首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hydration dynamics near a model protein surface   总被引:1,自引:0,他引:1       下载免费PDF全文
The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulation for both the completely deuterated and completely hydrogenated leucine monomer. The NALMA-water system and the QENS data together provide a unique study for characterizing the dynamics of different hydration layers near a prototypical hydrophobic side chain and the backbone of which it is attached. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational and rotational water dynamics at the highest solute concentrations are found to be highly suppressed as characterized by long residential time and slow diffusion coefficients. The analysis of the more dilute concentration solutions models the first hydration shell with the 2.0 M spectra. We find that for outer layer hydration dynamics that the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis of the first hydration shell water dynamics shows spatially heterogeneous water dynamics, with fast water motions near the hydrophobic side chain, and much slower water motions near the hydrophilic backbone. We discuss the hydration dynamics results of this model protein system in the context of protein function and protein-protein recognition.  相似文献   

2.
We have used 2H-nmr to study backbone dynamics of the 2H-labeled, slowly exchanging amide sites of fully hydrated, crystalline hen egg white lysozyme. Order parameters are determined from the residual quadrupole coupling and values increase from S2 = 0.85 at 290 K to S2 = 0.94 at 200 K. Dynamical rates are determined from spin-lattice relaxation at three nmr frequencies (38.8, 61.5, and 76.7 MHz). The approach used here is thus distinct from solution nmr studies where dynamical amplitudes and rates are both determined from relaxation measurements. At temperatures below 250 K, relaxation is independent of the nmr frequency indicating that backbone motions are fast compared to the nmr frequencies. However, as the temperature is increased above 250 K, relaxation is significantly more efficient at the lowest frequency, which shows, in addition, the presence of motions that are slow compared to the nmr frequencies. Using the values of S2 determined from the residual quadrupole coupling and a model-free relaxation formalism that allows for fast and slow internal motions, we conclude that these slow motions have correlation times in the range of 0.1 to 1.0 microsecond and are effectively frozen out at 250 K where fast motions of the amide planes with approximately 15 ps effective correlation times and 9 degrees rms amplitudes dominate relaxation. The fast internal motions increase slightly in amplitude as the temperature rises toward 290 K, but the correlation time, as is also observed in solution nmr studies of RNase H, is approximately constant. These findings are consistent with hypotheses of dynamic glass transitions in hydrated proteins arising from temperature-dependent damping of harmonic modes of motion above the transition point.  相似文献   

3.
Sharma AK  Ye L  Alper SL  Rigby AC 《The FEBS journal》2012,279(3):420-436
Enzymatic catalysis and protein signaling are dynamic processes that involve local and/or global conformational changes occurring across a broad range of time scales. (1) H-(15) N relaxation NMR provides a comprehensive understanding of protein backbone dynamics both in the apo (unliganded) and ligand-bound conformations, enabling both fast and slow internal motions of individual amino acid residues to be observed. We recently reported the structure and nucleotide binding properties of the sulfate transporter and anti-sigma factor antagonist (STAS) domain of Rv1739c, a SulP anion transporter protein of Mycobacterium tuberculosis. In the present study, we report (1) H-(15) N NMR backbone dynamics measurements [longitudinal (T(1) ), transverse (T(2) ) and steady-state ({(1) H}-(15) N) heteronuclear NOE] of the Rv1739c STAS domain, in the absence and presence of saturating concentrations of GTP and GDP. Analysis of measured relaxation data and estimated dynamic parameters indicated distinct features differentiating the binding of GTP and GDP to Rv1739c STAS. The 9.55 ns overall rotational correlation time of Rv1739c STAS increased to 10.48 ns in the presence of GTP, and to 13.25 ns in the presence of GDP, indicating significant nucleotide-induced conformational changes. These conformational changes were accompanied by slow time scale (μs to ms) motions in discrete regions of the protein, as reflected by guanine nucleotide-induced changes in relaxation parameters. The observed nucleotide-specific alterations in the relaxation properties of individual STAS residues reflect an increased molecular anisotropy and/or the emergence of conformational equilibria governing functional properties of the STAS domain.  相似文献   

