首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.  相似文献   

2.
Salmonella typhimurium survives and replicates intracellular in a membrane-bound compartment, the Salmonella-containing vacuole (SCV). In HeLa cells, the SCV matures through interactions with the endocytic pathway, but Salmonella avoids fusion with mature lysosomes. The exact mechanism of the inhibition of phagolysosomal fusion is not understood. Rab GTPases control several proteins involved in membrane fusion and vesicular transport. The small GTPase Rab7 regulates the transport of and fusion between late endosomes and lysosomes and associates with the SCV. We show that the Rab7 GTPase cycle is not affected on the SCV. We then manipulated a pathway downstream of the small GTPase Rab7 in HeLa cells infected with Salmonella. Expression of the Rab7 effector RILP induces recruitment of the dynein/dynactin motor complex to the SCV. Subsequently, SCV fuse with lysosomes. As a result, the intracellular replication of Salmonella is inhibited. Activation of dynein-mediated vesicle transport can thus control intracellular survival of Salmonella.  相似文献   

3.
We used multiple approaches to investigate the coordination of trans and medial Rab proteins in the regulation of intra‐Golgi retrograde trafficking. We reasoned that medially located Rab33b might act downstream of the trans Golgi Rab, Rab6, in regulating intra‐Golgi retrograde trafficking. We found that knockdown of Rab33b, like Rab6, suppressed conserved oligomeric Golgi (COG) complex‐ or Zeste White 10 (ZW10)‐depletion induced disruption of the Golgi ribbon in HeLa cells. Moreover, efficient GTP‐restricted Rab6 induced relocation of Golgi enzymes to the endoplasmic reticulum (ER) was Rab33b‐dependent, but not vice versa, suggesting that the two Rabs act sequentially in an intra‐Golgi Rab cascade. In support of this hypothesis, we found that overexpression of GTP‐Rab33b induced the dissociation of Rab6 from Golgi membranes in vivo. In addition, the transport of Shiga‐like toxin B fragment (SLTB) from the trans to cis Golgi and ER required Rab33b. Surprisingly, depletion of Rab33b had little, if any, immediate effect on cell growth and multiplication. Furthermore, anterograde trafficking of tsO45G protein through the Golgi apparatus was normal. We suggest that the Rab33b/Rab6 regulated intra‐Golgi retrograde trafficking pathway must coexist with other Golgi trafficking pathways. In conclusion, we provide the first evidence that Rab33b and Rab6 act to coordinate a major intra‐Golgi retrograde trafficking pathway. This coordination may have parallels with Rab conversion/cascade events that regulate endosome, phagosome and exocytic processes.  相似文献   

4.
We have shown previously that Rab6, a small, trans-Golgi-localized GTPase, acts upstream of the conserved oligomeric Golgi complex (COG) and ZW10/RINT1 retrograde tether complexes to maintain Golgi homeostasis. In this article, we present evidence from the unbiased and high-resolution approach of electron microscopy and electron tomography that Rab6 is essential to the trans-Golgi trafficking of two morphological classes of coated vesicles; the larger corresponds to clathrin-coated vesicles and the smaller to coat protein I (COPI)-coated vesicles. On the basis of the site of coated vesicle accumulation, cisternal dilation and the normal kinetics of cargo transport from the endoplasmic reticulum (ER) to Golgi followed by delayed Golgi to cell surface transport, we suggest that Golgi function in cargo transport is preferentially inhibited at the trans-Golgi/trans-Golgi network (TGN). The >50% increase in Golgi cisternae number in Rab6-depleted HeLa cells that we observed may well be coupled to the trans-Golgi accumulation of COPI-coated vesicles; depletion of the individual Rab6 effector, myosin IIA, produced an accumulation of uncoated vesicles with if anything a decrease in cisternal number. These results are the first evidence for a Rab6-dependent protein machine affecting Golgi-proximal, coated vesicle accumulation and probably transport at the trans-Golgi and the first example of concomitant cisternal proliferation and increased Golgi stack organization under inhibited transport conditions.  相似文献   

