首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic carbonic anhydrase II (CAII) and the cytoplasmic C-terminal tails of chloride/bicarbonate anion exchange (AE) proteins associate to form a bicarbonate transport metabolon, which maximizes the bicarbonate transport rate. To determine whether cell surface-anchored carbonic anhydrase IV (CAIV) interacts with AE proteins to accelerate the bicarbonate transport rate, AE1-mediated bicarbonate transport was monitored in transfected HEK293 cells. Expression of the inactive CAII V143Y mutant blocked the interaction between endogenous cytosolic CAII and AE1, AE2, and AE3 and inhibited their transport activity (53 +/- 3, 49 +/- 10, and 35 +/- 1% inhibition, respectively). However, in the presence of V143Y CAII, expression of CAIV restored full functional activity to AE1, AE2, and AE3 (AE1, 101 +/- 3; AE2, 85 +/- 5; AE3, 108 +/- 1%). In Triton X-100 extracts of transfected HEK293 cells, resolved by sucrose gradient ultracentrifugation, CAIV recruitment to the position of AE1 suggested a physical interaction between CAIV and AE1. Gel overlay assays showed a specific interaction between CAIV and AE1, AE2, and AE3. Glutathione S-transferase pull-down assays revealed that the interaction between CAIV and AE1 occurs on the large fourth extracellular loop of AE1. We conclude that AE1 and CAIV interact on extracellular loop 4 of AE1, forming the extracellular component of a bicarbonate transport metabolon, which accelerates the rate of AE-mediated bicarbonate transport.  相似文献   

2.
The cytoplasmic carboxyl-terminal domain of AE1, the plasma membrane chloride/bicarbonate exchanger of erythrocytes, contains a binding site for carbonic anhydrase II (CAII). To examine the physiological role of the AE1/CAII interaction, anion exchange activity of transfected HEK293 cells was monitored by following the changes in intracellular pH associated with AE1-mediated bicarbonate transport. AE1-mediated chloride/bicarbonate exchange was reduced 50-60% by inhibition of endogenous carbonic anhydrase with acetazolamide, which indicates that CAII activity is required for full anion transport activity. AE1 mutants, unable to bind CAII, had significantly lower transport activity than wild-type AE1 (10% of wild-type activity), suggesting that a direct interaction was required. To determine the effect of displacement of endogenous wild-type CAII from its binding site on AE1, AE1-transfected HEK293 cells were co-transfected with cDNA for a functionally inactive CAII mutant, V143Y. AE1 activity was maximally inhibited 61 +/- 4% in the presence of V143Y CAII. A similar effect of V143Y CAII was found for AE2 and AE3cardiac anion exchanger isoforms. We conclude that the binding of CAII to the AE1 carboxyl-terminus potentiates anion transport activity and allows for maximal transport. The interaction of CAII with AE1 forms a transport metabolon, a membrane protein complex involved in regulation of bicarbonate metabolism and transport.  相似文献   