4.
Natural abundance 13C solid-state nuclear magnetic resonance spectroscopy was used to investigate the effect of the incorporation of cholesterol on the dynamics of dimyristoylphosphatidylcholine (DMPC) bilayers in the liquid-crystalline phase. In particular, the use of a combination of the cross-polarization and magic angle spinning techniques allows one to obtain very high resolution spectra from which can be distinguished several resonances attributed to the polar head group, the glycerol backbone, and the acyl chains of the lipid molecule. To examine both the fast and slow motions of the lipid bilayers, 1H spin-lattice relaxation times as well as proton and carbon spin-lattice relaxation times in the rotating frame were measured for each resolved resonance of DMPC. The use of the newly developed ramped-amplitude cross-polarization technique results in a significant increase in the stability of the cross-polarization conditions, especially for molecular groups undergoing rapid motions. The combination of T1 and T1 rho measurements indicates that the presence of cholesterol significantly decreases the rate and/or amplitude of both the high and low frequency motions in the DMPC bilayers. This effect is particularly important for the lipid acyl chains and the glycerol backbone region.  相似文献   

5.
Analysis of residual dipolar couplings (RDCs) in the Delta131Delta fragment of staphylococcal nuclease has demonstrated that its ensemble-averaged structure is resistant to perturbations such as high concentrations of urea, low pH, and substitution of hydrophobic residues, suggesting that its residual structure is encoded by local side-chain/backbone interactions. In the present study, the effects of these same perturbations on the backbone dynamics of Delta131Delta were examined through (1)H-(15)N relaxation methods. Unlike the global structure reported by RDCs, the transverse relaxation rates R(2) were quite sensitive to denaturing conditions. At pH 5.2, Delta131Delta exhibits an uneven R(2) profile with several characteristic peaks involving hydrophobic chain segments. Protonation of carboxyl side chains by lowering the pH reduces the values of R(2) along the entire chain, yet these characteristic peaks remain. In contrast, high concentrations of urea or the substitution of 10 hydrophobic residues eliminates these peaks and reduces the R(2) values by a greater amount. The combination of low pH and high urea leads to further decreases in R(2). These denaturant-induced increases in backbone mobility are also reflected in decreases in (15)N NOEs and in relaxation interference parameters, with the former reporting an increase in fast motions and the latter a decrease in slow motions. Comparison between the changes in chain dynamics and the corresponding changes in Stokes radius and the patterns of RDCs suggests that regional variations in backbone dynamics in denatured nuclease arise primarily from local contacts between hydrophobic side chains and local interactions involving charged carboxyl groups.  相似文献   

6.
Intramolecular dynamics of a 14-mer RNA hairpin including GCAA tetraloop was investigated by (13)C NMR relaxation. R(1) and R(1rho) relaxation rates were measured for all protonated base carbons as well as for C1' carbons of ribose sugars at several magnetic field strengths. The data has been interpreted in the framework of modelfree analysis [G. Lipari and A. Szabo. J Am Chem Soc 104, 4546-4559 (1982); G. Lipari and A. Szabo. J Am Chem Soc 104, 4559-4570 (1982)] characterizing the internal dynamics of the molecule by order parameters and correlation times for fast motions on picosecond to nanosecond time scale and by contributions of the chemical exchange. The fast dynamics reveals a rather rigid stem and a significantly more flexible loop. The cytosine and the last adenine bases in the loop as well as all the loop sugars exhibit a significant contribution of conformational equilibrium on microsecond to millisecond time scale. The high R(1rho) values detected on both base and sugar moieties of the loop indicate coordinated motions in this region. A semiquantitative analysis of the conformational equilibrium suggests the exchange rates on the order of 10(4) s(-1). The results are in general agreement with dynamics studies of GAAA loops by NMR relaxation and fluorescent spectroscopy and support the data on the GCAA loop dynamics obtained by MD simulations.  相似文献   