5.
The spatial distribution of lysosomes is important for their function and is, in part, controlled by cellular nutrient status. Here, we show that the lysosome associated Birt–Hoge–Dubé (BHD) syndrome renal tumour suppressor folliculin (FLCN) regulates this process. FLCN promotes the peri‐nuclear clustering of lysosomes following serum and amino acid withdrawal and is supported by the predominantly Golgi‐associated small GTPase Rab34. Rab34‐positive peri‐nuclear membranes contact lysosomes and cause a reduction in lysosome motility and knockdown of FLCN inhibits Rab34‐induced peri‐nuclear lysosome clustering. FLCN interacts directly via its C‐terminal DENN domain with the Rab34 effector RILP. Using purified recombinant proteins, we show that the FLCN‐DENN domain does not act as a GEF for Rab34, but rather, loads active Rab34 onto RILP. We propose a model whereby starvation‐induced FLCN association with lysosomes drives the formation of contact sites between lysosomes and Rab34‐positive peri‐nuclear membranes that restrict lysosome motility and thus promote their retention in this region of the cell.  相似文献   

6.
Rab-interacting lysosomal protein (RILP) has been identified as an interacting partner of the small GTPases Rab7 and Rab34. Active Rab7 recruits RILP on the late endosomal/lysosomal membrane and RILP then functions as a Rab7 effector controlling transport to degradative compartments. Indeed, RILP induces recruitment of dynein-dynactin motor complexes to Rab7-containing late endosomes and lysosomes. Recently, Rab7 and RILP have been found to be key proteins also for the biogenesis of phagolysosomes. Therefore, RILP represents probably an important factor for all endocytic routes to lysosomes. In this study, we show, using the yeast two-hybrid system, that RILP is able to interact with itself. The data obtained with the two-hybrid system were confirmed using co-immunoprecipitation in HeLa cells. The data together indicate that RILP, as already demonstrated for several other Rab effector proteins, is capable of self-association, thus probably forming a homo-dimer.  相似文献   

7.
The targeting of various Rab proteins to different subcellular compartments appears to be determined by variable amino acid sequences located upstream from geranylgeranylated cysteine residues in the C-terminal tail. All nascent Rab proteins are prenylated by geranylgeranyltransferase II, which recognizes the Rab substrate only when it is bound to Rab escort protein (REP). After prenylation, REP remains associated with the modified Rab until it is delivered to the appropriate subcellular membrane. It remains unclear whether docking of the Rab with the correct membrane is solely a function of features contained within the prenylated Rab itself (with REP serving as a "passive" carrier) or whether REP actively participates in the targeting process. To address this issue, we took advantage of a mutation in the alpha2 helix of Rab1B (i.e. Y78D) that abolishes REP and GDI interaction without disrupting nucleotide binding or hydrolysis. These studies demonstrate that replacing the C-terminal GGCC residues of Rab1B(Y78D) with a CLLL motif permits this protein to be prenylated by geranylgeranyltransferase I but not II both in cell-free enzyme assays and in transfected cells. Subcellular fractionation and immunofluorescence studies reveal that the prenylated Rab1B(Y78D)CLLL, which remains deficient in REP and GDI association is, nonetheless, delivered to the Golgi and endoplasmic reticulum (ER) membranes. When the dominant-negative S22N mutation was inserted into Rab1B-CLLL, the resulting monoprenylated construct suppressed ER --> Golgi protein transport. However, when the Y78D mutation was added to the latter construct, its inhibitory effect on protein trafficking was lost despite the fact that it was localized to the ER/Golgi membrane. Therefore, protein interactions mediated by the alpha2 helical domain of Rab1B(S22N) appear to be essential for its functional interaction with components of the ER --> Golgi transport machinery.  相似文献   

