首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arterial ketone index (AKBR) which is the ratio of acetoacetic acid to 3-hydroxybutyric acid in the arterial blood, is believed to reflect the mitochondrial reduction potential of hepatocytes and general energy state of the liver. In the presented paper we challenged this hypothesis by analysing the correlation between AKBR and the results of typical liver blood tests (AspAT, AlAT, LDH, CRP) and biotransforming potential of the liver (cytochromes P450, b5 and their corresponding NADPH and NADH reductases) in the model of ischemia-reperfusion injury of rat liver. The results were compared with histochemical analysis of distribution and activity of SDH, LDH and G-6-Pase, the key marker enzymes of the liver. We have shown that, except in the case of acute phase protein (CRP), a decrease in AKBR correlated well with the increase of the level of indicator enzymes in serum. Histochemical analysis also confirmed that AKBR correlates with the degree of damage to hepatocytes during early stage of reperfusion after 60 min of liver ischemia. In the Spearman test, AKBR was significantly correlated with the changes in cytochrome P450 content and its NADPH reductase activity which indicates a high sensitivity of this test. We conclude that the decrease of AKBR value reflects the impairment of basic energy pathways and detoxicative capability of the liver.  相似文献   

2.
The effects of glucagon on the respiratory function of mitochondria in situ were investigated in isolated perfused rat liver. Glucagon at the concentrations higher than 20 pM and cyclic AMP (75 microM) stimulated hepatic respiration, and shifted the redox state of pyridine nucleotide (NADH/NAD) in mitochondria in situ to a more reduced state as judged by organ fluorometry and beta-hydroxybutyrate/acetoacetate ratio. The organ spectrophotometric study revealed that glucagon and cyclic AMP induced the reduction of redox states of cytochromes a(a3), b and c+c1. Atractyloside (4 micrograms/ml) abolished the effects of glucagon on these parameters and gluconeogenesis from lactate. These observations suggest that glucagon increases the availability of substrates for mitochondrial respiration, and this alteration in mitochondrial function is crucial in enhancing gluconeogenesis.  相似文献   

3.
1. The concentrations of the oxidized and reduced substrates of the lactate-, beta-hydroxybutyrate- and glutamate-dehydrogenase systems were measured in rat livers freeze-clamped as soon as possible after death. The substrates of these dehydrogenases are likely to be in equilibrium with free NAD(+) and NADH, and the ratio of the free dinucleotides can be calculated from the measured concentrations of the substrates and the equilibrium constants (Holzer, Schultz & Lynen, 1956; Bücher & Klingenberg, 1958). The lactate-dehydrogenase system reflects the [NAD(+)]/[NADH] ratio in the cytoplasm, the beta-hydroxybutyrate dehydrogenase that in the mitochondrial cristae and the glutamate dehydrogenase that in the mitochondrial matrix. 2. The equilibrium constants of lactate dehydrogenase (EC 1.1.1.27), beta-hydroxybutyrate dehydrogenase (EC 1.1.1.30) and malate dehydrogenase (EC 1.1.1.37) were redetermined for near-physiological conditions (38 degrees ; I0.25). 3. The mean [NAD(+)]/[NADH] ratio of rat-liver cytoplasm was calculated as 725 (pH7.0) in well-fed rats, 528 in starved rats and 208 in alloxan-diabetic rats. 4. The [NAD(+)]/[NADH] ratio for the mitochondrial matrix and cristae gave virtually identical values in the same metabolic state. This indicates that beta-hydroxybutyrate dehydrogenase and glutamate dehydrogenase share a common pool of dinucleotide. 5. The mean [NAD(+)]/[NADH] ratio within the liver mitochondria of well-fed rats was about 8. It fell to about 5 in starvation and rose to about 10 in alloxan-diabetes. 6. The [NAD(+)]/[NADH] ratios of cytoplasm and mitochondria are thus greatly different and do not necessarily move in parallel when the metabolic state of the liver changes. 7. The ratios found for the free dinucleotides differ greatly from those recorded for the total dinucleotides because much more NADH than NAD(+) is protein-bound. 8. The bearing of these findings on various problems, including the following, is discussed: the number of NAD(+)-NADH pools in liver cells; the applicability of the method to tissues other than liver; the transhydrogenase activity of glutamate dehydrogenase; the physiological significance of the difference of the redox states of mitochondria and cytoplasm; aspects of the regulation of the redox state of cell compartments; the steady-state concentration of mitochondrial oxaloacetate; the relations between the redox state of cell compartments and ketosis.  相似文献   

