首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水稻类病斑突变体的生理与遗传分析   总被引:8,自引:0,他引:8  
从全基因组水平上筛选获得了10个籼稻和8个粳稻类病斑(lesion resembling disease,lrd27-44)突变体.从突变体性状受环境影响敏感程度可以分为环境钝感型和环境敏感型.从发育进程可以分为全生育期类病斑型,营养生长阶段起始类病斑型和生殖生长阶段起始类病斑型.病斑的光诱导表明病斑由受光信号激发的程序性细胞死亡引起,而不受损伤诱导.对其中4个突变体lrd32,lrd39,lrd40和lrd42的遗传分析结果表明,这些类病斑性状由1或2对隐性基因控制.两个突变体lrd37和lrd40表现出对白叶枯病菌的广谱抗病性,有关基因定位克隆正在进行中.  相似文献   

2.
The Arabidopsis lesion initiation 1 (len1) mutant develops lesions on leaves without pathogen attack. The len1 plants display lesion formation as they grow under short-day conditions (SD), but not under long-day conditions (LD). This study was conducted to examine how lesion formation, viz., cell death, in len1 plants occurs under SD. I present genetic and physiological data to show that tetrapyrrole metobolism is necessary for lesion formation in len1 plants. Lesion formation was suppressed in the len1lin2 double mutant under SD. lesion initiation 2 (lin2) is another lesion mimic mutant with a defect in tetrapyrrole biosynthesis. Suppression of lesion formation in len1 plants was also observed when they were crossed with the mutants that had defects in other steps in tetrapyrrole metabolism. Suppression was correlated with reduced chlorophyll (Chl) levels in the double mutants. Furthermore, I found that dark-to-light transition caused a bleached phenotype in len1 plants, as in the case of antisense ACD1 (acd, accelerated cell death) plants. ACD1 encodes pheophorbide a oxygenase (PaO), which is involved in Chl catabolism in Arabidopsis. These results suggest that tetrapyrrole metabolism, especially Chl breakdown, might be involved in lesion formation in len1 plants.  相似文献   

3.
Disease lesion mimics of maize: A model for cell death in plants   总被引:1,自引:0,他引:1  
A class of maize mutants, collectively known as disease lesion mimics, display discrete disease-like symptoms in the absence of pathogens. It is intriguing that a majority of these lesion mimics behave as dominant gain-of-function mutations. The production of lesions is strongly influenced by light, temperature, developmental state and genetic background. Presently, the biological significance of this lesion mimicry is not clear, although suggestions have been made that they may represent defects in the plants' recognition of, or response to, pathogens. One feature that is common to all lesion mimics is their association with cell death. In plants, as in animals, a number of developmental and pathological processes exist where controlled cell death, whether programmed or triggered in response to physiological or environmental stimuli, constitutes the normal aspect of life. Might disease lesion mimic mutations represent variants where regulation of desirable cell death has gone awry? In this paper we argue that this might be the case, and further conjecture that these mutants offer a unique opportunity for studying the genetic and cellular mechanisms of cell death in plants.  相似文献   

4.
Pre-harvest sprouting (PHS) and seed longevity (SL) are complex biological processes of major importance for agricultural production. In the present study, a recombinant inbred line (RIL) population derived from a cross between the German winter wheat (Triticum aestivum L.) cultivars History and Rubens was used to identify genetic factors controlling these two physiological seed traits. A falling number (FN) test was employed to evaluate PHS, while SL was measured using a germination test (and the speed of germination) after controlled deterioration. FN of the population was assessed in four environments; SL traits were measured in one environment. Four major quantitative trait loci (QTL) for FN were detected on chromosomes 4D, 5A, 5D, and 7B, whereas for SL traits, a major QTL was found on chromosome 1A. The FN QTL on chromosome 4D that coincided with the position of the dwarfing gene Rht-D1b only had effects in environments that were free of PHS. The remaining three QTL for FN were mostly pronounced under conditions conducive to PHS. The QTL on the long arm of chromosome 7B corresponded to the major gene locus controlling late maturity α-amylase (LMA) in wheat. The severity of the LMA phenotype became truly apparent under sprouting conditions. The position on the long arm of chromosome 1A of the QTL for SL points to a new QTL for this important regenerative seed trait.  相似文献   