8.
Addition of brefeldin A (BFA) to most cells results in both the formation of extensive, uncoated membrane tubules through which Golgi components redistribute into the ER and the failure to transport molecules out of this mixed ER/Golgi system. In this study we provide evidence that suggests BFA's effects are not limited to the Golgi apparatus but are reiterated throughout the central vacuolar system. Addition of BFA to cells resulted in the tubulation of the endosomal system, the trans-Golgi network (TGN), and lysosomes. Tubule formation of these organelles was specific to BFA, shared near identical pharmacologic characteristics as Golgi tubules and resulted in targeted membrane fusion. Analogous to the mixing of the Golgi with the ER during BFA treatment, the TGN mixed with the recycling endosomal system. This mixed system remained functional with normal cycling between plasma membrane and endosomes, but traffic between endosomes and lysosomes was impaired.  相似文献   

9.
We present evidence to suggest the existence of a regulatory pathway for the Golgi apparatus to modulate the spatial positioning of otherwise distantly located lysosomes. Rab34, a new member of the Rab GTPase family, is associated primarily with the Golgi apparatus. Expression of wild-type or GTP-restricted but not GDP-restricted versions of Rab34 causes spatial redistribution of lysosomes from the periphery to the peri-Golgi region. The regulation of lysosomal positioning by Rab34 depends on its association with the membrane mediated by prenylation and its direct interaction with Rab-interacting lysosomal protein (RILP). This biological activity, mediated by Rab34-RILP interaction, is dependent on Lys82 in the switch I region. Our results have uncovered a novel mechanism for the Golgi apparatus to regulate the spatial distribution of another organelle.  相似文献   

10.
Toxin trafficking studies provide valuable information about endogenous pathways of intracellular transport. Subtilase cytotoxin (SubAB) is transported in a retrograde manner through the endosome to the Golgi and then to the endoplasmic reticulum (ER), where it specifically cleaves the ER chaperone BiP/GRP78 (Binding immunoglobin protein/Glucose-Regulated Protein of 78 kDa). To identify the SubAB Golgi trafficking route, we have used siRNA-mediated silencing and immunofluorescence microscopy in HeLa and Vero cells. Knockdown (KD) of subunits of the conserved oligomeric Golgi (COG) complex significantly delays SubAB cytotoxicity and blocks SubAB trafficking to the cis Golgi. Depletion of Rab6 and β-COP proteins causes a similar delay in SubAB-mediated GRP78 cleavage and did not augment the trafficking block observed in COG KD cells, indicating that all three Golgi factors operate on the same 'fast' retrograde trafficking pathway. SubAB trafficking is completely blocked in cells deficient in the Golgi SNARE Syntaxin 5 and does not require the activity of endosomal sorting nexins SNX1 and SNX2. Surprisingly, depletion of Golgi tethers p115 and golgin-84 that regulates two previously described coat protein I (COPI) vesicle-mediated pathways did not interfere with SubAB trafficking, indicating that SubAB is exploiting a novel COG/Rab6/COPI-dependent retrograde trafficking pathway.  相似文献   

11.
The Rab6 GTPase regulates a retrograde transport route connecting endosomes and the endoplasmic reticulum (ER) via the Golgi apparatus. Recently it was shown that active (GTP-loaded) Rab6A regulates intracellular processing of the amyloid precursor protein (APP). To characterize the role of Rab6A in APP trafficking and to identify effector proteins of the active Rab6A protein, we screened a human placenta cDNA library using the yeast two-hybrid system. We isolated an interacting cDNA clone encoding part of the adaptor protein mint3. The interaction between Rab6A and mint3 is GTP-dependent and requires the complete phosphotyrosine-binding (PTB) domain of the mint protein, which also mediates the association with APP. By confocal microscopy we show that Rab6A, mint3 and APP co-localize at Golgi membranes in HeLa cells. Density gradient centrifugation of cytosolic extracts confirms a common distribution of these three proteins. Our data suggest that mint3 links Rab6A to APP traffic.  相似文献   