4.
The recording of oxidation-reduction-related fluorescence signals of oxidized flavoprotein (Fp) and reduced pyridine nucleotide (PN) from isolated mitochondria at temperatures below -80 degrees C can be accompanished with a high degree of accuracy and a wide dynamic range. The specific low temperature enhancement of the fluorescence signals due to increased quantum yield and to multiple scattering affords increased accuracy and less interference due to screening pigments such as hemoglobin and myoglobin. Since the metabolic processes are arrested and the recording speed can be greatly diminished, the technique can operate with a much smaller concentration of mitochondria than is needed at room temperature, and the method is suitable for localized oxidation-reduction measurements. The Fp and PN signals originate from the mitochondrial matrix space in which they represent the major fluorochromes. Since Fp and PN are near oxidation-reduction equilibrium, the ratio of the two fluorescence intensities, suitably normalized, approximates the oxidation-reduction ratio of oxidized flavoprotein/reduced pyridine nucleotide. Thus, this technique affords a foundation for the resolution of oxidation-reduction states in two and three dimensions.  相似文献   

5.
THE MITOCHONDRIAL REDOX STATE OF RAT BRAIN   总被引:11,自引:8,他引:3  
The use of the glutamate dehydrogenase (EC 1.4.1.3) and β-hydroxybutyrate dehydrogenase (EC 1.1.1.30) reactions for the calculation of the mitochondrial redox state of brain has been examined. To prevent post-mortem anoxic metabolism, brains were frozen in less than a second by using a new technique. Levels of ketone bodies in brain were so low relative to the contamination by blood and extracellular fluid that calculation of the mitochondrial redox state using the β-hydroxybutyrate dehydrogenase reaction was not practical. The concentrations of the non-nucleotide substrates of the glutamate dehydrogenase reaction could be accurately measured in brain and themitochondrial [NAD+]/[NADH] ratio calculated from the ratio [α-oxoglutarate] [NH4+]/[glutamate]. The calculation is valid if the ratio [α-oxoglutarate] [NH4+]/[glutamate] in mitochondria is the same as that measured in whole tissue. The evidence supporting this conclusion is the near-equilibrium of the aspartate aminotransferase (EC 2.6.1.l) reaction in brain and the observation by others that the distribution of label between α-oxoglutarate and glutamate in brain, after administration of labelled precursors, conforms to expectation. The alanine aminotransferase (EC 2.6.1.2) reaction was not near equilibrium in brain, probably because of the low in vivo activity of the enzyme.  相似文献   

6.
Hepatic O2 consumption (VO2) remains relatively constant (O2 supply independent) as O2 delivery (DO2) progressively decreases, until a critical DO2 (DO2c) is reached below which hepatic VO2 also decreases (O2 supply dependence). Whether this decrease in VO2 represents an adaptive reduction in O2 demand or a manifestation of tissue dysoxia, i.e., O2 supply that is inadequate to support O2 demand, is unknown. We tested the hypothesis that the decrease in hepatic VO2 during O2 supply dependence represents dysoxia by evaluating hepatic mitochondrial NAD redox state during O2 supply independence and dependence induced by progressive hemorrhage in six pentobarbital-anesthetized dogs. Hepatic mitochondrial NAD redox state was estimated by measuring hepatic venous beta-hydroxybutyrate-to-acetoacetate ratio (beta OHB/AcAc). The value of DO2c was 5.02 +/- 1.64 (SD) ml.100 g-1.min-1. The beta-hydroxybutyrate-to-acetoacetate ratio was constant until a DO2 value (3.03 +/- 1.08 ml.100 g-1.min-1) was reached (P = 0.05 vs. DO2c) and then increased linearly. Peak liver lactate extraction ratio was 15.2 +/- 14.1%, occurring at a DO2 of 5.48 +/- 2.54 ml.100 g-1.min-1 (P = NS vs. DO2c). Our data support the hypothesis that the decrease in VO2 during O2 supply dependence represents tissue dysoxia.  相似文献   

