首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Summary Antisera to the sequence Arg-Phe-amide (RF-amide) have a high affinity to the nervous system of fixed hydroid polyps. Whole-mount incubations of several Hydra species with RFamide antisera visualize the three-dimensional structure of an ectodermal nervous system in the hypostome, tentacles, gastric region and peduncle. In the hypostome of Hydra attenuata a ganglion-like structure occurs, consisting of numerous sensory cells located in a region around the mouth opening and a dense plexus of processes which project mostly radially towards the bases of the tentacles. In Hydra oligactis an ectodermal nerve ring was observed lying at the border of hypostome and tentacle bases. This nerve ring consists of a few large ganglion cells with thick processes forming a circle around the hypostome. This is the first direct demonstration of a nerve ring in a hydroid polyp.Incubation of Hydractinia echinata gastrozooids with RFamide antisera visualizes an extremly dense plexus of neuronal processes in body and head regions. A ring of sensory cells around the mouth opening is the first group of neurons to show RFamide immunoreactivity during the development of a primary polyp. In gonozooids the oocytes and spermatophores are covered with strongly immunoreactive neurons.All examples of whole-mount incubations with RF-amide antisera clearly show that hydroid polyps have by no means a diffuse nerve net, as is often believed, and that neuronal centralization and plexus formation are common in these animals. The examples also show that treatment of intact fixed animals with RFamide antisera is a useful technique to study the anatomy or development of a principal portion of the hydroid nervous system.  相似文献   

2.
In wild type Hydra magnipapillata, daily application of the protein kinase C activator diacylglycerol (DAG) evokes sprouting of periodically spaced ectopic heads along the body column and leads to loss of the ability to regenerate proximal structures including the foot. The present transplantation studies show that the appearance of ectopic heads is preceded by an early increase in the 'positional value' (P-value) or 'head activation potential' of the gastric column. Long before ectopic head structures emerge, pieces of DAG-treated tissue transplanted into the corresponding positional level of untreated hosts induce head formation instead of being integrated, whereas pieces implanted from untreated donors into DAG-treated hosts form feet. Foot formation implies a decrease in the P-value. This down-regulation is promoted through long-range assistance by the head. Thus, after termination of the DAG treatment ectopic feet are intercalated midway between the periodically spaced heads; moreover, untreated polyps onto which additional distal heads have been grafted regenerate feet faster than do one-headed polyps and may form supernumerary feet. Multiheaded animals can also be produced using two substances (K-252a and xanthate D609) that interfere with signal transduction, but the mode by which secondary heads arise is different from DAG-induced ectopic head formation. Presumably because the assistance by the parental head is impaired, buds fail to form a foot and detach and instead give rise to stable secondary body axes. It is assumed that the P-value along the body varies according to the number of cellular receptors for factors serving as intercellular signals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In Hydra magnipapillata additional head structures can be induced to form by daily feeding accompanied by a daily treatment with diC8, an activator of protein kinase C. Based on these results, it was proposed that the PKC- pathway plays a central role in head formation in hydra. The results described here show that ectopic structures, as well as the ectopic localization of nerve cells, can be induced by heavy feeding alone. Furthermore, diC8 treatment does not induce ectopic head structures in starved animals. DiC8 reduces the rate of budding, leading to an unusual lengthening of the body column in reasonably fed animals.  相似文献   

4.
目的:如何建立和维持体轴是一个基本的发育生物学问题,而淡水水螅是适合进行形态发生和个体发育调控机制研究的重要模式生物。本文观察了大乳头水螅异常极性体轴的形成及矫正进程,初步探讨水螅极性体轴的维持和调控机制。方法:先切取水螅的整个头部,再获得带二根触手的口区组织。通过ABTS细胞化学染色法检测水螅基盘分子标志物过氧化物酶的表达,判别水螅基盘组织(水螅足区的末端)是否形成。结果:从40块口区组织再生得到的水螅个体中有1例极性体轴发育异常的个体,其身体两端均发育成头区,且两端的头区均具有捕食能力。随后水螅其中一端头区的触手逐渐萎缩、退化,最终该端头区转化成具有吸附能力的基盘组织。结论:水螅组织的再生涉及极性体轴的重建,而一些特殊因素可能造成临时性的水螅极性体轴调控紊乱。本研究表明水螅具备自我矫正异常极性体轴的能力。另外,本研究结果显示水螅触手可以萎缩直至退化,该现象涉及的细胞学过程可能是非常复杂的,有可能涉及到触手细胞的凋亡转化过程,也可能是触手的高度分化细胞仍然具备去分化能力、去分化后再转移到身体其他地方,其具体机制值得进一步探究。  相似文献   