3.
Carbonic anhydrases (CA, EC 4.2.1.1.) catalyze reversible hydration of CO2 to HCO3- + H+. Bicarbonate transport proteins, which catalyze the transmembrane movement of membrane-impermeant bicarbonate, function in cooperation with CA. Since CA and bicarbonate transporters share the substrate, bicarbonate, we examined whether novel competitive inhibitors of CA also have direct inhibitory effects on bicarbonate transporters. We expressed the human erythrocyte membrane Cl-/HCO3- exchanger, AE1, in transfected HEK293 cells as a model bicarbonate transporter. AE1 activity was assessed in both Cl-/NO3- exchange assays, which were independent of CA activity, and in Cl-/HCO3- exchange assays. Transport was measured by following changes of intracellular [Cl-] and pH, using the intracellular fluorescent reporter dyes 6-methoxy-N-(3-sulfopropyl)quinolinium and 2',7'-bis-(2-carboxyethyl)-5-(and-6)carboxyfluorescein, respectively. We examined the effect of 16 different carbonic anhydrase inhibitors on AE1 transport activity. Among these 12 were newly-reported compounds; two were clinically used non-steroidal anti-inflammatory drugs (celecoxib and valdecoxib) and two were anti-convulsant drugs (topiramate and zonisamide). Celecoxib and four of the novel compounds significantly inhibited AE1 Cl-/NO3- exchange activity with EC50 values in the range 0.22-2.8 microM. It was evident that bulkier compounds had greater AE1 inhibitory potency. Maximum inhibition using 40 microM of each compound was only 22-53% of AE1 transport activity, possibly because assays were performed in the presence of competing substrate. In Cl-/HCO3- exchange assays, which depend on functional CA to produce transport substrate, 40 microM celecoxib inhibited AE1 by 62+/-4%. We conclude that some carbonic anhydrase inhibitors, including clinically-used celecoxib, will inhibit bicarbonate transport at clinically-significant concentrations.  相似文献   

4.
To allow cells to control their pH and bicarbonate levels, cells express bicarbonate transport proteins that rapidly and selectively move bicarbonate across the plasma membrane. Physical interactions have been identified between the carbonic anhydrase isoform, CAII, and the erythrocyte membrane Cl- /HCO3(-) anion exchanger, AE1, mediated by an acidic motif in the AE1 C-terminus. We have found that the presence of CAII attached to AE1 accelerates AE1 HCO3(-) transport activity, as AE1 moves bicarbonate either into or out of the cell. In efflux mode the presence of CAII attached to AE1 will increase the local concentration of bicarbonate at the AE1 transport site. As bicarbonate is transported into the cell by AE1, the presence of CAII on the cytosolic surface accelerates transport by consumption of bicarbonate, thereby maximizing the transmembrane bicarbonate concentration gradient experienced by the AE1 molecule. Functional and physical interactions also occur between CAII and Na+/HCO3(-) co-transporter isoforms NBC1 and NBC3. All examined bicarbonate transport proteins, except the DRA (SLC26A3) Cl-/HCO3(-) exchange protein, have a consensus CAII binding site in their cytoplasmic C-terminus. Interestingly, CAII does not bind DRA. CAIV is anchored to the extracellular surface of cells via a glycosylphosphatidyl inositol linkage. We have identified extracellular regions of AE1 and NBC1 that directly interact with CAIV, to form a physical complex between the proteins. In summary, bicarbonate transporters directly interact with the CAII and CAIV carbonic anhydrases to increase the transmembrane bicarbonate flux. The complex of a bicarbonate transporter with carbonic anhydrase forms a "Bicarbonate Transport Metabolon."  相似文献   

5.
Chloride self-exchange was determined by measuring the rate of 36Cl efflux from human red blood cells at pH 7.2 (0 degrees C) in the presence of fluoride, bromide, iodide, and bicarbonate. The chloride concentration was varied between 10--400 mM and the concentration of other halides and bicarbonate between 10--300 mM. Chloride equilibrium flux showed saturation kinetics. The half-saturation constant increased and the maximum flux decreased in the presence of halides and bicarbonate: the inhibition kinetics were both competitive and noncompetitive. The competitive and the noncompetitive effects increased proportionately in the sequence: fluoride less than bromide less than iodide. The inhibitory action of bicarbonate was predominantly competitive. The noncompetitive effect of chloride (chloride self-inhibition) on chloride transport was less dominant at high inhibitor concentrations. Similarly, the noncompetitive action of the inhibitors was less dominant at high chloride concentrations. The results can be described by a carrier model with two anion binding sites: a transport site, and a second site which modifies the maximum transport rate. Binding to both types of sites increases proportionately in the sequence: fluoride less than chloride less than bromide less than iodide.  相似文献   

