首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purification of (+)-cis-1(S),2(R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase from cells of Pseudomonas putida grown with toluene as the sole source of carbon and energy is reported. The molecular weight of the enzyme is 104,000 at pH 9.7. The enzyme is composed of four apparently identical subunits with molecular weights of 27,000. The enzyme is specific for nicotinamide adenine dinucleotide and oxidizes a number of cis-dihydrodiols. Both enantiomers of a racemic mixture of cis-1,2-dihydroxyl-1,2-dihydronaphthalene dihydrodiol are oxidized by the enzyme. No enzymatic activity is observed with trans-1,2-dihydroxyl-1,2-dihydronaphthalene dihydrodiol.  相似文献   

2.
The substrate oxidation profiles of Sphingomonas yanoikuyae B1 biphenyl-2,3-dioxygenase and cis-biphenyl dihydrodiol dehydrogenase activities were examined with 1,2-dihydronaphthalene and various cis-diols as substrates. m-Xylene-induced cells of strain B1 oxidized 1,2-dihydronaphthalene to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2-3,4-tetrahydronaphthalene as the major product (73% relative yield). Small amounts of (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (15%), naphthalene (6%), and alpha-tetralone (6%) were also formed. Strain B8/36, which lacks an active cis-biphenyl dihydrodiol dehydrogenase, formed (+)-(1R,2S)-cis-1,2-dihydroxy-1,2-dihydronaphthalene (51%), in addition to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene (44%) and (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (5%). The cis-biphenyl dihydrodiol dehydrogenase of strain B1 oxidized both enantiomers of cis-1,2-dihydroxy-1,2-dihydronaphthalene, but only the (+)-(1S,2R)-enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene. The results show that biphenyl dioxygenase expressed by S. yanoikuyae catalyzes dioxygenation, monooxygenation, and desaturation reactions with 1,2-dihydronaphthalene as the substrate, and cis-biphenyl dihydrodiol dehydrogenase catalyzes the enantioselective dehydrogenation of (+)-(1S,2R)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and (+)-(1S,2R)-cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene.  相似文献   

3.
Metabolism of dibenzothiophene by a Beijerinckia species   总被引:9,自引:0,他引:9  
Beijerinckia B8/36 when grown with succinate in the presence of dibenzothiophene, accumulated (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene and dibenzothiophene-5-oxide in the culture medium. Each metabolite was isolated in crystalline form and characterized by a variety of chemical techniques, cis-Naphthalene dihydrodiol dehydrogenase, isolated from Pseudomonas putida, oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene to a compound that was tentatively identified as 1,2-dihydroxydibenzothiophene. The same product was formed when crude cell extracts of the parent strain of Beijerinckia oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene under anaerobic conditions. Further metabolism of 1,2-dihydroxydibenzothiophene by heat-treated cell extracts led to the formation of 4[2-(3-hydroxy)-thionaphthenyl]-2-oxo-3-butenoic acid. The latter compound was metabolized by crude cell extracts to 3-hydroxy-2-formylthionaphthene. Further degradation of this metabolite was not observed.  相似文献   

4.
Metabolism of dibenzothiophene by a Beijerinckia species.   总被引:9,自引:8,他引:1       下载免费PDF全文
Beijerinckia B8/36 when grown with succinate in the presence of dibenzothiophene, accumulated (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene and dibenzothiophene-5-oxide in the culture medium. Each metabolite was isolated in crystalline form and characterized by a variety of chemical techniques, cis-Naphthalene dihydrodiol dehydrogenase, isolated from Pseudomonas putida, oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene to a compound that was tentatively identified as 1,2-dihydroxydibenzothiophene. The same product was formed when crude cell extracts of the parent strain of Beijerinckia oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene under anaerobic conditions. Further metabolism of 1,2-dihydroxydibenzothiophene by heat-treated cell extracts led to the formation of 4[2-(3-hydroxy)-thionaphthenyl]-2-oxo-3-butenoic acid. The latter compound was metabolized by crude cell extracts to 3-hydroxy-2-formylthionaphthene. Further degradation of this metabolite was not observed.  相似文献   