5.
Quantitative trait loci (QTL) involved in the resistance of maize to Setosphaeria turcica, the causal agent of northern leaf blight, were located by interval mapping analysis of 121 F2:3 lines derived from a cross between Mo17 (moderately resistant) and B52 (susceptible). A linkage map spanning 112 RFLP loci with 15 cM mean interval length was constructed, based on marker data recorded in a previous study. Field tests with artificial inoculation were conducted at three sites in tropical mid- to high-altitude regions of Kenya, East Africa. Host-plant response was measured in terms of incubation period, disease severity (five scoring dates), and the area under the disease progress curve (AUDPC). Heritability of all traits was high (around 0.75). QTL associated with the incubation period were located on chromosomes 2S and 8L. For disease severity and AUDPC, significant QTL were detected in the putative centromeric region of chromosome 1 and on 2S, 3L, 5S, 6L, 7L, 8L and 9S. On 2S the same marker interval which carried a gene enhancing latent period was also associated with reduced disease severity of juvenile plants. QTL on chromosomes 3L, 5S, 7L and 8L were significant across environments but all other QTL were affected by a large genotype x environment interaction. Partially dominant gene action for resistance as well as for susceptibility was prevailing. Single QTL explained 10 to 38% of the phenotypic variation of the traits. All but the QTL on chromosomes 1, 6 and 9 were contributed by the resistant parent Mo17. On chromosome 8L a QTL mapped to the same region as the major race-specific gene Ht2, supporting the hypothesis that some qualitative and quantitative resistance genes may be allelic.Abbreviations AUDPC area under the disease progress curve - CIMMYT International Maize and Wheat Improvement Center - KARI Kenya Agricultural Research Institute - NCLB northern corn leaf blight - QTL quantitative trait locus/loci  相似文献   

6.
We evaluated a large collection of Tos17 mutant panel lines for their reaction to three different races of Magnaporthe oryzae and identified a lesion mimic mutant, NF4050-8, that showed lesions similar to naturally occurring spl5 mutant and enhanced resistance to all the three blast races tested. Nested modified-AFLP using Tos17-specific primers and southern hybridization experiments of segregating individuals indicated that the lesion mimic phenotype in NF4050-8 is most likely due to a nucleotide change acquired during the culturing process and not due to Tos17 insertion per se. Inheritance and genetic analyses in two japonica × indica populations identified an overlapping genomic region of 13 cM on short arm of chromosome 7 that was linked with the lesion mimic phenotype. High-resolution genetic mapping using 950 F3 and 3,821 F4 plants of NF4050-8 × CO39 delimited a 35 kb region flanked by NBARC1 (5.262 Mb) and RM8262 (5.297 Mb), which contained 6 ORFs; 3 of them were ‘resistance gene related’ with typical NBS–LRR signatures. One of them harbored a NB–ARC domain, which had been previously demonstrated to be associated with cell death in animals. Microarray analysis of NF4050-8 revealed significant up-regulation of numerous defense/pathogenesis-related genes and down-regulation of heme peroxidase genes. Real-time PCR analysis of WRKY45 and PR1b genes suggested possible constitutive activation of a defense signaling pathway downstream of salicylic acid but independent of NH1 in these mutant lines of rice.  相似文献   