6.
Vince JW  Carlsson U  Reithmeier RA 《Biochemistry》2000,39(44):13344-13349
Human carbonic anhydrase II (CAII) possesses a binding site for an acidic motif (D887ADD) within the carboxyl-terminal region (Ct) of the human erythrocyte chloride/bicarbonate anion exchanger, AE1. In this study, the amino acid sequence comprising this AE1 binding site was localized to the first 17 residues of CAII, which form a basic patch on the surface of the protein. Truncation of the amino terminal of CAII by five residues resulted in a 3-fold reduction in the apparent affinity of the interaction with a GST fusion protein of the Ct of AE1 (GST-Ct) measured by a sensitive microtiter plate binding assay. Further amino-terminal truncation of CAII by 17 or 24 residues caused a loss of binding. The homologous isoform CAI does not bind AE1, despite having 60% sequence identity to CAII. One major difference between the two CA isoforms, within the amino-terminal region, is a high content of histidine residues in CAII (His3, -4, -10, -15, -17) not found in CAI. Mutation of pairs of these histidines (and one lysine) in CAII to the analogous residues in CAI (H3P/H4D or K9D/H10K or H15Q/H17S), or combinations of these various double mutants, did not greatly affect binding between GST-Ct and the mutant CAII. However, when all six of the targeted CAII residues were mutated to the corresponding sequence in CAI, binding of GST-Ct was lost. These results indicate that the AE1 binding site is located within the first 17 residues of CAII, and that the interaction is mediated by electrostatic interactions involving histidine and/or lysine residues. Further specificity for the interaction of AE1 and CAII is provided by a conserved leucine residue (L886) in AE1 that, when mutated to alanine, resulted in loss of GST-Ct binding to immobilized CAII. The binding of the basic amino-terminal region of CAII to an acidic Ct in AE1 provides a structural basis for linking bicarbonate transport across the cell membrane to intracellular bicarbonate metabolism.  相似文献   

7.
The inhibition of the newly discovered cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozyme XIII of murine origin (mCA XIII) has been investigated with a series of anions, such as the physiological ones (bicarbonate, chloride), or the metal complexing anions (cyanate, cyanide, azide, hydrogen sulfide, etc), nitrate, nitrite, sulfate, sulfamate, sulfamide as well as with phenylboronic and phenylarsonic acids. The best mCA XIII inhibitors were cyanate, thiocyanate, cyanide and sulfamide, with K(I)-s in the range of 0.25microM-0.74 mM, whereas fluoride, iodide, azide, carbonate and hydrogen sulfide were less effective (K(I)-s in the range of 3.0-5.5mM). The least effective inhibitors were sulfate, chloride and bicarbonate (K(I)-s in the range of 138-267 mM). The affinity of mCA XIII for anions is very different from that of the other cytosolic isozymes (hCA I and II) or the mitochondrial isozyme hCA V. This resistance to inhibition by the physiological anions bicarbonate and chloride suggests an evolutionary adaptation of CA XIII to the presence of high concentrations of such anions (e.g., in the reproductive tract of both female and male), and the possible participation of this isozyme (similarly to CA II, CA IV and CA V) in metabolons with proteins involved in the anion exchange and transport, such as the anion exchangers (AE1-3) or the sodium bicarbonate co-transporter (NBC1 and NBC3) proteins, which remain to be identified.  相似文献   