12.
Assembly of the cytosolic coat protein I (COPI) complex at the ER-Golgi interface is directed by the ADP ribosylation factor1 (Arf1) and its guanine nucleotide exchange factor (GBF1). Rab1b GTPase modulates COPI recruitment, but the molecular mechanism underlying this action remains unclear. Our data reveal that in vivo expression of the GTP-restricted Rab1b mutant (Rab1Q67L) increased the association of GBF1 and COPI to peripheral structures localized at the ER exit sites (ERES) interface. Active Rab1b also stabilized Arf1 on Golgi membranes. Furthermore, we characterized GBF1 as a new Rab1b effector, and showed that its N-terminal domain was involved in this interaction. Rab1b small interfering RNA oligonucleotide assays suggested that Rab1b was required for GBF1 membrane association. To further understand how Rab1b functions in ER-to-Golgi transport, we analyzed GFP-Rab1b dynamics in HeLa cells. Time-lapse microscopy indicated that the majority of the Rab1b-labeled punctuated structures are relatively short-lived with limited-range movements. FRAP of Golgi GFP-Rab1bwt showed rapid recovery (t(1/2) 120 s) with minimal dependence on microtubules. Our data support a model where Rab1b-GTP induces GBF1 recruitment at the ERES interface and at the Golgi complex where it is required for COPII/COPI exchange or COPI vesicle formation, respectively.  相似文献   

13.
Lysosomal membrane proteins are delivered from their synthesis site, the endoplasmic reticulum (ER) to late endosomes/lysosomes through the Golgi complex. It has been proposed that after leaving the Golgi they are transported either directly or indirectly (via the cell surface) to late endosomes/lysosomes. In the present study, we examined the transport routes taken by two structurally different lysosomal membrane proteins, LGP85 and LGP107, in rat 3Y1-B cells. Here we show that newly synthesized LGP85 and LGP107 are delivered to late endosomes/lysosomes via a direct route without passing through the cell surface. Interestingly, although LGP107 is delivered from the Golgi to early endosomes containing internalized horseradish peroxidase-conjugated transferrin (HRP-Tfn) en route to lysosomes, LGP85 does not pass through the HRP-Tfn-positive early endosomes. These results suggest, therefore, that LGP85 and LGP107 are sorted into distinct transport vesicles at the post-Golgi, presumably the trans-Golgi network (TGN), after which LGP85 is delivered directly to late endosomes/lysosomes, but significant fractions of LGP107 are targeted to early endosomes before transport to late endosomes/lysosomes. This study provides the first evidence that after exiting from the Golgi, LGP85 and LGP107 are targeted to late endosomes/lysosomes via a different pathway.  相似文献   

14.
The Golgi complex and ER are dynamically connected by anterograde and retrograde trafficking pathways. To what extent and by what mechanism outward‐bound cargo proteins escape retrograde trafficking has been poorly investigated. Here, we analysed the behaviour of several membrane proteins at the ER/Golgi interface in live cells. When Golgi‐to‐plasma membrane transport was blocked, vesicular stomatitis virus glycoprotein (VSVG), which bears an ER export signal, accumulated in the Golgi, whereas an export signal‐deleted version of VSVG attained a steady state determined by the balance of retrograde and anterograde traffic. A similar behaviour was displayed by EGF receptor and by a model tail‐anchored protein, whose retrograde traffic was slowed by addition of VSVG's export signal. Retrograde trafficking was energy‐ and Rab6‐dependent, and Rab6 inhibition accelerated signal‐deleted VSVG's transport to the cell surface. Our results extend the dynamic bi‐directional relationship between the Golgi and ER to include surface‐directed proteins, uncover an unanticipated role for export signals at the Golgi complex, and identify recycling as a novel factor that regulates cargo transport out of the early secretory pathway.  相似文献   