5.
The biotransformation of four different classes of aromatic compounds by the Escherichia coli strain DH5alpha(pTCB 144), which contained the chlorobenzene dioxygenase (CDO) from Pseudomonas sp. strain P51, was examined. CDO oxidized biphenyl as well as monochlorobiphenyls to the corresponding cis-2,3-dihydro-2,3-dihydroxy derivatives, whereby oxidation occurred on the unsubstituted ring. No higher substituted biphenyls were oxidized. The absolute configurations of several monosubstituted cis-benzene dihydrodiols formed by CDO were determined. All had an S configuration at the carbon atom in meta position to the substituent on the benzene nucleus. With one exception, the enantiomeric excess of several 1,4-disubstituted cis-benzene dihydrodiols formed by CDO was higher than that of the products formed by two toluene dioxygenases. Naphthalene was oxidized to enantiomerically pure (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. All absolute configurations were identical to those of the products formed by toluene dioxygenases of Pseudomonas putida UV4 and P. putida F39/D. The formation rate of (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene was significantly higher (about 45 to 200%) than those of several monosubstituted cis-benzene dihydrodiols and more than four times higher than the formation rate of cis-benzene dihydrodiol. A new gas chromatographic method was developed to determine the enantiomeric excess of the oxidation products.  相似文献   

6.
Indene is oxidized to mixtures of cis- and trans-indandiols and related metabolites by Pseudomonas putida and Rhodococcus sp. isolates. Indene metabolism is consistent with monooxygenase and dioxygenase activity. P. putida resolves enantiomeric mixtures of cis-1,2-indandiol by further selective oxidation of the 1R, 2S-enantiomer yielding high enantiomeric purity of cis-(1S, 2R)-indandiol, a potential intermediate in the synthesis of indinavir sulfate (CRIXIVAN), a protease inhibitor used in the treatment of AIDS. Molecular cloning of P. putida toluene dioxygenase in Escherichia coli confirmed the requirement for the dihydrodiol dehydrogenase in resolving racemic mixtures of cis-indandiol. Rhodococcus sp. isolates convert indene to cis-(1S, 2R)-indandiol at high initial enantiomeric excess and one isolate also produces trans-(1R, 2R)-indandiol, suggesting the presence of monooxygenase activity. Scale up and optimization of the bioconversions to these key synthons for chiral synthesis of potential intermediates for commercial manufacture of indinavir sulfate are described.  相似文献   

7.
DNA fragments containing the xylD and xylL genes, which specify the broad-specificity enzymes toluate-1,2-dioxygenase and 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid dehydrogenase, respectively, of TOL plasmid pWW0-161 of Pseudomonas putida have previously been cloned in the pBR322 vector plasmid (P.R. Lehrbach, J. Zeyer, W. Reinecke, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 158:1025-1032, 1984). In this study, Escherichia coli cells containing hybrid plasmids carrying the cloned xylD or xylDL genes quantitatively transformed 14C-ring- and 14C-carboxy-labeled benzoate to the pathway intermediates 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (cis-dihydrodiol) and catechol, respectively. Like P. putida cells, E. coli cells containing the xylD gene transformed a variety of chloro- and hydrocarbon-substituted benzoates. The toluate-1,2-dioxygenase produced in E. coli thus exhibited the broad-substrate-specificity properties of the enzyme in P. putida. Turnover rates by the enzymes in these two bacteria are compared.  相似文献   

8.
DNA fragments containing the xylD and xylL genes, which specify the broad-specificity enzymes toluate-1,2-dioxygenase and 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid dehydrogenase, respectively, of TOL plasmid pWW0-161 of Pseudomonas putida have previously been cloned in the pBR322 vector plasmid (P.R. Lehrbach, J. Zeyer, W. Reinecke, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 158:1025-1032, 1984). In this study, Escherichia coli cells containing hybrid plasmids carrying the cloned xylD or xylDL genes quantitatively transformed 14C-ring- and 14C-carboxy-labeled benzoate to the pathway intermediates 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (cis-dihydrodiol) and catechol, respectively. Like P. putida cells, E. coli cells containing the xylD gene transformed a variety of chloro- and hydrocarbon-substituted benzoates. The toluate-1,2-dioxygenase produced in E. coli thus exhibited the broad-substrate-specificity properties of the enzyme in P. putida. Turnover rates by the enzymes in these two bacteria are compared.  相似文献   