7.
Transgene-induced lesion mimic   总被引:17,自引:0,他引:17  
Lesion mimic, i.e., the spontaneous formation of lesions resembling hypersensitive response (HR) lesions in the absence of a pathogen, is a dramatic phenotype occasionally found to accompany the expression of different, mostly unrelated, transgenes in plants. Recent studies indicated that transgene-induced lesion formation is not a simple case of necrosis, i.e., direct killing of cells by the transgene product, but results from the activation of a programmed cell death (PCD) pathway. Moreover, activation of HR-like cell death by transgene expression is viewed as an important evidence for the existence of a PCD pathway in plants. The study of lesion mimic transgenes is important to our understanding of PCD and the signals that control it in plants. PCD-inducing transgenes may provide clues regarding the different entry points into the cell death pathway, the relationships between the different branches of the pathway (e.g., developmental or environmental), or the different mechanisms involved in its induction or execution. Cell death-inducing transgenes may also be useful in biotechnology. Some lesion mimic transgenes were found to be induced in plants a state of systemic acquired resistance (SAR). These genes can be used in the development of pathogen-resistant crops. Other cell death-inducing transgenes may be used as specific cell ablation tools. Although mainly revealed unintentionally, and at times considered `an adverse phenotype', lesion mimic transgenes should not be ignored because they may prove valuable for studying PCD as well as developing useful traits in different plants and crops.  相似文献   

8.
The extent of imprinting at R-r, frequency of paramutation at B-Intense and Pl, and epigenetic silencing of Mu transposons were evaluated in the W23 and A188 inbred lines of maize. All types of epigenetic phenomena affecting these loci of the anthocyanin pathway occurred more frequently in the W23 inbred line. Absence of down-regulation was dominant in F1 hybrid progeny. Identical alleles programme lower anthocyanin accumulation in A188 than in W23, and A188 plants develop more rapidly than W23. The possibilities that specific genetic factors, intrinsic gene expression levels and/or the rapidity of the life cycle modulate epigenetic gene controls are discussed.  相似文献   

9.
Much remains unknown of molecular events controlling the plant hypersensitive defense response (HR), a rapid localized cell death that limits pathogen spread and is mediated by resistance (R-) genes. Genetic control of the HR is hard to quantify due to its microscopic and rapid nature. Natural modifiers of the ectopic HR phenotype induced by an aberrant auto-active R-gene (Rp1-D21), were mapped in a population of 3,381 recombinant inbred lines from the maize nested association mapping population. Joint linkage analysis was conducted to identify 32 additive but no epistatic quantitative trait loci (QTL) using a linkage map based on more than 7000 single nucleotide polymorphisms (SNPs). Genome-wide association (GWA) analysis of 26.5 million SNPs was conducted after adjusting for background QTL. GWA identified associated SNPs that colocalized with 44 candidate genes. Thirty-six of these genes colocalized within 23 of the 32 QTL identified by joint linkage analysis. The candidate genes included genes predicted to be in involved programmed cell death, defense response, ubiquitination, redox homeostasis, autophagy, calcium signalling, lignin biosynthesis and cell wall modification. Twelve of the candidate genes showed significant differential expression between isogenic lines differing for the presence of Rp1-D21. Low but significant correlations between HR-related traits and several previously-measured disease resistance traits suggested that the genetic control of these traits was substantially, though not entirely, independent. This study provides the first system-wide analysis of natural variation that modulates the HR response in plants.  相似文献   

10.
植物类病变突变体的诱发与突变机制   总被引:6,自引:0,他引:6  
植物类病变突变体(lesion mimic mutant,LMM)是在无明显逆境或病原物侵染时,植物自发地形成类似病斑的一类突变体。它涉及到细胞程序性死亡(programmed cell death,PCD),往往能提高植物的抗病能力。因此,它对于揭示植物抗病反应机制,增加植物的广谱抗性具有重要意义。现就植物类病变突变体的诱发与表型特点、突变基因的分子定位与克隆及类病变表型的形成机制研究进展作一简要综述,以期为植物细胞程序性死亡机制和抗病分子作用机制研究提供有益的信息。  相似文献   

