3 compared to 1.9 for rAMY1. Remarkably, at low concentration (2 nM), AMY1-SBD hydrolysed barley starch granules 15-fold faster than rAMY1, while higher amounts of AMY-SBD caused molecular overcrowding of the starch granule surface.  相似文献   

6.
The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch.  相似文献   

7.
A new α-amylase from Rhizomucor sp. (RA) was studied in detail due to its very efficient hydrolysis of raw starch granules at low temperature (32 °C). RA contains a starch binding domain (SBD) connected to the core amylase catalytic domain by a O-glycosylated linker. The mode of degradation of native maize starch granules and, in particular, the changes in the starch structure during the hydrolysis, was monitored for hydrolysis of raw starch at concentrations varying between 0.1 and 31%. RA was compared to porcine pancreatic α-amylase (PPA), which has been widely studied either on resistant starch or as a model enzyme in solid starch hydrolysis studies. RA is particularly efficient on native maize starch and release glucose only. The hydrolysis rate reaches 75% for a 31% starch solution and is complete at 0.1% starch concentration. The final hydrolysis rate was dependent on both starch concentration and enzyme amount applied. RA is also very efficient in hydrolyzing the crystalline domains in the maize starch granule. The major A-type crystalline structure is more rapidly degraded than amorphous domains in the first stages of hydrolysis. This is in agreement with the observed preferential hydrolysis of amylopectin, the starch constituent that forms the backbone of the crystalline part of the granule. Amylose-lipid complexes present in most cereal starches are degraded in a second stage, yielding amylose fragments that then reassociate into B-type crystalline structures, forming the final resistant fraction.  相似文献   

8.
The mature form of barley seed low-pI α-amylase (BAA1) possesses a raw starch-binding site in addition to the catalytic site. A truncated cDNA encoding the C-terminal region (aa 281–414) and containing the proposed raw starch-binding domain (SBD) but lacking Trp278/Trp279, a previously proposed starch granule-binding site, was synthesized via PCR and expressed in Escherichia coli as an N-terminal His-Tag fusion protein. SBD was produced in the form of insoluble inclusion bodies that were extracted with urea and successfully refolded into a soluble form via dialysis. To determine binding, SBD was purified by affinity chromatography with cycloheptaamylose as ligand cross-linked to Sepharose. This work demonstrates that a SBD is located in the C-terminal region and retains sufficient function in the absence of the N-terminal, catalytic, and Trp278/279 regions.  相似文献   

9.
The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch.  相似文献   

10.
A novel starch-binding domain (SBD) that represents a new carbohydrate-binding module family (CBM69) was identified in the α-amylase (AmyP) of the recently established alpha-amylase subfamily GH13_37. The SBD and its homologues come mostly from marine bacteria, and phylogenetic analysis indicates that they are closely related to the CBM20 and CBM48 families. The SBD exhibited a binding preference toward raw rice starch, but the truncated mutant (AmyPΔSBD) still retained similar substrate preference. Kinetic analyses revealed that the SBD plays an important role in soluble starch hydrolysis because different catalytic efficiencies have been observed in AmyP and the AmyPΔSBD.  相似文献   

11.
Kocuria varians alpha-amylase contains tandem starch-binding domains SBD1-SBD2 (SBD12) that possess typical halophilic characteristics. Recombinant tandem domains SBD12 and single domain SBD1, both with amino-terminal hexa-His tag, were expressed in and purified to homogeneity from Escherichia coli. The circular dichroism (CD) spectrum of His-SBD12 was characterized by a positive peak at 233 nm ascribed to the aromatic stacking. Although the signal occurred in the far UV region, it is an indication of tertiary structure folding. CD spectrum of single domain His-SBD1 exhibited the same peak position, signal intensity and spectral shape as those of His-SBD12, suggesting that the aromatic stacking must occur within the domain, and that two SBD domains in SBD12 and SBD1 has a similar folded structure. This structural observation was consistent with the biological activity that His-SBD1 showed binding activity against raw starch granules and amylose resin with 70–80% efficiency compared with binding of equimolar His-SBD12. Although the thermal unfolding rate of SBD12 and SBD1 were similar, the refolding rates of SBD12 and SBD1 from thermal melting were greatly different: His-SBD12 refolded slowly (T1/2 = ~84 min), while refolding of single domain His-SBD1 was found to be 20-fold faster (T1/2 = 4.2 min). The possible mechanism of this large difference in refolding rate was discussed. Maltose at 20 mM showed 5–6 °C increase in thermal melting of both His-SBD12 and His-SBD1, while its effects on the time course of unfolding and refolding were insignificant.  相似文献   