7.
Despite their evident importance for function, dynamics of intrinsically unstructured proteins are poorly understood. Sendai virus phosphoprotein, cofactor of the RNA polymerase, contains a partly unstructured protein domain. The phosphoprotein X domain (PX) is responsible for binding the polymerase to the nucleocapsid assembling the viral RNA. For RNA synthesis, the interplay of the dynamics of the unstructured and structured PX subdomains is thought to drive progression of the RNA polymerase along the nucleocapsid. Here we present a detailed study of the dynamics of PX using hydrogen/deuterium exchange and different NMR relaxation measurements. In the unstructured subdomain, large amplitude fast motions were found to be fine-tuned by the presence of residues with short side chains. In the structured subdomain, where fast motions of both backbone and side chains are fairly restricted, the first helix undergoes slow conformational exchange corresponding to a local unfolding event. The other two helices, which represent the nucleocapsid binding site, were found to be more stable and to reorient with respect to each other, as probed by slow conformational exchange identified for residues on the third helix. The study illustrates the intrinsically differential dynamics of this partly unstructured protein and proposes the relation between these dynamics and its function.  相似文献   

8.
The N-terminal, matrix metalloproteinase (MMP)-inhibitory fragment of recombinant, human tissue inhibitor of metalloproteinases (TIMP-1) exhibits varied backbone dynamics and rigidity. Most striking is the presence of chemical exchange in the MMP-binding ridge reported to undergo conformational change upon MMP binding. Conformational exchange fluctuations in microseconds to milliseconds map to the sites of MMP-induced fit at residues Val29 through Leu34 of the AB loop and to the Ala65 and Cys70 "hinges" of the CD loop of TIMP-1. Slow chemical exchange is also present at the type I turn of the EF loop at the base of the MMP-binding ridge. These functional slow motions and other fast internal motions are evident from backbone (15)N spin relaxation at 500 and 750 MHz, whether interpreted by the model-free formalism with axial diffusion anisotropy or by the reduced spectral density approach. The conformational exchange is confirmed by its deviation from the trend between R(2) and the cross-correlation rate eta. The magnetic field-dependence indicates that the chemical exchange broadening in the AB and CD loops is fast on the time-scale of chemical shift differences. The conformational exchange rates for most of these exchanging residues, which can closely approach MMP, appear to be a few thousand to several thousand per second. The slow dynamics of the TIMP-1 AB loop contrast the picosecond to nanosecond dynamics reported in the longer TIMP-2 AB loop.  相似文献   

9.
The extent of rapid (picosecond) backbone motions within the glucocorticoid receptor DNA-binding domain (GR DBD) has been investigated using proton-detected heteronuclear NMR spectroscopy on uniformly 15N-labeled protein fragments containing the GR DBD. Sequence-specific 15N resonance assignments, based on two- and three-dimensional heteronuclear NMR spectra, are reported for 65 of 69 backbone amides within the segment C440-A509 of the rat GR in a protein fragment containing a total of 82 residues (MW = 9200). Individual backbone 15N spin-lattice relaxation times (T1), rotating-frame spin-lattice relaxation times (T1 rho), and steady-state (1H)-15N nuclear Overhauser effects (NOEs) have been measured at 11.74 T for a majority of the backbone amide nitrogens within the segment C440-N506. T1 relaxation times and NOEs are interpreted in terms of a generalized order parameter (S2) and an effective correlation time (tau e) characterizing internal motions in each backbone amide using an optimized value for the correlation time for isotropic rotational motions of the protein (tau R = 6.3 ns). Average S2 order parameters are found to be similar (approximately 0.86 +/- 0.07) for various functional domains of the DBD. Qualitative inspection as well as quantitative analysis of the relaxation and NOE data suggests that the picosecond flexibility of the DBD backbone is limited and uniform over the entire protein, with the possible exception of residues S448-H451 of the first zinc domain and a few residues for which relaxation and NOE parameters were not obtained. in particular, we find no evidence for extensive rapid backbone motions within the second zinc domain. Our results therefore suggest that the second zinc domain is not disordered in the uncomplexed state of DBD, although the possibility of slowly exchanging (ordered) conformational states cannot be excluded in the present analysis.  相似文献   