11.
Lesion mimic mutants develop spontaneous cell death without pathogen attack. Some of the genes defined by these mutations may function as regulators of cell death, whereas others may perturb cellular metabolism in a way that leads to cell death. To understand the molecular mechanism of cell death in lesion mimic mutants, we isolated a lesion initiation 1 (len1) mutant by a T-DNA tagging method. The len1 mutant develops lesions on its leaves and expresses systemic acquired resistance (SAR). LEN1 was identified to encode a chloroplast chaperonin 60 beta (Cpn60 beta), a homologue of bacterial GroEL. The recombinant LEN1 had molecular chaperone activity for suppressing protein aggregation in vitro. Moreover, len1 plants develop accelerated cell death to heat shock stress in comparison with wild-type plants. The chlorophyll a/b binding protein (CAB) was present in len1 plants at a lower level than in the wild-type plants. These results indicate that LEN1 functions as a molecular chaperone in chloroplasts and its deletion leads to cell death in Arabidopsis.  相似文献   

12.
Previous studies indicated that the lethal leaf spot 1 lesion mimic locus of maize ( ZmLls1 ) encodes a novel cell protective function in plants. Here we show that the accelerated cell death 1 ( acd1 ) locus of Arabidopsis thaliana corresponds to gene At3g44880 on chromosome 3. Proof that the Acd1 gene is an orthologue of ZmLls1 is provided by in vivo complementation of the acd1 mutant by the ZmLls1 gene. The Atlls1 lesion mimic phenotype was delayed in a chlorophyll a oxygenase (CAO) mutant chlorina1 background which is deficient in chlorophyll b synthesis. The interpretation that the cell protective function of LLS1 is linked with the removal of a phototoxic chlorophyll intermediate is supported by the recent report that the maize Lls1 gene encodes pheophorbide a oxygenase (PaO). Western blot analysis demonstrates that the LLS1 protein is present constitutively in all photosynthetic plant tissues. A transient increase in Lls1 gene expression by about 50-fold upon physical wounding of maize leaves indicates that the function of Lls1 is regulated in response to stress. We show that the LLS1 protein is also present at low levels in non-photosynthetic tissues including etiolated leaves suggesting that the ability to degrade chlorophyll exists in a standby mode in plant cells.  相似文献   

13.
Dang R  Torigoe D  Sasaki N  Agui T 《PloS one》2011,6(11):e27902
Hirschsprung disease (HSCR) exhibits complex genetics with incomplete penetrance and variable severity thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. As reported previously, when the same null mutation of the Ednrb gene, Ednrb(sl), was introgressed into the F344 strain, almost 60% of F344-Ednrb(sl/sl) pups did not show any symptoms of aganglionosis, appearing healthy and normally fertile. These findings strongly suggested that the severity of HSCR was affected by strain-specific genetic factor (s). In this study, the genetic basis of such large strain differences in the severity of aganglionosis in the rat model was studied by whole-genome scanning for quantitative trait loci (QTLs) using an intercross of (AGH-Ednrb(sl)×F344-Ednrb(sl)) F(1) with the varying severity of aganglionosis. Genome linkage analysis identified one significant QTL on chromosome 2 for the severity of aganglionosis. Our QTL analyses using rat models of HSCR revealed that multiple genetic factors regulated the severity of aganglionosis. Moreover, a known HSCR susceptibility gene, Gdnf, was found in QTL that suggested a novel non-coding sequence mutation in GDNF that modifies the penetrance and severity of the aganglionosis phenotype in EDNRB-deficient rats. A further identification and analysis of responsible genes located on the identified QTL could lead to the richer understanding of the genetic basis of HSCR development.  相似文献   

14.
To identify genetic loci influencing lipid levels, we performed quantitative trait loci (QTL) analysis between inbred mouse strains MRL/MpJ and SM/J, measuring triglyceride levels at 8 weeks of age in F2 mice fed a chow diet. We identified one significant QTL on chromosome (Chr) 15 and three suggestive QTL on Chrs 2, 7, and 17. We also carried out microarray analysis on the livers of parental strains of 282 F2 mice and used these data to find cis-regulated expression QTL. We then narrowed the list of candidate genes under significant QTL using a "toolbox" of bioinformatic resources, including haplotype analysis; parental strain comparison for gene expression differences and nonsynonymous coding single nucleotide polymorphisms (SNP); cis-regulated eQTL in livers of F2 mice; correlation between gene expression and phenotype; and conditioning of expression on the phenotype. We suggest Slc25a7 as a candidate gene for the Chr 7 QTL and, based on expression differences, five genes (Polr3 h, Cyp2d22, Cyp2d26, Tspo, and Ttll12) as candidate genes for Chr 15 QTL. This study shows how bioinformatics can be used effectively to reduce candidate gene lists for QTL related to complex traits.  相似文献   