12.
Glucoamylases are responsible for hydrolysis of starch and polysaccharides to yield β‐d ‐glucose. Rhizopus oryzae glucoamylase (RoGA) is composed of an N‐terminal starch binding domain (SBD) and a C‐terminal catalytic domain connected by an O‐glycosylated linker. Two carbohydrate binding sites in RoSBD have been identified, site I is created by three highly conserved aromatic residues, Trp47, Tyr83, and Tyr94, and site II is built up by Tyr32 and Phe58. Here, the two crystal structures of RoSBD in complex with only α‐(1,6)‐linked isomaltotriose (RoSBD‐isoG3) and isomaltotetraose (RoSBD‐isoG4) have been determined at 1.2 and 1.3 Å, respectively. Interestingly, site II binding is observed in both complexes, while site I binding is only found in the RoSBD‐isoG4 complex. Hence, site II acts as the recognition binding site for carbohydrate and site I accommodates site II to bind isoG4. Site I participates in sugar binding only when the number of glucosyl units of oligosaccharides is more than three. Taken together, two carbohydrate binding sites in RoSBD cooperate to reinforce binding mode of glucoamylase with polysaccharides as well as the starch. Proteins 2014; 82:1079–1085. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
The mature form of barley seed low-pI -amylase (BAA1) possesses a raw starch-binding site in addition to the catalytic site. A truncated cDNA encoding the C-terminal region (aa 281–414) and containing the proposed raw starch-binding domain (SBD) but lacking Trp278/Trp279, a previously proposed starch granule-binding site, was synthesized via PCR and expressed in Escherichia coli as an N-terminal His-Tag fusion protein. SBD was produced in the form of insoluble inclusion bodies that were extracted with urea and successfully refolded into a soluble form via dialysis. To determine binding, SBD was purified by affinity chromatography with cycloheptaamylose as ligand cross-linked to Sepharose. This work demonstrates that a SBD is located in the C-terminal region and retains sufficient function in the absence of the N-terminal, catalytic, and Trp278/279 regions.  相似文献   

14.
The three-dimensional structure of a complete Hypocrea jecorina glucoamylase has been determined at 1.8 A resolution. The presented structure model includes the catalytic and starch binding domains and traces the course of the 37-residue linker segment. While the structures of other fungal and yeast glucoamylase catalytic and starch binding domains have been determined separately, this is the first intact structure that allows visualization of the juxtaposition of the starch binding domain relative to the catalytic domain. The detailed interactions we see between the catalytic and starch binding domains are confirmed in a second independent structure determination of the enzyme in a second crystal form. This second structure model exhibits an identical conformation compared to the first structure model, which suggests that the H. jecorina glucoamylase structure we report is independent of crystal lattice contact restraints and represents the three-dimensional structure found in solution. The proposed starch binding regions for the starch binding domain are aligned with the catalytic domain in the three-dimensional structure in a manner that supports the hypothesis that the starch binding domain serves to target the glucoamylase at sites where the starch granular matrix is disrupted and where the enzyme might most effectively function.  相似文献   

15.
A moderately halophilic bacterium, Kocuria varians, was found to produce active α-amylase (K. varians α-amylase (KVA)). We have observed at least six different forms of α-amylase secreted by this bacterium into the culture medium. Characterization of these KVA forms and cloning of the corresponding gene revealed that KVA comprises pre-pro-precursor form of α-amylase catalytic domain followed by the tandem repeats, which show high similarity to each other and to the starch binding domain (SBD) of other α-amylases. The observed six forms were most likely derived by various processing of the protein product. Recombinant KVA protein was successfully expressed in Escherichia coli as a fusion protein and was purified with affinity chromatography after cleavage from fusion partner. The highly acidic amino acid composition of KVA and the highly negative electrostatic potential surface map of the modeled structure strongly suggested its halophilic nature. Indeed, KVA showed distinct salt- and time-dependent thermal reversibility: when α-amylase was heat denatured at 85°C for 3 min in the presence of 2 M NaCl, the activity was recovered upon incubation on ice (50% recovery after 15 min incubation). Conversely, KVA denatured in 0.1 M NaCl was not refolded at all, even after prolonged incubation. KVA activity was inhibited by proteinaceous α-amylase inhibitor from Streptomyces nitrosporeus, which had been implicated to inhibit only animal α-amylases. KVA with putative SBD regions was found to digest raw starch.  相似文献   

16.
The starch-synthase III (SSIII), with a total of 1025 residues, is one of the enzymes involved in plants starch synthesis. SSIII from Arabidopsis thaliana contains a putative N-terminal transit peptide followed by a 557-amino acid SSIII-specific domain (SSIII-SD) with three internal repeats and a C-terminal catalytic domain of 450 amino acids. Here, using computational characterization techniques, we show that each of the three internal repeats encodes a starch-binding domain (SBD). Although the SSIII from A. thaliana and its close homologous proteins show no detectable sequence similarity with characterized SBD sequences, the amino acid residues known to be involved in starch binding are well conserved.  相似文献   