8.
X B Tang  J R Casey 《Biochemistry》1999,38(44):14565-14572
AE1, the chloride/bicarbonate anion exchanger of the erythrocyte plasma membrane, is highly sensitive to inhibition by stilbene disulfonate compounds such as DIDS (4,4'-diisothiocyanostilbene-2, 2'-disulfonate) and DNDS (4,4'-dinitrostilbene-2,2'-disulfonate). Stilbene disulfonates recruit the anion binding site to an outward-facing conformation. We sought to identify the regions of AE1 that undergo conformational changes upon noncovalent binding of DNDS. Since conformational changes induced by stilbene disulfonate binding cause anion transport inhibition, identification of the DNDS binding regions may localize the substrate binding region of the protein. Cysteine residues were introduced into 27 sites in the extracellular loop regions of an otherwise cysteineless form of AE1, called AE1C(-). The ability to label these residues with biotin maleimide [3-(N-maleimidylpropionyl)biocytin] was then measured in the absence and presence of DNDS. DNDS reduced the ability to label residues in the regions around G565, S643-M663, and S731-S742. We interpret these regions either as (i) part of the DNDS binding site or (ii) distal to the binding site but undergoing a conformational change that sequesters the region from accessibility to biotin maleimide. DNDS alters the conformation of residues outside the plane of the bilayer since the S643-M663 region was previously shown to be extramembranous. Upon binding DNDS, AE1 undergoes conformational changes that can be detected in extracellular loops at least 20 residues away from the hydrophobic core of the lipid bilayer. We conclude that the TM7-10 region of AE1 is central to the stilbene disulfonate and substrate binding region of AE1.  相似文献   

9.
A novel stilbene disulfonate, 4-trimethylammonium-4'-isothiocyanostilbene-2,2'-disulfonic acid (TIDS), has been chemically synthesized, and the interaction of this probe with human erythrocyte anion exchanger (AE1) was characterized. Covalent labeling of intact erythrocytes by [N(+)((14)CH(3))(3)]TIDS revealed that specific modification of AE1 was achieved only after removal of other ligand binding sites by external trypsinization. Following proteolysis, (1.2 +/- 0.4) x 10(6) TIDS binding sites per erythrocyte could be blocked by prior treatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a highly specific inhibitor of AE1. Inhibition of sulfate equilibrium exchange by TIDS in whole cells was described by a Hill coefficient of 1.10 +/- 0.06, which reduced to 0.51 +/- 0.01 following external trypsinization. The negative cooperativity of TIDS binding following external trypsinization suggests that trypsin-sensitive proteins modulate allosteric coupling between AE1 monomers. Thermodynamic analysis revealed that TIDS binding induces smaller conformational changes in AE1 than is observed following DIDS binding. The similar inhibitory potencies of both TIDS (IC(50) = 0.71 +/- 0.48 microM) and DIDS (IC(50) = 0.2 microM) imply that there is no correlation between the ability of stilbene disulfonates to arrest anion exchange function and the magnitude of ligand-induced conformational changes in AE1. Solid state (2)H NMR analysis of a [N(+)(CD(3))(3)]TIDS-AE1 complex in both unoriented and macroscopically oriented membranes revealed that large amplitude "wobbling" motions describe ligand dynamics. The data are consistent with a model where TIDS bound to AE1 is located exofacially in contact with the bulk aqueous phase.  相似文献   

10.
The effect of sodium arsenite and cadmium chloride on adenylate cyclase activity was examined in turkey erythrocyte membranes. Sodium arsenite was a weak inhibitor of adenylate cyclase -7mM produced only 60% inhibition. Its effect, however, was greatly potentiated by equimolar 2,3 dimercaprol- wherein 0.7 mM sodium arsenite inhibited 100% with an apparent Ki of 0.1 mM. Equimolar mercaptoethanol was less effective in potentiating sodium arsenite inhibition. Thus 0.7mM sodium arsenite in the presence of equimolar mercaptoethanol inhibited adenylate cyclase 56%. Excess 2,3 dimercaprol reversed inhibition by sodium arsenite or cadmium chloride. Sodium arsenite or cadmium chloride inhibited all forms of adenylate cyclase activity tested, including nonhormonal stimulation. Equimolar sodium arsenite and dimercaprol, at concentrations that caused 100% inhibition of adenylate cyclase activity, reduced the binding of the beta-receptor specific ligand iodohydroxybenzylpindolol by less than 15%. These results suggest that turkey erythrocyte membranes contain closely juxtaposed thiol groups and that interaction of such groups with arsenate interferes with the catalytic function of adenulate cyclase.  相似文献   