15.
The LEC rat has been reported to exhibit X-ray hypersensitivity and deficiency in DNA double-strand break (DSB) repair. The present study was performed to map the locus responsible for this phenotype, the xhs (X-ray hypersensitivity), as the first step in identifying the responsible gene. Analysis of the progeny of (BN × LEC)F1× LEC backcrosses indicated that the X-ray hypersensitive phenotype was controlled by multiple genetic loci in contrast to the results reported previously. Quantitative trait loci (QTL) linkage analysis revealed two responsible loci located on Chromosomes (Chr) 4 and 1. QTL on Chr 4 exhibited very strong linkage to the X-ray hypersensitive phenotype, while QTL on Chr 1 showed weak linkage. The Rad52 locus, mutation of which results in hypersensitivity to ionizing radiation and impairment of DNA DSB repair in yeast, was reported to be located on the synteneic regions of mouse Chr 6 and human Chr 12. However, mapping of the rat Rad52 locus indicated that it was located 23 cM distal to the QTL on Chr 4. Furthermore, none of the radio-sensitivity-related loci mapped previously in the rat chromosome were identical to the QTL on Chrs 4 and 1 in the LEC rat. Thus, it seems that X-ray hypersensitivity in the LEC rat is caused by mutation(s) in as-yet-undefined genes. Received: 14 February 2000 / Accepted: 17 May 2000  相似文献   

16.
Cytogenetic and molecular genetic analyses of human intraspecific HeLa x fibroblast hybrids have provided evidence for the presence of a tumor-suppressor gene(s) on chromosome 11 of normal cells. In the present study, we have carried out extensive RFLP analysis of various nontumorigenic and tumorigenic hybrids with at least 50 different chromosome 11-specific probes to determine the precise location of this tumor-suppressor gene(s). Two different hybrid systems, (1) microcell hybrids derived by the transfer of a normal chromosome 11 into a tumorigenic HeLa-derived hybrid cell and (2) somatic cell hybrids derived by the fusion of the HeLa (D98OR) cells to a retinoblastoma (Y79) cell line, were particularly informative. The analysis showed that all but one of the nontumorigenic hybrid cell lines contained a complete copy of the normal chromosome 11. This variant hybrid contained a segment of the long arm but had lost the entire short arm of the chromosome. The tumorigenic microcell and somatic cell hybrids had retained the short arm of the chromosome but had lost at least the q13-23 region of the chromosome. Thus, these results showed a perfect correlation between the presence of the long arm of chromosome 11 and the suppression of the tumorigenic phenotype. We conclude therefore that the gene(s) involved in the suppression of the HeLa cell tumors is localized to the long arm (q arm) of chromosome 11.  相似文献   

17.
The rice (Oryza sativa L.) lesion mimic and senescence (lms) EMS-mutant, identified in a japonica cultivar Hitomebore, is characterized by a spontaneous lesion mimic phenotype during its vegetative growth, an accelerated senescence after flowering, and enhanced resistance to rice blast (Magnaporthe oryzae). To isolate the OsLMS gene, we crossed the lms mutant to Kasalath (indica), and used mutant F(2) plants to initially map the candidate region to about 322-kb on the long arm of chromosome 2. Illumina whole-genome re-sequencing of the mutant and aligning the reads to Hitomebore reference sequence within the candidate region delineated by linkage analysis identified a G to A nucleotide substitution. The mutation corresponded to the exon-intron splicing junction of a novel gene that encodes a carboxyl-terminal domain (CTD) phosphatase domain and two double stranded RNA binding motifs (dsRBM) containing protein. By PCR amplification, we confirmed that the mutation causes splicing error that is predicted to introduce a premature stop codon. RNA interference (RNAi) transgenic lines with suppressed expression of LMS gene exhibited the lesion mimic phenotype, confirming that the mutation identified in LMS is responsible for the mutant phenotype. OsLMS shares a moderate amino-acid similarity to the Arabidopsis FIERY2/CPL1 gene, which is known to control many plant processes such as stress response and development. Consistence with this similarity, the lms mutant shows sensitivity to cold stress at the early growth stage, suggesting that LMS is a negative regulator of stress response in rice.  相似文献   