10.
A comparison of 17O and 2H NMR relaxation rates of water in lysozyme solutions as a function of concentration, pH/pD, and magnetic field suggests that only 17O monitors directly the hydration of lysozyme in solution. NMR measurements are for the first time extended to 11.75 T. Lysozyme hydration data are analyzed in terms of an anisotropic, dual-motion model with fast exchange of water between the "bound" and "free" states. The analysis yields 180 mol "bound" water/mol lysozyme and two correlation times of 7.4 ns ("slow") and 29 ps ("fast") for the bound water population at 27 degrees C and pH 5.1, in the absence of salt, assuming anisotropic motions of water with an order parameter value for bound water of 0.12. Under these conditions, the value of the slow correlation time of bound water (7.4 ns) is consistent with the value of 8 ns obtained by frequency-domain fluorescence techniques for the correlation time associated with the lysozyme tumbling motion in solutions without salt. In the presence of 0.1 M NaCl the hydration number increases to 290 mol/mol lysozyme at pD 4.5 and 21 degrees C. The associated correlation times at 21 degrees C in the presence of 0.1 M NaCl are 4.7 ns and 15.5 ps, respectively. The value of the slow correlation time of 4.7 ns is consistent with the calculated value (4.9 ns) for the lysozyme monomer tumbling in solution. The systematic deviations of the relaxation rates, estimated with the single-exponential approximation, from the theoretical, multiexponential nuclear (I' + 1/2) spin relaxation are evaluated at various frequencies for 17O (I = 5/2) with the first-order, linear approximation (25). All NMR relaxation data for hydrated lysozymes are affected by protein activity and are sensitive both to the ionization of protein side chains and to the state of protein aggregation.  相似文献   

11.
Columbus L  Hubbell WL 《Biochemistry》2004,43(23):7273-7287
In site-directed spin labeling, a nitroxide-containing side chain is introduced at selected sites in a protein. The EPR spectrum of the labeled protein encodes information about the motion of the nitroxide on the nanosecond time scale, which has contributions from the rotary diffusion of the protein, from internal motions in the side chain, and from backbone fluctuations. In the simplest model for the motion of noninteracting (surface) side chains, the contribution from the internal motion is sequence independent, as is that from protein rotary diffusion. Hence, differences in backbone motions should be revealed by comparing the sequence-dependent motions of nitroxides at structurally homologous sites. To examine this model, nitroxide side chains were introduced, one at a time, along the GCN4-58 bZip sequence, for which NMR (15)N relaxation experiments have identified a striking gradient of backbone mobility along the DNA-binding region [Bracken et al. (1999) J. Mol. Biol. 285, 2133]. Spectral simulation techniques and a simple line width measure were used to extract dynamical parameters from the EPR spectra, and the results reveal a mobility gradient similar to that observed in NMR relaxation, indicating that side chain motions mirror backbone motions. In addition, the sequence-dependent side chain dynamics were analyzed in the DNA/protein complex, which has not been previously investigated by NMR relaxation methods. As anticipated, the backbone motions are damped in the DNA-bound state, although a gradient of motion persists with residues at the DNA-binding site being the most highly ordered, similar to those of helices on globular proteins.  相似文献   