9.
Bacterial and fungal oxidation of dibenzofuran.   总被引:16,自引:0,他引:16       下载免费PDF全文
Cunninghamella elegans and a mutant strain (B8/36) of Beijerinckia both oxidized dibenzofuran to 2,3-dihydroxy-2,3-dihydrodibenzofuran. The bacterial metabolite was extremely unstable and, in the presence of acid, was rapidly converted into a mixture of 2- and 3-hydroxydibenzofuran. In contrast, the 2,3-dihydroxy-2,3-dihydrodibenzofuran formed by C. elegans was stable and only yielded 2- and 3-hydroxydibenzofuran when heated under acidic conditions. The results suggest that Beijerinckia B8/36 and C. elegans form the respective cis- and trans-isomers of 2,3-dihydroxy-2,3-dihydrodibenzofuran. C. elegans also oxidized dibenzofuran to 2- and 3-hydroxydibenzofuran under conditions that would not lead to the dehydration of the trans-dihydrodiol. These observations implicate the initial formation of dibenzofuran- 2,3-epoxide in the fungal oxidation of dibenzofuran. Beijerinckia B8/36 also produced a second unstable dihydrodiol that was tentatively identified as cis-1,2-dihydroxy-1,2-dihydrodibenzofuran. This compound gave 2-hydroxydibenzofuran as the major dehydration product and the cis relative stereochemistry was suggested by the isolation and characterization of an isopropylidine derivative. A preparation of cis-naphthalene dihydrodiol dehydrogenase and cell extracts of the parent strain of Beijerinckia oxidized both bacterial dihydrodiols to catechols. Cell extracts prepared from C. elegans catalysed an analogous oxidation of trans-2,3-dihydroxy-2,3-dihydrodibenzofuran to 2,3-dihydroxydibenzofuran. The latter product was also isolated and identified from culture filtrates. The results suggest that bacteria and fungi utilize different mechanisms to initiate the oxidation of dibenzofuran.  相似文献   

10.
The biodegradation of nitrobenzene was attempted by using Pseudomonas putida TB 103 which possesses the hybrid pathway combining the tod and the tol pathways. Analysis of the metabolic flux of nitrobenzene through the hybrid pathway indicated that nitrobenzene was initially oxidized to cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene by toluene dioxygenase in the tod pathway and then channeled into the tol pathway, leading to the complete biodegradation of nitrobenzene. A crucial metabolic step redirecting the metabolic flux of nitrobenzene from the tod to the tol pathway was determined from the genetic and biochemical studies on the enzymes involved in the tol pathway. From these results, it was found that toluate-cis-glycol dehydrogenase could convert cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene to catechol in the presence of NAD(+) with liberation of nitrite and the reduced form of NAD(+) (NADH) into the medium. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
Catechol and 3-methylcatechol were produced from benzene and toluene respectively using different mutants of Pseudomonas putida. P. putida 2313 lacked the extradiol cleavage enzyme, catechol 2,3-oxygenase, allowing overproduction of 3-methylcatechol from toluene to a level of 11.5 mM (1.27 g·1-1) in glucose fed-batch culture. P. putida 6(12), a mutant of P. putida 2313, lacked both catechol-oxygenase and catechol 1,2-oxygenase, and accumulated catechol from benzene to a level of 27.5mM(3g·1-1).

In both biotransformations product formation ceased within 10 hours of feeding the aromatic substrate, and this was due to product inhibition by the catechols. The primary site of catechol toxicity was inhibition of the aromatic dioxygenase. Neither cis-toluene dihydrodiol cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene), nor cis-benzene dihydrodiol (cis-l,2-dihydroxy-3-methylcyclohexa-3,5-diene) dehydrogenase was significantly inhibited by catechol overproduction whereas both ring activating dioxygenases were inhibited within 4-6 hours of the maximum product concentration being attained.

3-Methylcatechol overproduction from toluene was also studied using a continuous product removal system. Granular activated charcoal removed 3-methylcatechol efficiently and was easily regenerated by washing with ethyl acetate. Using P. putida 2313, it was shown that the final product concentration increased approximately fourfold. Additional products were formed and the significance of these are discussed.  相似文献   