11.
Modulation of [3H]muscimol binding by picrotoxin, pentobarbitone, and etomidate was investigated in rat cerebellar and cerebral cortical membranes. In cerebellum, at 37 degrees C in the presence of chloride ions (150 mM), picrotoxin and picrotoxinin decreased specific [3H]muscimol binding to 43 +/- 3% of control, with an EC50 of 1.2 +/- 0.1 microM. [3H]Muscimol saturation experiments in the presence and absence of picrotoxin indicated that the picrotoxin effect was primarily due to a loss of high-affinity muscimol sites with KD approximately equal to 10 nM. Pentobarbitone enhanced specific [3H]muscimol binding to 259 +/- 3% of control, with EC50 = 292 +/- 37 microM, and etomidate increased binding to 298 +/- 18%, with EC50 = 7.1 +/- 1.0 microM. The influence of temperature and chloride ion concentration on these effects was investigated by comparing experiments at 37 and 0 degrees C in the presence or absence of chloride at constant ionic strength. The results indicate that studies at 0 degrees C underestimate the coupling between GABA receptors and barbiturate sites and that they greatly overestimate the importance of chloride ions in this phenomenon. In cerebral cortical membranes (37 degrees C, 150 mM Cl-), the effect of picrotoxin was similar to that observed in cerebellum, whereas the effects of pentobarbitone and etomidate were greater, but occurred at higher concentrations.  相似文献   

12.
Sodium-23 nuclear magnetic resonance was utilized to compare sodium binding to erythrocyte ghosts of normotensive and of essential hypertensive individuals. Plots of the reciprocal of the excess longitudinal relaxation rates as a function of total sodium ion concentration indicated tighter and more complex sodium interaction with erythrocyte membrane preparations from normotensives and a weaker, simpler sodium binding with membranes of hypertensives. NMR studies comparing 1) sodium-23 interaction with DIDS inhibition of chloride-35 interaction and 2) competitive effects of cations on the sodium interaction provided evidence for specific sodium binding to the cytoplasmic surface of the erythrocyte ghosts. The results are briefly considered relative to possible mechanisms for essential hypertension.  相似文献   

13.
The uptake of [32P]phosphate into phosphatidylinositol and phosphatidate was measured in synaptosomes incubated in Krebs-Ringer bicarbonate buffer, pH7.4. The apparent dissociation constants for acetylcholine and carbamoylcholine was estimated from the increase in 32P uptake caused by these agents. These apparent constants were similar for both phosphatidylinositol and phosphatidate and were 2.7 +/- 0.5 MICROmeter for acetylcholine and 12 +/- 2 micrometer for carbamoylcholine when Ca2+ concentration was 0.75 mM. Under the same conditions the inhibition of the carbamoylcholine-induced increase in 32P uptake, caused by atropine, is consistent with atropine being a competitive inhibitor, with an apparent inhibition constant of 0.35 +/- 0.05 micrometer. The apparent constants were dependent on the Ca2+ concentration, and were greater in 2.54 mM-Ca2+. The former values for the kinetic constants are similar to the muscarinic-receptor dissociation constant, which indicates that the binding of the agonist to the receptor may be rate-limiting in this series of reactions when the Ca2+ concentration is 0.75 mM.  相似文献   

14.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4'-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25 degrees C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 +/- 0.11) X 10(-10) moles . min-1 . cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 +/- 14 mM and for the modifier site Ks' = 653 +/- 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25 degrees C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n approximately equal to 1), indicating a single site of inhibition for the two probes. The kinetics of sulfate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate transport site was the target for the action of the inhibitors. The inhibitory constants (Ki) for the transport sites were 0.45 +/- 0.10 microM for DNDS and 0.21 +/- 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus operandi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion transport sites are also the sites of inhibition and of labeling of covalent binding analogs of BS and DS.  相似文献   