17.
Starch synthase III (SSIII), one of the SS isoforms involved in plant starch synthesis, has been reported to play a regulatory role in the synthesis of transient starch. SSIII from Arabidopsis thaliana contains 1025 amino acid residues and has an N-terminal transit peptide for chloroplast localization which is followed by three repeated starch-binding domains (SBDs; SSIII residues 22-591) and a C-terminal catalytic domain (residues 592-1025) similar to bacterial glycogen synthase. In this work, we constructed recombinant full-length and truncated isoforms of SSIII, lacking one, two, or three SBDs, and recombinant proteins, containing three, two, or one SBD, to investigate the role of these domains in enzyme activity. Results revealed that SSIII uses preferentially ADPGlc, although UDPGlc can also be used as a sugar donor substrate. When ADPGlc was used, the presence of the SBDs confers particular properties to each isoform, increasing the apparent affinity and the V max for the oligosaccharide acceptor substrate. However, no substantial changes in the kinetic parameters for glycogen were observed when UDPGlc was the donor substrate. Under glycogen saturating conditions, the presence of SBDs increases progressively the apparent affinity and V max for ADPGlc but not for UDPGlc. Adsorption assays showed that the N-terminal region of SSIII, containing three, two, or one SBD module have increased capacity to bind starch depending on the number of SBD modules, with the D23 protein (containing the second and third SBD module) being the one that makes the greatest contribution to binding. The results presented here suggest that the N-terminal SBDs have a regulatory role, showing a starch binding capacity and modulating the catalytic properties of SSIII.  相似文献   

18.
Scanty information is available regarding the chemical basis for structural alterations of the carbohydrate-binding modules (CBMs). The N-terminal starch binding domain (SBD) of Rhizopus oryzae glucoamylase (GA) forms fibrils under thermal stress, presenting an unusual conformational change from immunoglobulin-like to β-sheet-rich structure. Site-directed mutagenesis revealed that the C-terminal Lys of SBD played a crucial role in the fibril formation. The synthetic peptide (DNNNSANYQVSTSK) representing the C-terminal 14 amino acid residues of SBD was further demonstrated to act as a fibril-forming segment, in which terminal charges and an internal NNNxxNYQ motif were key fibril-forming determinants. The formation of fibril structure in a fungal SBD, caused by its chemical and biophysical requirements, was demonstrated for the first time.  相似文献   

19.
Starch is degraded by amylases that frequently have a modular structure composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. The C-terminal domain from the Lactobacillus amylovorus α-amylase has an unusual architecture composed of five tandem starch-binding domains (SBDs). These domains belong to family 26 in the carbohydrate-binding modules (CBM) classification. It has been reported that members of this family have only one site for starch binding, where aromatic amino acids perform the binding function. In SBDs, fold similarities are better conserved than sequences; nevertheless, it is possible to identify in CBM26 members at least two aromatic residues highly conserved. We attempt to explain polysaccharide recognition for the L. amylovorus α–amylase SBD through site-directed mutagenesis of aromatic amino acids. Three amino acids were identified as essential for binding, two tyrosines and one tryptophan. Y18L and Y20L mutations were found to decrease the SBD binding capacity, but unexpectedly, the mutation at W32L led to a total loss of affinity, either with linear or ramified substrates. The critical role of Trp 32 in substrate binding confirms the presence of just one binding site in each α-amylase SBD.  相似文献   

20.
The gene (1,542 bp) encoding thermostable Ca2+-independent and raw starch hydrolyzing α-amylase of the extremely thermophilic bacterium Geobacillus thermoleovorans encodes for a protein of 50 kDa (Gt-amyII) with 488 amino acids. The enzyme is optimally active at pH 7.0 and 60 °C with a t 1/2 of 19.4 h at 60 and 4 h at 70 °C. Gt-amyII hydrolyses corn and tapioca raw starches efficiently and therefore finds application in starch saccharification at industrial sub-gelatinisation temperatures. The starch hydrolysis is facilitated following adsorption of the enzyme to starch at the C-terminal domain, as confirmed by the truncation analysis. The adsorption rate constant of Gt-amyII to raw corn starch is 37.6-fold greater than that for the C-terminus truncated enzyme (Gt-amyII-T). Langmuir–Hinshelwood kinetic analysis in terms of equilibrium parameter (K R) suggested that the adsorption of Gt-amyII to corn starch is more favourable than that of Gt-amyII-T. Thermodynamics of temperature inactivation indicated a decrease in thermostabilisation of Gt-amyII upon truncation of its C-terminus. The addition of raw corn starch increased t 1/2 of Gt-amyII, but it has no such effect on Gt-amyII-T. It can, therefore, be stated that Gt-amyII binds to raw corn starch via C-terminal region that contributes to its thermostability. Phylogenetic analysis confirmed that starch binding region of Gt-amyII is, in fact, the non-catalytic domain C, and not the typical SBD of CBM families. The role of domain C in raw starch binding throws light on the evolutionary path of the known SBDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号