5.
We have isolated Cngsc, a hydra homologue of goosecoid gene. The homeodomain of Cngsc is identical to the vertebrate (65-72%) and Drosophila (70%) orthologues. When injected into the ventral side of an early Xenopus embryo, Cngsc induces a partial secondary axis. During head formation, Cngsc expression appears prior to, and directly above, the zone where the tentacles will emerge, but is not observed nearby when the single apical tentacle is formed. This observation indicates that the expression of the gene is not necessary for the formation of a tentacle per se. Rather, it may be involved in defining the border between the hypostome and the tentacle zone. When Cngsc(+) tip of an early bud is grafted into the body column, it induces a secondary axis, while the adjacent Cngsc(-) region has much weaker inductive capacities. Thus, Cngsc is expressed in a tissue that acts as an organizer. Cngsc is also expressed in the sensory neurons of the tip of the hypostome and in the epithelial endodermal cells of the upper part of the body column. The plausible roles of Cngsc in organizer function, head formation and anterior neuron differentiation are similar to roles goosecoid plays in vertebrates and Drosophila. It suggests widespread evolutionary conservation of the function of the gene.  相似文献   

6.
The plasticity of nerve cells expressing the neuropeptide FMRFamide was examined in adult hydra. Using a whole-mount technique with indirect immunofluorescence, the spatial pattern of neurons showing FMRFamide-like immunoreactivity (FLI) was visualized. These neurons were located in the tentacles, hypostome, and peduncle, but not in the body column or basal disc. Since every neuron in the nerve net is continuously displaced toward an extremity and eventually sloughed, the constant pattern of FLI+ neurons could arise in one of two ways. When displaced into the appropriate region, FLI- neurons are converted to FLI+ neurons, or FLI+ neurons arise by differentiation from interstitial cells. To distinguish between these two possibilities, interstitial cells, the multipotent precursors of the nerve cells, were eliminated by treatment with hydroxyurea or nitrogen mustard. Following head, or foot and peduncle, removal from these animals, the missing structures regenerated. The spatial pattern of FLI+ neurons reappeared in the newly regenerated head or peduncle. This shows FLI- neurons in the body column were converted to FLI+ when their position was changed to the head or the peduncle. When the peduncle was grafted into the body column, it was converted to basal disc or body column tissue, and FLI disappeared. The appearance and loss of FLI was always position dependent. These results indicate that the neurons in the mature nerve net can change their neuropeptide phenotype in response to changes in their position.  相似文献   

7.
The interstitial cells of hydra form a multipotent stem cell system, producing terminally differentiated nerve cells and nematocytes during asexual growth. Under well-fed conditions the interstitial cell population doubles in size every 4 days. We have investigated the possible role of nerve cells in regulating this behavior. Nerve cells are normally found in highest concentrations in the head region of hydra, while interstitial cells are primarily located in the body column. Our experimental approach was to construct, by grafting, animals in which the density of nerve cells varied in (1) the head region, or (2) the body column. The growth of the interstitial cell population was then measured in these hydra. The results indicate that differences in head nerve cell density are closely correlated with how fast the interstitial cell population increases in size. Variations in the level of either nerve cells or interstitial cells in the body column showed no such correlation. These findings suggest the existence of a signaling mechanism in the head region. This signal, which is a function of the density of head nerve cells, emanates from the head tissue and exerts global control on the growth of the interstitial cell population in the body column.  相似文献   

8.
The relative sizes of the various structures in Hydra attenuata were compared over a broad range of animal sizes to determine in detail the ability to regulate proportions during regeneration. The three components of the head, namely hypostome, tentacles, and tentacle zone from which the tentacles emerge, the body column, and the basal disc were all measured separately. Ectodermal cell number was used as the measure of size. The results showed that the basal disc proportioned exactly over a 40-fold size range, and the tentacle tissue proportioned exactly over a 20-fold size range. In contrast, the hypostome and tentacle zone proportioned allometrically. With decreasing size, the hypostome and tentacle zone became an increasing fraction of the animal at the expense of body tissue, and in the very smallest regenerates at the expense of tentacle tissue. In their current form, the reaction-diffusion models proposed for pattern regulation in hydra are not consistent with the data.  相似文献   