7.
1. To examine the role of the hepatic redox state on the rate of gluconeogenesis the effects of sodium crotonate injection (6mmol/kg body wt.) on rat liver metabolite concentrations and gluconeogenesis from lactate were studied in vivo. 2. Crotonate caused a marked oxidation of cytoplasmic and mitochondrial redox couples; decreases were observed in the ratios of [lactate]/[pyruvate], [glycerol 3-phosphate]/[dihydroxyacetone phosphate], [hydroxybutyrate]/[acetoacetate] and measured [NAD(+)]/[NADH]. 3. Increases occurred in the liver concentrations of all gluconeogenic intermediates from pyruvate through to glucose 6-phosphate, but there was no change in lactate concentration. 4. To determine whether gluconeogenesis from lactate was altered by the more-oxidized hepatic redox state l-[2-(14)C]lactic acid was infused into the inferior vena cava (50mumol/min per kg body wt.) and the incorporation of radioactivity into blood glucose was measured. 5. Administration of crotonate transiently decreased the rate of lactate incorporation into glucose but within a few minutes the rate of incorporation returned to that of the controls. 6. The results indicate that in these experiments alteration of the NAD(+)-NADH systems of cytoplasm and mitochondria to a more-oxidized state did not change the rate of gluconeogenesis.  相似文献   

8.
The changes in hepatic energy state were assessed by 31P-nuclear magnetic resonance spectroscopy (31P-MRS) and arterial ketone body ratio (AKBR) in brain dead dogs. 31P-MRS and AKBR were measured before and at 3 hours after brain death. Wiggers' shock model was employed to compare the energy metabolism during hypotension. 1) The brain death model: Systemic blood pressure changed from 178.3/115.0 mmHg (mean) in the control period, to 259.5/162.5 mmHg during Cushing phenomenon (CU period) and to 63.3/51.7 mmHg after completion of brain death (BD period). beta-ATP/Pi increased from 1.27 +/- 0.14 (mean +/- SEM) to 1.46 +/- 0.16 in the early CU period, and then decreased to 1.11 +/- 0.15 at 60 minutes after BD, followed by a gradual increase to 1.33 +/- 0.13 at 3 hours after BD. Intracellular pH (pHi) increased alkaline to the control value. AKBR decreased from 1.10 +/- 0.26 to 0.46 +/- 0.15 in the CU period (p less than 0.05) and then increased to 1.48 +/- 0.25 after BD. 2) Wiggers' shock model: Systemic blood pressure was 190.0/112.5 mmHg in the control period, 83.8/51.3 mmHg during exsanguination (EX period) and 185.0/117.0 mmHg after retransfusion (RT period). beta-ATP/Pi decreased from 1.17 +/- 0.13 to 0.61 +/- 0.10 in the EX period (p less than 0.05) and increased to 1.37 +/- 0.08 in the RT period. The pHi deviated from 7.33 +/- 0.07 to 6.82 +/- 0.14 in the EX period (p less than 0.01) and to 7.51 +/- 0.21 in the RT period. AKBR decreased from 1.00 +/- 0.11 to 0.21 +/- 0.04 in the EX period and increased to 1.08 +/- 0.12 in the RT period. The energy metabolism of the liver was well maintained in the state of brain death in spite of remarkable hypotension, although that was not the case with Wiggers' shock model. It was suggested that the combination of 31P-MRS and AKBR was useful for the evaluation of graft liver viability.  相似文献   

9.
Intra- and extra-mitochondrial Ca2+ participates in vital cellular processes. This work investigates the influence of 4-hydroxynonenal (HNE) on pro-oxidant-induced Ca2+ release from rat liver mitochondria. Ca2+ movements across the mitochondrial inner membrane, the pyridine nucleotide redox state and pyridine (nicotinamide) nucleotide hydrolysis were analysed. HNE did not influence Ca2+ uptake by mitochondria, but inhibited in a concentration-dependent manner Ca2+ release induced by t-butylhydroperoxide (tbh). Total inhibition was achieved with about 50 microM-HNE. Ca2+ release induced by the pro-oxidant alloxan was also inhibited by HNE. Oxidation of pyridine nucleotides, induced by tbh through the concerted action of glutathione peroxidase, glutathione reductase and the energy-linked transhydrogenase, was not affected by up to 50 microM-HNE. In contrast, HNE inhibited pyridine nucleotide hydrolysis in a concentration-dependent manner. The data suggest that HNE toxicity may be in part attributed to an impaired intramitochondrial Ca2+ homeostasis.  相似文献   

10.
After a pulse of [3-14C]pyruvate, 24 hr starved rats were infused through the portal vein with two different doses of glucose (7.8 or 20.8 mg/min) or the medium, and blood was collected from the inferior cava vein at the level of the suprahepatic veins. The highest dose of glucose enhanced the appearance of [14C]glucose in blood from the 2nd to the 20th min after tracer delivery. It also enhanced production of [14C]glycogen and concentration of glycogen in the liver after 5 and 20 min. At 20 min of glucose infusion the appearance of [14C]glyceride glycerol in liver as well as liver lactate concentration and lactate/pyruvate ratio were increased. The low dose of glucose used enhanced liver values of [14C]glycogen, [14C]glycogen specific activity and glycogen concentration. Our results support the hypothesis that in the starved rat glucose is converted into C3 units prior to being deposited as liver glycogen and based on the liver zonation model (Jungermann et al., 1983) it is proposed that glucose stimulated gluconeogenesis by shifting the liver to the cytosolic redox state as a secondary consequence of increased glycolytic activity.  相似文献   

11.