12.
Pseudomonas putida F1 and Pseudomonas sp. strain JS150 initiate toluene degradation by incorporating molecular oxygen into the aromatic nucleus to form cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene. When toluene-grown cells were incubated with 2- and 3-nitrotoluene, the major products identified were 2- and 3-nitrobenzyl alcohol, respectively. The same cells oxidized 4-nitrotoluene to 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol. Escherichia coli JM109(pDTG601), which contains the toluene dioxygenase genes from P. putida F1 under the control of the tac promoter, oxidized the isomeric nitrotoluenes to the same metabolites as those formed by P. putida F1 and Pseudomonas sp. strain JS150. These results extend the range of substrates known to be oxidized by this versatile enzyme and demonstrate for the first time that toluene dioxygenase can oxidize an aromatic methyl substituent.  相似文献   

13.
Pseudomonas putida F1 and Pseudomonas sp. strain JS150 initiate toluene degradation by incorporating molecular oxygen into the aromatic nucleus to form cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene. When toluene-grown cells were incubated with 2- and 3-nitrotoluene, the major products identified were 2- and 3-nitrobenzyl alcohol, respectively. The same cells oxidized 4-nitrotoluene to 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol. Escherichia coli JM109(pDTG601), which contains the toluene dioxygenase genes from P. putida F1 under the control of the tac promoter, oxidized the isomeric nitrotoluenes to the same metabolites as those formed by P. putida F1 and Pseudomonas sp. strain JS150. These results extend the range of substrates known to be oxidized by this versatile enzyme and demonstrate for the first time that toluene dioxygenase can oxidize an aromatic methyl substituent.  相似文献   

14.
M G Shou  S K Yang 《Chirality》1990,2(3):141-149
Enantiomeric pairs of 1-hydroxy-3-hydroxymethylcholanthrene (1-OH-3-OHMC), 3-methylcholanthrene (3MC) trans- and cis-1,2-diols, and 1-hydroxy-3-methylcholanthrene (1-OH-3MC) were resolved by HPLC using a covalently bonded (R)-N-(3,5-dinitrobenzoyl)phenylglycine chiral stationary phase (Pirkle type 1A) column. The absolute configuration of an enantiomeric 3MC trans-1,2-diol was established by the exciton chirality CD method following conversion to a bis-p-N,N-dimethylaminobenzoate. Incubation of an enantiomeric 1-OH-3MC with rat liver microsomes resulted in the formation of enantiomeric 3MC trans- and cis-1,2-diols; the absolute configurations of the enantiomeric 1-OH-3MC and 3MC cis-1,2-diol were established on the basis of the absolute configuration of an enantiomeric 3MC trans-1,2-diol. Absolute configurations of enantiomeric 1-OH-3-OHMC were determined by comparing their CD spectra with those of enantiomeric 1-OH-3MC. The relative amount of three aliphatic hydroxylation products formed by rat liver microsomal metabolism of racemic 1-OH-3MC was 1-OH-3-OHMC greater than 3MC cis-1,2-diol greater than 3MC trans-1,2-diol. Enzymatic hydroxylation at C2 of racemic 1-OH-3MC was enantioselective toward the 1S-enantiomer over the 1R-enantiomer (approximately 3/1); hydroxylation at the C3-methyl group was enantioselective toward the 1R-enantiomer over the 1S-enantiomer (approximately 58/42). Rat liver microsomal C2-hydroxylation of racemic 1-OH-3MC resulted in a 3MC trans-1,2-diol with a (1S,2S)/(1R,2R) ratio of 63/37 and a 3MC cis-1,2-diol with a (1S,2R)/(1R,2S) ratio of 12/88, respectively.  相似文献   

15.
Initial reactions in the oxidation of naphthalene by Pseudomonas putida.   总被引:31,自引:0,他引:31  
A strain of Pseudomonas putida that can utilize naphthalene as its sole source of carbon and energy was isolated from soil. A mutant strain of this organism, P. putida 119, when grown on glucose in the presence of naphthalene, accumulates optically pure (+)-cis-1(R),2(S)-dihydroxy-1,2-dihydronaphthalene in the culture medium. The cis relative stereochemistry in this molecule was established by nuclear magnetic resonance spectrometry. Radiochemical trapping experiments established that this cis dihydrodiol is an intermediate in the metabolism of naphthalene by P. Fluorescens (formerly ATCC, 17483), P. putida (ATCC, 17484), and a Pseudomonas species (NCIB 9816), as well as the parent strain of P. putida described in this report. Formation of the cis dihydrodiol is catalyzed by a dioxygenase which requires either NADH or NADPH as an electron donor. A double label procedure is described for determining the origin of oxygen in the cis dihydrodiol under conditions where this metabolite would not normally accumulate. Several aromatic hydrocarbons are oxidized by cell extracts prepared from naphthalene-grown cells of P. putida. The cis dihydrodiol is converted to 1,2-dihydroxynaphthalene by an NAD+-dependent dehydrogenase. This enzyme is specific for the (+) isomer of the dihydrodiol and shows a primary isotope effect when the dihydrodiol is substituted at C-2 with deuterium.  相似文献   