15.
Rapidly growing pig-kidney-derived epithelial cells, LLC-PK1, lack detectable amiloride-sensitive Na+/H+ exchange activity when assayed directly. A large 22Na uptake is induced when the cells are acid-loaded prior to assay by incubation with buffer containing ammonium chloride or nigericin. The acid-stimulated sodium uptake is sensitive to amiloride, with half-maximal inhibition at 3.5-4.5 microM in buffer containing 15 mM sodium ion. There is simple competitive interaction between amiloride and sodium ion when the amiloride concentration is below 25 microM and the sodium ion concentration is above 20 mM. Derivatives of amiloride which carry substituents on the 5-amino group are 35- to 175-fold more inhibitory than amiloride itself.  相似文献   

16.
COOH-terminal cytoplasmic tails ofchloride/bicarbonate anion exchangers (AE) bind cytosolic carbonicanhydrase II (CAII) to form a bicarbonate transport metabolon, amembrane protein complex that accelerates transmembrane bicarbonateflux. To determine whether interaction with CAII affects thedownregulated in adenoma (DRA) chloride/bicarbonate exchanger, anionexchange activity of DRA-transfected HEK-293 cells was monitored byfollowing changes in intracellular pH associated with bicarbonatetransport. DRA-mediated bicarbonate transport activity of 18 ± 1 mM H+ equivalents/min was inhibited 53 ± 2% by 100 mM of the CAII inhibitor, acetazolamide, but was unaffected by themembrane-impermeant carbonic anhydrase inhibitor,1-[5-sulfamoyl-1,3,4-thiadiazol-2-yl-(aminosulfonyl-4-phenyl)]-2,6-dimethyl-4-phenyl-pyridinium perchlorate. Compared with AE1, the COOH-terminal tail of DRA interacted weakly with CAII. Overexpression of a functionally inactiveCAII mutant, V143Y, reduced AE1 transport activity by 61 ± 4%without effect on DRA transport activity (105 ± 7% transport activity relative to DRA alone). We conclude that cytosolic CAII isrequired for full DRA-mediated bicarbonate transport. However, DRAdiffers from other bicarbonate transport proteins because its transportactivity is not stimulated by direct interaction with CAII.

  相似文献   

17.
The effect of volume absorption on bicarbonate absorption was examined in the in vivo perfused rat proximal convoluted tubule. Volume absorption was inhibited by isosmotic replacement of luminal NaCl with raffinose. In tubules perfused with 25 mM bicarbonate, as raffinose was increased from 0 to 55 to 63 mM, volume absorption decreased from 2.18 +/- 0.10 to 0.30 +/- 0.18 to -0.66 +/- 0.30 nl/mm X min, respectively, and bicarbonate absorption decreased from 131 +/- 5 to 106 +/- 8 to 91 +/- 13 pmol/mm X min, respectively. This bicarbonate-water interaction could not be attributed to dilutional changes in luminal or peritubular bulk phase bicarbonate concentrations. Inhibition of active proton secretion by acetazolamide abolished the effect of volume flow on bicarbonate absorption, which implies that the bicarbonate reflection coefficient is close to 1 and eliminates the possibility of solvent drag across the tight junction. When the luminal bicarbonate concentration was varied, the magnitude of the bicarbonate-water interaction increased with increasing luminal bicarbonate concentration. The largest interaction occurred at high luminal bicarbonate concentrations, where the rate of proton secretion has been previously shown to be independent of luminal bicarbonate concentration and pH. The results thus suggest that a peritubular and/or cellular compartment exists that limits bicarbonate diffusion, and where pH changes secondary to bicarbonate-water interactions (solute polarization) alter the rate of active proton secretion.  相似文献   