9.
Hydra magnipapillata has three distinct genes coding for preprohormones A, B, and C, each yielding a characteristic set of Hydra-RFamide (Arg-Phe-NH2) neuropeptides, and a fourth gene coding for a preprohormone that yields various Hydra-LWamide (Leu-Trp-NH2) neuropeptides. Using a whole-mount double-labeling in situ hybridization technique, we found that each of the four genes is specifically expressed in a different subset of neurons in the ectoderm of adult Hydra. The preprohormone A gene is expressed in neurons of the tentacles, hypostome (a region between tentacles and mouth opening), upper gastric region, and peduncle (an area just above the foot). The preprohormone B gene is exclusively expressed in neurons of the hypostome, whereas the preprohormone C gene is exclusively expressed in neurons of the tentacles. The Hydra-LWamide preprohormone gene is expressed in neurons located in all parts of Hydra with maxima in tentacles, hypostome, and basal disk (foot). Studies on animals regenerating a head showed that the prepro-Hydra-LWamide gene is expressed first, followed by the preprohormone A and subsequently the preprohormone C and the preprohormone B genes. This sequence of events could be explained by a model based on positional values in a morphogen gradient. Our head-regeneration experiments also give support for transient phases of head formation: first tentacle-specific preprohormone C neurons (frequently associated with a small tentacle bud) appear at the center of the regenerating tip, which they are then replaced by hypostome-specific preprohormone B neurons. Thus, the regenerating tip first attains a tentacle-like appearance and only later this tip develops into a hypostome. In a developing bud of Hydra, tentacle-specific preprohormone C neurons and hypostome-specific preprohormone B neurons appear about simultaneously in their correct positions, but during a later phase of head development, additional tentacle-specific preprohormone C neurons appear as a ring at the center of the hypostome and then disappear again. Nerve-free Hydra consisting of only epithelial cells do not express the preprohormone A, B, or C or the LWamide preprohormone genes. These animals, however, have a normal phenotype, showing that the preprohormone A, B, and C and the LWamide genes are not essential for the basic pattern formation of Hydra.  相似文献   

10.
Hym-301 is a peptide that was discovered as part of a project aimed at isolating novel peptides from hydra. We have isolated and characterized the gene Hym-301, which encodes this peptide. In an adult, the gene is expressed in the ectoderm of the tentacle zone and hypostome, but not in the tentacles. It is also expressed in the developing head during bud formation and head regeneration. Treatment of regenerating heads with the peptide resulted in an increase in the number of tentacles formed, while treatment with Hym-301 dsRNA resulted in a reduction of tentacles formed as the head developed during bud formation or head regeneration. The expression patterns plus these manipulations indicate the gene has a role in tentacle formation. Furthermore, treatment of epithelial animals indicates the gene directly affects the epithelial cells that form the tentacles. Raising the head activation gradient, a morphogenetic gradient that controls axial patterning in hydra, throughout the body column results in extending the range of Hym-301 expression down the body column. This indicates the range of expression of the gene appears to be controlled by this gradient. Thus, Hym-301 is involved in axial patterning in hydra, and specifically in the regulation of the number of tentacles formed.  相似文献   

11.
Most important event in head regeneration in hydra is a wave of conversion of many interstitial cells into nerve cells. Experimental evidence lends support to the idea that the commitment of interstitial cells into nerve cells is the first morphogenetic prerequisite for emergence of head structures, when the number of nerve cells increases. This increase in nerve cells is delayed when regeneration occurs at a site lower in the body column.  相似文献   

12.
In Hydractinia, a colonial marine hydroid representing the basal phylum Cnidaria, Wnt signaling plays a major role in the specification of the primary body axis in embryogenesis and in the establishment of the oral pole during metamorphosis. Here we report supplementing investigations on head regeneration and bud formation in post-metamorphic development. Head and bud formation were accompanied by the expression of Wnt, frizzled and Tcf. Activation of Wnt signaling by blocking GSK-3beta affected regeneration, the patterning of growing polyps and the asexual formation of new polyps in the colony. In the presence of lithium ions or paullones, gastric segments excised from adult polyps showed reversal of tissue polarity as they frequently regenerated heads at both ends. Phorbol myristate acetate, a known activator of protein kinase C increased this effect. Global activation of the Wnt pathway caused growing polyps to form ectopic tentacles and additional heads along their body column. Repeated treatment of colonies evoked the emergence of many and dramatically oversized bud fields along the circumference of the colony. These giant fields fell apart into smaller sub-fields, which gave rise to arrays of multi-headed polyps. We interpret the morphogenetic effects of blocking GSK-3beta as reflecting increase in positional value in terms of positional information and activation of Wnt target genes in molecular terms.  相似文献   