Background & Aims

Portal hyperperfusion after extended hepatectomy or small-for-size liver transplantation may induce organ dysfunction and failure. The underlying mechanisms, however, are still not completely understood. Herein, we analysed whether hepatectomy-associated portal hyperperfusion induces a hepatic arterial buffer response, i.e., an adaptive hepatic arterial constriction, which may cause hepatocellular hypoxia and organ dysfunction.

Methods

Sprague-Dawley rats underwent 30%, 70% and 90% hepatectomy. Baseline measurements before hepatectomy served as controls. Hepatic arterial and portal venous flows were analysed by ultrasonic flow measurement. Microvascular blood flow and mitochondrial redox state were determined by intravital fluorescence microscopy. Hepatic tissue pO2 was analysed by polarographic techniques. Hepatic function and integrity were studied by bromosulfophthalein bile excretion and liver histology.

Results

Portal blood flow was 2- to 4-fold increased after 70% and 90% hepatectomy. This, however, did not provoke a hepatic arterial buffer response. Nonetheless, portal hyperperfusion and constant hepatic arterial blood flow were associated with a reduced mitochondrial redox state and a decreased hepatic tissue pO2 after 70% and 90% hepatectomy. Microvascular blood flow increased significantly after hepatectomy and functional sinusoidal density was found only slightly reduced. Major hepatectomy further induced a 2- to 3-fold increase of bile flow. This was associated with a 2-fold increase of bromosulfophthalein excretion.

Conclusions

Portal hyperperfusion after extended hepatectomy does not induce a hepatic arterial buffer response but reduces mitochondrial redox state and hepatocellular oxygenation. This is not due to a deterioration of microvascular perfusion, but rather due to a relative hypermetabolism of the remnant liver after major resection.  相似文献   

12.
The redox state of the intraluminal pyridine nucleotide pool was investigated in rat liver microsomal vesicles. The vesicles showed cortisone reductase activity in the absence of added reductants, which was dependent on the integrity of the membrane. The intraluminal pyridine nucleotide pool could be oxidized by the addition of cortisone or metyrapone but not of glutathione. On the other hand, intraluminal pyridine nucleotides were slightly reduced by cortisol or glucose 6-phosphate, although glutathione was completely ineffective. Redox state of microsomal protein thiols/disulfides was not altered either by manipulations affecting the redox state of pyridine nucleotides or by the addition of NAD(P)+ or NAD(P)H. The uncoupling of the thiol/disulfide and NAD(P)+/NAD(P)H redox couples was not because of their subcompartmentation, because enzymes responsible for the intraluminal oxidoreduction of pyridine nucleotides were distributed equally in smooth and rough microsomal subfractions. Instead, the phenomenon can be explained by the negligible representation of glutathione reductase in the endoplasmic reticulum lumen. The results demonstrated the separate existence of two redox systems in the endoplasmic reticulum lumen, which explains the contemporary functioning of oxidative folding and of powerful reductive reactions.  相似文献   

13.
Catisti R  Vercesi AE 《FEBS letters》1999,464(1-2):97-101
The ability of low concentrations (5-15 microM) of long-chain fatty acids to open the permeability transition pore (PTP) in Ca(2+)-loaded mitochondria has been ascribed to their protonophoric effect mediated by mitochondrial anion carriers, as well as to a direct interaction with the pore assembly [M.R. Wieckowski and L. Wojtczak, FEBS Lett. 423 (1998) 339-342]. Here, we have compared the PTP opening ability of arachidonic acid (AA) with that of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) at concentrations that cause similar quantitative dissipation of the membrane potential (DeltaPsi) in Ca(2+)-loaded rat liver mitochondria respiring on succinate. The initial protonophoric effects of AA and FCCP were only slightly modified by carboxyatractyloside and were followed by PTP opening, as indicated by a second phase of DeltaPsi disruption sensitive to EGTA, ADP, dithiothreitol and cyclosporin A. This second phase of DeltaPsi dissipation could also be prevented by rotenone or NAD(P)H-linked substrates which decrease the pyridine nucleotide (PN) oxidation that follows the stimulation of oxygen consumption induced by AA or FCCP. These results suggest that, under the experimental conditions used here, the PTP opening induced by AA or FCCP was a consequence of PN oxidation. Exogenous catalase also inhibited both AA- and FCCP-induced PTP opening. These results indicate that a condition of oxidative stress associated with the oxidized state of PN underlies membrane protein thiol oxidation and PTP opening.  相似文献   