15.
The small GTP-binding protein rab6 functions in intra-Golgi transport   总被引:19,自引:4,他引:15       下载免费PDF全文
《The Journal of cell biology》1994,127(6):1575-1588
Rab6 is a ubiquitous ras-like GTP-binding protein associated with the membranes of the Golgi complex (Goud, B., A. Zahraoui, A. Tavitian, and J. Saraste. 1990. Nature (Lond.). 345:553-556; Antony, C., C. Cibert, G. Geraud, A. Santa Maria, B. Maro, V. Mayau, and B. Goud. 1992. J. Cell Sci. 103: 785-796). We have transiently overexpressed in mouse L cells and human HeLa cells wild-type rab6, GTP (rab6 Q72L), and GDP (rab6 T27N) -bound mutants of rab6 and analyzed the intracellular transport of a soluble secreted form of alkaline phosphatase (SEAP) and of a plasma membrane protein, the hemagglutinin protein (HA) of influenza virus. Over-expression of wild-type rab6 and rab6 Q72L greatly reduced transport of both markers between cis/medial (alpha- mannosidase II positive) and late (sialyl-transferase positive) Golgi compartments, without affecting transport from the endoplasmic reticulum (ER) to cis/medial-Golgi or from the trans-Golgi network (TGN) to the plasma membrane. Whereas overexpression of rab6 T27N did not affect the individual steps of transport between ER and the plasma membrane, it caused an apparent delay in secretion, most likely due to the accumulation of the transport markers in late Golgi compartments. Overexpression of both rab6 Q72L and rab6 T27N altered the morphology of the Golgi apparatus as well as that of the TGN, as assessed at the immunofluorescence level with several markers. We interpret these results as indicating that rab6 controls intra-Golgi transport, either acting as an inhibitor in anterograde transport or as a positive regulator of retrograde transport.  相似文献   

16.
Simian virus 40 (SV40) is unusual among animal viruses in that it enters cells through caveolae, and the internalized virus accumulates in a smooth endoplasmic reticulum (ER) compartment. Using video-enhanced, dual-colour, live fluorescence microscopy, we show the uptake of individual virus particles in CV-1 cells. After associating with caveolae, SV40 leaves the plasma membrane in small, caveolin-1-containing vesicles. It then enters larger, peripheral organelles with a non-acidic pH. Although rich in caveolin-1, these organelles do not contain markers for endosomes, lysosomes, ER or Golgi, nor do they acquire ligands of clathrin-coated vesicle endocytosis. After several hours in these organelles, SV40 is sorted into tubular, caveolin-free membrane vesicles that move rapidly along microtubules, and is deposited in perinuclear, syntaxin 17-positive, smooth ER organelles. The microtubule-disrupting agent nocodazole inhibits formation and transport of these tubular carriers, and blocks viral infection. Our results demonstrate the existence of a two-step transport pathway from plasma-membrane caveolae, through an intermediate organelle (termed the caveosome), to the ER. This pathway bypasses endosomes and the Golgi complex, and is part of the productive infectious route used by SV40.  相似文献   

17.

Background

The 60+ members of the mammalian Rab protein family group into subfamilies postulated to share common functionality. The Rab VI subfamily contains 5 Rab proteins, Rab6a/a’, Rab6b, Rab6c and Rab41. High-level knockdown of Rab6a/a’ has little effect on the tightly organized Golgi ribbon in HeLa cells as seen by fluorescence microscopy. In striking contrast, we found Rab41 was strongly required for normal Golgi ribbon organization.

Methods/Results

Treatment of HeLa cells with Rab41 siRNAs scattered the Golgi ribbon into clustered, punctate Golgi elements. Overexpression of GDP-locked Rab41, but not wild type or GTP-locked Rab41, produced a similar Golgi phenotype. By electron microscopy, Rab41 depletion produced short, isolated Golgi stacks. Golgi-associated vesicles accumulated. At low expression levels, wild type and GTP-locked Rab41 showed little concentration in the Golgi region, but puncta were observed and most were in ruffled regions at the cell periphery. There was 25% co-localization of GTP-locked Rab41 with the ER marker, Sec61p. GDP-locked Rab41, as expected, displayed an entirely diffuse cytoplasmic distribution. Depletion of Rab41 or overexpression of GDP-locked Rab41 partially inhibited ER-to-Golgi transport of VSV-G protein. However, Rab41 knockdown had little, if any, effect on endosome-to-Golgi transport of SLTB. Additionally, after a 2-day delay, treatment with Rab41 siRNA inhibited cell growth, while overexpression of GDP-locked Rab41, but not wild type or GTP-locked Rab41, produced a rapid, progressive cell loss. In double knockdown experiments with Rab6, the Golgi ribbon was fragmented, a result consistent with Rab41 and Rab6 acting in parallel.