12.
Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate.  相似文献   

13.
We have recorded 100.6-MHz high-resolution solid-state 13C-NMR spectra of crystalline cytochrome-c oxidase from bovine heart muscle and hen egg-white lysozyme, to compare conformation and dynamics of a typical membrane-protein complex with those of lysozyme. The absence of severe interference with the solid-state 13C-NMR spectra, from both the line broadenings from paramagnetic centers and overlapping of intense detergent signals, provided spectral resolution of 13C-NMR feature of cytochrome-c oxidase crystals comparable to that of lysozyme crystal and better than that of dissolved or lyophilized samples. In fact, the observed peak intensities of the polar heads of the detergents BL8SY and Brij 35 were only about 10% and 3% of the anticipated values, respectively. The dynamic behavior of the backbone and side chains of cytochrome-c oxidase was compared with that of lysozyme on the basis of the 13C spin-lattice relaxation times (T1): the backbone of the cytochrome-c oxidase turned out to be more flexible than that of lysozyme. Molecular motions of the detergent molecules attached to the proteins are found to be highly heterogeneous. Detergent molecules undergo rapid tumbling motions in the crystals in about 10 ns as detected by T1. In addition to rapid motions, slow motions were detected by 1H spin-lattice relaxation time in the rotating frame (TH1 rho) and cross-polarization time (TCH), together with data from static spectra, indicating that the aliphatic portion of the detergent interacts more strongly with hydrophobic protein surfaces than do the polar heads.  相似文献   

14.
The (1)H- and (13)C-NMR spectra of antifreeze glycoprotein fractions 1-5 from Antarctic cod have been assigned, and the dynamics have been measured using (13)C relaxation at two temperatures. The chemical shifts and absence of non-sequential (1)H-(1)H NOEs are inconsistent with a folded, compact structure. (13)C relaxation measurements show that the protein has no significant long-range order, and that the local correlation times are adequately described by a random coil model. Hydroxyl protons of the sugar residues were observed at low temperature, and the presence of exchange-mediated ROEs to the sugar indicate extensive hydration. The conformational properties of AFGP1-5 are compared with those of the previously examined 14-mer analog AFGP8, which contains proline residues in place of some alanine residues (Lane, A. N., L. M. Hays, R. E. Feeney, L. M. Crowe, and J. H. Crowe. 1998. Protein Sci. 7:1555-1563). The infrared (IR) spectra of AFGP8 and AFGP1-5 in the amide I region are quite different. The presence of a wide distribution of backbone torsion angles in AFGP1-5 leads to a rich spectrum of frequencies in the IR spectrum, as interconversion among conformational states is slow on the IR frequency time scale. However, these transitions are fast on the NMR chemical shift time scales. The restricted motions for AFGP8 may imply a narrower distribution of possible o, psi angles, as is observed in the IR spectrum. This has significance for attempts to quantify secondary structures of proteins by IR in the presence of extensive loops.  相似文献   

15.
A number of different dynamics models are considered for fitting 13C and 2H side chain methyl relaxation rates. It is shown that in cases where nanosecond time scale dynamics are present the extended Lipari–Szabo model which is explicitly parameterized to include the effects of slow motions can produce wide distributions of fitting parameters even in cases where the errors are relatively small and large numbers of relaxation rates are considered. In contrast, fits of 15N backbone dynamics using this model are far more robust. The origin of this difference is analyzed and can be explained by the different functional forms of the spectral density in these two cases. The utility of a number of models for the analysis of methyl side chain dynamics is presented.  相似文献   