14.
The redox state of the mitochondria of Acanthamoeba castellanii and Schizosaccharomyces pombe was assessed with a flying-spot fluorometer (Chance et al. 1978. Am. J. Physiol. 235:H 809) that provides excitation appropriate for oxidized flavoprotein or reduced pyridine nucleotide. Fluorescence signals could be resolved from the thin films of cultures that were only one cell deep. In both organisms anoxia was associated with an increased pyridine nucleotide and decreased flavoprotein fluorescence. The addition of mitochondrial uncoupling agents increased the flavoprotein fluorescence and the fluorometer was able to resolve uncoupler-sensitive and uncoupler-insensitive fractions of S. pombe cultures. In both synchronous and asynchronous cultures of A. castellanii and S. pombe the mitochondrial redox state oscillates with a period of 4.5 +/- 1.0 min. Oscillations with much longer period, of the order of an hour, are observed in synchronous cultures and these oscillations correlate with similar oscillations in respiratory rate, uncoupler sensitivity, and adenine nucleotide pool sizes. The results are consistent with the hypothesis that synchronous cultures of A. castellanii and S. pombe oscillate between the ADP-limited (state 4) and ADP-sufficient (state 3) respiratory states, i.e., exhibit in vivo respiratory control.  相似文献   

15.
We have detected acetone in several brands of heparin. If uncorrected, this leads to errors in measuring acetone in blood collected in heparinized syringes, as in the multiple inert gas elimination technique for measuring ventilation-perfusion ratio (VA/Q) distributions. Error for acetone retention [R = arterial partial pressure-to-mixed venous partial pressure (P-V) ratio] is usually small, because R is normally near 1.0, and the error is similar in arterial and mixed venous samples. However, acetone excretion [E = mixed expired partial pressure (P-E)-to-P-V ratio] will appear erroneously low, because P-E is accurately measured in dry syringes, but P-V is overestimated. A physical model of a homogeneous alveolar lung at room temperature and without dead space shows: the magnitude of acetone E error depends upon the ratio of blood sample to heparinized saline volumes and acetone partial pressures, without correction, acetone E can be less than that of less soluble gases like ether, a situation incompatible with conventional gas exchange theory, and acetone R and E can be correctly calculated using the principle of mass balance if the acetone partial pressure in heparinized saline is known. Published data from multiple inert gas elimination experiments with acetone-free heparin, in our labs and others, are within the limits of experimental error. Thus the hypothesis that acetone E is anomalously low because of physiological mechanisms involving dead space tissue capacitance for acetone remains to be tested.  相似文献   

16.
The effect of long-chain acyl-CoA on subcellular adenine nucleotide systems was studied in the intact liver cell. Long-chain acyl-CoA content was varied by varying the nutritional state (fed and starved states) or by addition of oleate. Starvation led to an increase in the mitochondrial and a decrease in the cytosolic ATP/ADP ratio in liver both in vivo and in the isolated perfused organ as compared with the fed state. The changes were reversed on re-feeding glucose in liver in vivo or on infusion of substrates (glucose, glycerol) in the perfused liver, respectively. Similar changes in mitochondrial and cytosolic ATP/ADP ratios occurred on addition of oleate, but, importantly, not with a short-chain fatty acid such as octanoate. It is concluded that long-chain acyl-CoA exerts an inhibitory effect on mitochondrial adenine nucleotide translocation in the intact cell, as was previously postulated in the literature from data obtained with isolated mitochondria. The physiological relevance with respect to pyruvate metabolism, i.e. regulation of pyruvate carboxylase and pyruvate dehydrogenase by the mitochondrial ATP/ADP ratio, is discussed.  相似文献   