18.
Tan spot, caused by Pyrenophora tritici-repentis, is a destructive foliar disease of wheat causing significant yield reduction in major wheat growing areas throughout the world. The objective of this study was to identify quantitative trait loci (QTL) conferring resistance to tan spot in the synthetic hexaploid wheat (SHW) line TA4152-60. A doubled haploid (DH) mapping population derived from TA4152-60 × ND495 was inoculated with conidia produced by isolates of each of four virulent races of P. tritici-repentis found in North America. QTL analysis revealed a total of five genomic regions significantly associated with tan spot resistance, all of which were contributed by the SHW line. Among them, two novel QTLs located on chromosome arms 2AS and 5BL conferred resistance to all isolates tested. Another novel QTL on chromosome arm 5AL conferred resistance to isolates of races 1, 2 and 5, and a QTL specific to a race 3 isolate was detected on chromosome arm 4AL. None of these QTLs corresponded to known host selective toxin (HST) insensitivity loci, but a second QTL on chromosome arm 5BL conferred resistance to the Ptr ToxA producing isolates of races 1 and 2 and corresponded to the Tsn1 (Ptr ToxA sensitivity) locus. This indicates that the wheat-P. tritici-repentis pathosystem is much more complex than previously thought and that selecting for toxin insensitivity alone will not necessarily lead to tan spot resistance. The markers associated with the QTLs identified in this work will be useful for deploying the SHW line as a tan spot resistance source in wheat breeding. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

19.
Cultivated tomato (Solanum lycopersicum, syn. Lycopersicon esculentum) is susceptible to the necrotrophic ascomycete and causal agent of gray mold, Botrytis cinerea. Resistance to this fungal pathogen is elevated in wild relatives of tomato, including Solanum lycopersicoides. An introgression line population (IL) containing chromosomal segments of S. lycopersicoides within the background of tomato cv. VF36 was used to screen the genome for foliar resistance and susceptibility to B. cinerea. Based on this screen, putative quantitative trait loci (QTL) were identified, five for resistance and two for susceptibility. Four resistance QTL decreased infection frequency while the fifth reduced lesion diameter. One susceptibility QTL increased infection frequency whereas the other increased lesion diameter. Overlapping chromosomal segments provided strong evidence for partial resistance on chromosomes 1 and 9 and for elevated susceptibility on chromosome 11. Segregation analysis confirmed the major resistance QTL on the long arm of chromosome 1 and susceptibility on chromosome 11. Linkage of partial resistance to chromosome 9 could not be confirmed. The usefulness of these data for resistance breeding and for map-based cloning of foliar resistance to B. cinerea is discussed.  相似文献   

20.
Tan spot, caused by Pyrenophora tritici-repentis, is a foliar disease of wheat, and it can inflict serious reduction in grain yield and quality. The bread wheat variety Ernie was found to be immune to this disease in Australia, and its genetic control was investigated by quantitative trait loci (QTL) analysis using a doubled haploid population. Eight QTL were identified in this population from three independent trials, and four of them were derived from the parent Ernie. The most significant QTL was located on chromosome arm 2BS, explaining 38.2, 29.8 and 36.2% of the phenotypic variance, respectively, in these trials. The effects of the 2BS QTL were further validated in four additional populations. The presence of this single QTL reduced disease severity by between 29.2 and 67.1% with an average of 50.5%. The significant effects of this QTL and its consistent detection across all the trials with different genetic backgrounds make it an ideal target for breeding programmes as well as for its further characterization. Data from this study also showed that neither plant height nor heading date significantly affects tan spot resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号