Conclusion

We provide the first evidence for distinctive Rab41 effects on Golgi organization, ER-to-Golgi trafficking and cell growth. When combined with the evidence that Rab6a/a’ and Rab6b have diverse roles in Golgi function, while Rab6c regulates mitotic function, our data indicate that Rab VI subfamily members, although related by homology and structure, share limited functional conservation.  相似文献   

18.
Prenylated Rab acceptor (PRA1) is a protein that binds Rab GTPases and the v-SNARE VAMP2. The protein is localized to the Golgi complex and post-Golgi vesicles. To determine its functional role, we generated a number of point mutations and divided them into three classes based on cellular localization. Class A mutants were retained in the endoplasmic reticulum (ER) and exerted an inhibitory effect on transport of vesicular stomatitis virus envelope glycoprotein (VSVG) from the ER to Golgi as well as to the plasma membrane. Class B mutants exhibited a highly condensed Golgi complex and inhibited exit of anterograde cargo from this organelle. Class C mutants exhibited an intermediate phenotype with Golgi and ER localization along with extensive tubular structures emanating from the Golgi complex. There was a direct correlation between the cellular phenotype and binding to Rab and VAMP2. Class A and C mutants showed a significant decrease in Rab and VAMP2 binding, whereas an increase in binding was observed in the class B mutants. Thus, PRA1 is required for vesicle formation from the Golgi complex and might be involved in recruitment of Rab effectors and SNARE proteins during cargo sequestration.  相似文献   

19.
The mechanisms that control protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus are poorly characterized in plants. Here, we examine in tobacco leaves the structural relationship between Golgi and ER membranes using electron microscopy and demonstrate that Golgi membranes contain elements that are in close association and/or in direct contact with the ER. We further visualized protein trafficking between the ER and the Golgi using Golgi marker proteins tagged with green fluorescent protein. Using photobleaching techniques, we showed that Golgi membrane markers constitutively cycle to and from the Golgi in an energy-dependent and N-ethylmaleimide-sensitive manner. We found that membrane protein transport toward the Golgi occurs independently of the cytoskeleton and does not require the Golgi to be motile along the surface of the ER. Brefeldin A treatment blocked forward trafficking of Golgi proteins before their redistribution into the ER. Our results indicate that in plant cells, the Golgi apparatus is a dynamic membrane system whose components continuously traffic via membrane trafficking pathways regulated by brefeldin A- and N-ethylmaleimide-sensitive machinery.  相似文献   

20.
The plant toxin ricin is transported to the Golgi and the endoplasmic reticulum before translocation to the cytosol where it inhibits protein synthesis. The toxin can therefore be used to investigate pathways leading to the Golgi apparatus. Except for the Rab9-mediated transport of mannose 6-phosphate receptors from endosomes to the trans-Golgi network (TGN), transport routes between endosomes and the Golgi apparatus are still poorly characterized. To investigate endosome to Golgi transport, we have used here a modified ricin molecule containing a tyrosine sulfation site and quantified incorporation of radioactive sulfate, a TGN modification. A tetracycline-inducible mutant Rab9S21N HeLa cell line was constructed and characterized to study whether Rab9 was involved in transport of ricin to the TGN and, if not, to further investigate the route used by ricin. Induced expression of Rab9S21N inhibited Golgi transport of mannose 6-phosphate receptors but did not affect the sulfation of ricin, suggesting that ricin is transported to the TGN via a Rab9-independent pathway. Moreover, because Rab11 is present in the endosomal recycling compartment and the TGN, studies of transient transfections with mutant Rab11 were performed. The results indicated that routing of ricin from endosomes to the TGN occurs by a Rab11-independent pathway. Finally, because clathrin has been implicated in early endosome to TGN transport, ricin transport was investigated in cells with inducible expression of antisense to clathrin heavy chain. Importantly, endosome to TGN transport (sulfation of endocytosed ricin) was unchanged when clathrin function was abolished. In conclusion, ricin is transported from endosomes to the Golgi apparatus by a Rab9-, Rab11-, and clathrin-independent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号