17.
Interactions between photosynthesis, mitochondrial respiration (mitorespiration), and chlororespiration have been investigated in the green alga Chlamydomonas reinhardtii using flash illumination and a bare platinum electrode. Depending on the physiological status of algae, flash illumination was found to induce either a fast (t(1/2) approximately 300 ms) or slow (t(1/2) approximately 3 s) transient inhibition of oxygen uptake. Based on the effects of the mitorespiratory inhibitors myxothiazol and salicyl hydroxamic acid (SHAM), and of propyl gallate, an inhibitor of the chlororespiratory oxidase, we conclude that the fast transient is due to the flash-induced inhibition of chlororespiration and that the slow transient is due to the flash-induced inhibition of mitorespiration. By measuring blue-green fluorescence changes, related to the redox status of the pyridine nucleotide pool, and chlorophyll fluorescence, related to the redox status of plastoquinones (PQs) in C. reinhardtii wild type and in a photosystem I-deficient mutant, we show that interactions between photosynthesis and chlororespiration are favored when PQ and pyridine nucleotide pools are reduced, whereas interactions between photosynthesis and mitorespiration are favored at more oxidized states. We conclude that the plastid oxidase, similar to the mitochondrial alternative oxidase, becomes significantly engaged when the PQ pool becomes highly reduced, and thereby prevents its over-reduction.  相似文献   

18.
Abstract— This study is an investigation into the applicability of redox calculations to brain. At six intervals following electroconvulsive scizure, multiple metabolites were measured in freeze-blown brain from unanesthetized rats. From substrate ratios, the time course of the rapid changes in the cytoplasmic free [NAD+]/ [NADH] [H+] ratio was calculated from the reactions of lactate dehydrogenase [EC 1.1.1.27], malate dehydrogenase [EC 1.1.1.37] and glycerolphosphate dehydrogenase [EC 1.1.1.8], The pattern of the redox ratios in the control animals was also compared with the same ratios determined in freeze-clamped liver, a relatively homogeneous tissue. Though some evidence for effects of compartmentation are present in the results from brain, these effects are relatively minor. There was found to be very good agreement in the direction and magnitude of change of the redox ratios calculated from lactate dehydrogenase and malate dehydrogenase, and even from glycerolphosphate dehydrogenase at points of low flux. In spite of rapid changes of metabolites, the reaction catalyzed by glutamateoxaloacetate transaminase remained very near its equilibrium position at all time periods. From the results it has been concluded that in spite of the obvious structural heterogeneity of brain, meaningful calculations of the cytoplamic redox state in brain are possible.  相似文献   

19.
T Tani  Y Taki  H Aoyama  A Jikkoh  S Arii  K Ozawa  T Tobe 《Life sciences》1984,35(11):1177-1182
Acetoacetate/beta-hydroxybutyrate ratio in the hepatic venous blood was compared to the ratios in arterial blood and peripheral venous blood in hypoxic state following right hepatic artery embolization in 5 patients with liver cancer. Ketone body ratios in right hepatic venous blood were positively correlated with those in arterial blood (r = 0.960, p less than 0.001), but not with those in peripheral venous blood. The free NAD+/NADH ratio of the liver mitochondria, which is reflected by the ketone body ration in hepatic venous blood, can be evaluated by the ketone body ratio in the arterial blood.  相似文献   

20.
One of the biochemical "hallmarks" of malignancy is enhanced tumor glycolysis, which is primary due to the overexpression of glucose transporters (GLUTs) and the increased activity of mitochondria-bound hexokinase in tumors. Easy methods for assessing glucose utilization in vitro and in vivo should find widespread application in biological and biomedical studies, as illustrated by the adoption of FDG PET imaging in medicine. We have recently synthesized a new NIR fluorescent pyropheophorbide conjugate of 2-deoxyglucose (2DG), Pyro-2DG, as a GLUT-targeted photosensitizer. In this study, we have evaluated the in vivo uptake of Pyro-2DG and found that Pyro-2DG selectively accumulated in two tumor models, 9L glioma in the rat and c-MYC-induced mammary tumor in the mouse, compared to surrounding normal muscle tissues at a ratio of about 10:1. By simultaneously performing redox ratio and fluorescence imaging, a high degree of correlation between the PN/(Fp+PN) redox ratio, where PN denotes reduced pyridine nucleotides (NADH) and Fp denotes oxidized flavoproteins, and the Pyro-2DG uptake was found in both murine tumor models, indicating that Pyro-2DG could serve as an extrinsic NIR fluorescent metabolic index for the tumors. The fact that only a low level of correlation was observed between the redox ratio and the uptake of Pyro-acid (the free fluorophore without the 2-deoxyglucose moiety) supports the hypothesis that Pyro-2DG is an index of the mitochondrial status (extent of PN reduction) of a tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号