16.
Temiz NA  Meirovitch E  Bahar I 《Proteins》2004,57(3):468-480
The dynamics of adenylate kinase of Escherichia coli (AKeco) and its complex with the inhibitor AP(5)A, are characterized by correlating the theoretical results obtained with the Gaussian Network Model (GNM) and the anisotropic network model (ANM) with the order parameters and correlation times obtained with Slowly Relaxing Local Structure (SRLS) analysis of (15)N-NMR relaxation data. The AMPbd and LID domains of AKeco execute in solution large amplitude motions associated with the catalytic reaction Mg(+2)*ATP + AMP --> Mg(+2)*ADP + ADP. Two sets of correlation times and order parameters were determined by NMR/SRLS for AKeco, attributed to slow (nanoseconds) motions with correlation time tau( perpendicular) and low order parameters, and fast (picoseconds) motions with correlation time tau( parallel) and high order parameters. The structural connotation of these patterns is examined herein by subjecting AKeco and AKeco*AP(5)A to GNM analysis, which yields the dynamic spectrum in terms of slow and fast modes. The low/high NMR order parameters correlate with the slow/fast modes of the backbone elucidated with GNM. Likewise, tau( parallel) and tau( perpendicular) are associated with fast and slow GNM modes, respectively. Catalysis-related domain motion of AMPbd and LID in AKeco, occurring per NMR with correlation time tau( perpendicular), is associated with the first and second collective slow (global) GNM modes. The ANM-predicted deformations of the unliganded enzyme conform to the functional reconfiguration induced by ligand-binding, indicating the structural disposition (or potential) of the enzyme to bind its substrates. It is shown that NMR/SRLS and GNM/ANM analyses can be advantageously synthesized to provide insights into the molecular mechanisms that control biological function.  相似文献   

17.
The backbone dynamics in the native state of apocytochrome b5 were studied using 15N nuclear magnetic spin relaxation measurements. The field (11.7 and 14.1 T) and temperature (10-25 degrees C) dependence of the relaxation parameters (R1, R2, and R1rho) and the 1H-15N NOE established that the protein undergoes multiple time scale internal motions related to the secondary structure. The relaxation data were analyzed with the reduced spectral density mapping approach and within the extended model-free framework. The apoprotein was confirmed to contain a disordered heme-binding loop of approximately 30 residues with dynamics on the sub-nanosecond time scale (0.6 < S2 < 0.7, 100 ps < taue < 500 ps). This loop is attached to a structured hydrophobic core, rigid on the picosecond time scale (S2 > 0.75, taue < 50 ps). The inability to fit the data for several residues with the model-free protocol revealed the presence of correlated motion. An exchange contribution was detected in the transverse relaxation rate (R2) of all residues. The differential temperature response of R2 along the backbone supported slower exchange rates for residues in the loop (tauex > 300 micros) than for the folded polypeptide chain (tauex < 150 micros). The distribution of the reduced spectral densities at the 1H and 15N frequencies followed the dynamic trend and predicted the slowing of the internal motions at 10 degrees C. Comparison of the dynamics with those of the holoprotein [Dangi, B., Sarma, S., Yan, C., Banville, D. L., and Guiles, R. D. (1998) Biochemistry 37, 8289-8302] demonstrated that binding of the heme alters the time scale of motions both in the heme-binding loop and in the structured hydrophobic core.  相似文献   

18.
Quasielastic neutron and light-scattering techniques along with molecular dynamics simulations were employed to study the influence of hydration on the internal dynamics of lysozyme. We identified three major relaxation processes that contribute to the observed dynamics in the picosecond to nanosecond time range: 1), fluctuations of methyl groups; 2), fast picosecond relaxation; and 3), a slow relaxation process. A low-temperature onset of anharmonicity at T approximately 100 K is ascribed to methyl-group dynamics that is not sensitive to hydration level. The increase of hydration level seems to first increase the fast relaxation process and then activate the slow relaxation process at h approximately 0.2. The quasielastic scattering intensity associated with the slow process increases sharply with an increase of hydration to above h approximately 0.2. Activation of the slow process is responsible for the dynamical transition at T approximately 200 K. The dependence of the slow process on hydration correlates with the hydration dependence of the enzymatic activity of lysozyme, whereas the dependence of the fast process seems to correlate with the hydration dependence of hydrogen exchange of lysozyme.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号