16.
A Beijerinckia sp. and a mutant strain, Beijerinckia sp. strain B8/36, were shown to cooxidize the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Both organisms oxidized acenaphthene to the same spectrum of metabolites, which included 1-acenaphthenol, 1-acenaphthenone, 1,2-acenaphthenediol, acenaphthenequinone, and a compound that was tentatively identified as 1,2-dihydroxyacenaphthylene. In contrast, acenaphthylene was oxidized to acenaphthenequinone and the compound tentatively identified as 1,2-dihydroxyacenaphthylene by the wild-type strain of Beijerinckia. Both of these products were also formed when the organism was incubated with synthetic cis-1,2-acenaphthenediol. A metabolite identified as cis-1,2-acenaphthenediol was formed from acenaphthylene by the mutant Beijerinckia sp. strain B8/36. Cell extracts prepared from the wild-type Beijerinckia strain contain a constitutive pyridine nucleotide-dependent dehydrogenase which can oxidize 1-acenaphthenol and 9-fluorenol. The results indicate that although acenaphthene and acenaphthylene are both oxidized to acenaphthenequinone, the pathways leading to the formation of this end product are different.  相似文献   

17.
Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes.  相似文献   

18.
Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes.  相似文献   

19.
Two new stllbenes with two Isoprenoid groups, namely artostllbenes A (compound 1) and B (compound 2), were Isolated from the stems of Arfocarpus chama Buch.-Ham. by repeated column chromatography. The& structures were elucldated as (E)-4-[2-(7-meth-xy-2-2-d-methy-6-(3-methy-but-2-eny-)-2H-1-benz-pyran-5-y-)v-ny-]benzene-1- 2-dlol (compound 1) and (Z)-4-[2-(7-meth-xy-2-2-dimethy--6-(3-methy-but-2-eny-)-2H-1-benz-pyran-5-y-)v-ny-]ben- zene-l,2-dlol (compound 2) by spectroscopic methods, mainly by 1D-, 2D-NMR and MS spectra. Compounds 1 and 2 are two cls- and trans-lsomers and compound 2 is the flrst cis-stllbene isolated from Moraceous plants.  相似文献   

20.
p-cymene pathway in Pseudomonas putida: initial reactions.   总被引:12,自引:10,他引:2       下载免费PDF全文
Initial reactions of the p-cymene pathway induced in Pseudomonas putida PL have been reinvestigated. Oxidation of the methyl group attached to the nucleus occurs in three steps to give p-cumic acid. The substrate for the ring cleavage of 2,3-dihydroxy-p-cumate is formed from p-cumate in two reactions via a dihydrodiol intermediate (2,3-dihydroxy-4-isopropylcyclohexa-4,6-dienoate) and not as previously postulated via 3-hydroxy-p-cumate. There are three pieces of evidence for the physiological role of the dihydrodiol intermediate. (i) a mutant of P. putida PL-pT-11/43, which is unable to grow with p-cumate, accumulates a compound from p-cumate, which was identified as 2,3-dihydroxy-4-isopropylcyclohexa-4,6-dienoate. (II) This metabolite is enzymically oxidized by a nicotinamide adenine dinucleotide-dependent dehydrogenase that is present in crude extracts of the wild type and a revertant strain (PL-pT-11/43-R1) but not in the mutant. (iii) 3-Hydroxy-p-cumate does not support growth of P . putida PL-W, and it is not oxidized by cells or extracts. 3-Hydroxy-p-cumate was readily isolated as before from culture supernatants, due to its ready formation from the dihydrodiol in acid solution. Mass spectral analysis of the dihydrodiol accumulated in 18O2-enriched atmospheres showed that both hydroxyl atoms are derived from the same molecule of O2. The formation and absorbance maxima of dihydrodiols that accumulated during the growth of the mutant PL-pT-11/43 in the presence of various benzoates (or toluenes) that have substituents at the carbon 4 atom also is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号