18.
1-Bromo-2-[14C]pinacolone, (CH3)3C14COCH2Br [( 14C]BrPin), was prepared from [1-14C]acetyl chloride and tert-butylmagnesium chloride with cuprous chloride catalyst, followed by bromination. It was examined as an active-site directed label for acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) (AcChE). AcChE, isolated from Torpedo nobiliana, has k(cat) = (4.00 +/- 0.04).10(3) s-1, Km = 0.055 +/- 0.008 mM in hydrolysis of acetylthiocholine, and k(cat) = (5.6 +/- 0.2).10(3) s-1, Km = 0.051 +/- 0.003 mM in hydrolysis of acetylcholine. BrPin, binding in the trimethyl cavity, acts initially as a reversible competitive inhibitor, Ki = 0.20 +/- 0.09 mM, and, with time, as an irreversible covalently bound inactivator. Introduction of 14C from [14C]BrPin into Torpedo AcChE at pH 7.0 was followed by SDS-PAGE, autoradiography and scintillation counting, in the absence and presence of 5-trimethylammonio-2-pentanone (TAP), a competitive inhibitor (Ki = 0.075 +/- 0.001 mM) isosteric with acetylcholine; 1.8-1.9 14C was incorporated per inactivated enzyme unit at 50% inactivation. TAP retarded inactivation by [14C]BrPin, and prevented introduction of 0.9-1.1 14C per unit of enzyme protected. Prior inactivation of AcChE by BrPin prevents reaction with [3H]diisopropyl fluorophosphate [( 3H]DFP). Prior inactivation by DFP or [3H]DFP does not prevent reaction with [14C]BrPin, and this subsequent reaction with BrPin does not displace the [3H] moiety. [14C]BrPin alkylates a nucleophile in the active site, and this reaction does not alkylate or utilize the serine-hydroxyl.  相似文献   

19.
Lanthanum chloride (1 mM) inhibits the activity of acetylcholinesterasein vitro in the human erythrocyte membrane. Lineweaver-Burk analysis indicates that lanthanum chloride induced inhibition of acetylcholinesterase activity is competitive in nature. The Arrhenius plot shows that the transition temperature of erythrocyte membrane-bound acetylcholinesterase is significantly reduced in the presence of lanthanum chloride. These results suggest that lanthanum chloride increases the fluidity of the erythrocyte membrane and this may be a cause of inhibition of membrane-bound acetylcholinesterase activity.  相似文献   

20.
Mini Review     
To allow cells to control their pH and bicarbonate levels, cells express bicarbonate transport proteins that rapidly and selectively move bicarbonate across the plasma membrane. Physical interactions have been identified between the carbonic anhydrase isoform, CAII, and the erythrocyte membrane [Formula: See Text] anion exchanger, AE1, mediated by an acidic motif in the AE1 C-terminus. We have found that the presence of CAII attached to AE1 accelerates AE1 [Formula: See Text] transport activity, as AE1 moves bicarbonate either into or out of the cell. In efflux mode the presence of CAII attached to AE1 will increase the local concentration of bicarbonate at the AE1 transport site. As bicarbonate is transported into the cell by AE1, the presence of CAII on the cytosolic surface accelerates transport by consumption of bicarbonate, thereby maximizing the transmembrane bicarbonate concentration gradient experienced by the AE1 molecule. Functional and physical interactions also occur between CAII and [Formula: See Text] co-transporter isoforms NBC1 and NBC3. All examined bicarbonate transport proteins, except the DRA (SLC26A3) [Formula: See Text] exchange protein, have a consensus CAII binding site in their cytoplasmic C-terminus. Interestingly, CAII does not bind DRA. CAIV is anchored to the extracellular surface of cells via a glycosylphosphatidyl inositol linkage. We have identified extracellular regions of AE1 and NBC1 that directly interact with CAIV, to form a physical complex between the proteins. In summary, bicarbonate transporters directly interact with the CAII and CAIV carbonic anhydrases to increase the transmembrane bicarbonate flux. The complex of a bicarbonate transporter with carbonic anhydrase forms a "Bicarbonate Transport Metabolon."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号