13.
Summary Tissue maceration was used to determine the absolute number and the distribution of cell types in Hydra. It was shown that the total number of cells per animal as well as the distribution of cells vary depending on temperature, feeding conditions, and state of growth. During head and foot regeneration and during budding the first detectable change in the cell distribution is an increase in the number of nerve cells at the site of morphogenesis. These results and the finding that nerve cells are most concentrated in the head region, diminishing in density down the body column, are discussed in relation to tissue polarity.  相似文献   

14.
Axial patterning of the aboral end of the hydra body column was examined using expression data from two genes. One, shin guard, is a novel receptor protein-tyrosine kinase gene expressed in the ectoderm of the peduncle, the end of the body column adjacent to the basal disk. The other gene, manacle, is a paired-like homeobox gene expressed in differentiating basal disk ectoderm. During regeneration of the aboral end, expression of manacle precedes that of shin guard. This result is consistent with a requirement for induction of peduncle tissue by basal disk tissue. Our data contrast with data on regeneration of the oral end. During oral end regeneration, markers for tissue of the tentacles, which lie below the extreme oral end (the hypostome), are detected first. Later, markers for the hypostome itself appear at the regenerating tip, with tentacle markers displaced to the region below. Additional evidence that tissue can form basal disk without passing through a stage as peduncle tissue comes from LiCl-induced formation of patches of ectopic basal disk tissue. While manacle is ectopically expressed during formation of basal disk patches, shin guard is not. The genes examined also provide new information on development of the aboral end in buds. Although adult hydra are radially symmetrical, expression of both genes in the bud's aboral end is initially asymmetrical, appearing first on the side of the bud closest to the parent's basal disk. The asymmetry can be explained by differences in positional information in the body column tissue that evaginates to form a bud. As predicted by this hypothesis, grafts reversing the orientation of evaginating body column tissue also reverse the orientation of asymmetrical gene expression.  相似文献   

15.
16.
Local self-activation and long ranging inhibition provide a mechanism for setting up organising regions as signalling centres for the development of structures in the surrounding tissue. The adult hydra hypostome functions as head organiser. After hydra head removal it is newly formed and complete heads can be regenerated. The molecular components of this organising region involve Wnt-signalling and β-catenin. However, it is not known how correct patterning of hypostome and tentacles are achieved in the hydra head and whether other signals in addition to HyWnt3 are needed for re-establishing the new organiser after head removal. Here we show that Notch-signalling is required for re-establishing the organiser during regeneration and that this is due to its role in restricting tentacle activation. Blocking Notch-signalling leads to the formation of irregular head structures characterised by excess tentacle tissue and aberrant expression of genes that mark the tentacle boundaries. This indicates a role for Notch-signalling in defining the tentacle pattern in the hydra head. Moreover, lateral inhibition by HvNotch and its target HyHes are required for head regeneration and without this the formation of the β-catenin/Wnt dependent head organiser is impaired. Work on prebilaterian model organisms has shown that the Wnt-pathway is important for setting up signalling centres for axial patterning in early multicellular animals. Our data suggest that the integration of Wnt-signalling with Notch-Delta activity was also involved in the evolution of defined body plans in animals.  相似文献   

17.
Abstract. Vanadate interferes with the development of planula larvae of the marine hydrozoon Hydractinia echinata . Exposure of embryos (morulae) to vanadate leads to teratomalike and heavily malformed larvae. Thirty h old embryos treated for 18 h develop into larvae signficiantly longer than control larvae. In control larvae cell proliferation detected by BrdU-antiBrdU immuno-histochemistry ceases at the posterior and anterior pole at an age of 72 h but is maintained at a high level in treated larvae. Even in teratomas cell proliferation is at a higher level than in proliferation zones of control animals indicating a deregulation of proliferation in the treated larvae just as in mammalian teratomas. Arginine-phenylalanine-amide (RF-amide) immunopositive nerve cells and fibres are found in 5 day old teratomas. RF-amide immunopositive cells are concentrated in globular structures. The animals overcome the deregulation by extruding these structures. In intact larvae 2–4 m M ort-hovanadate and 25–250 m M metavanadate induced metamorphosis. A majority of the developing polyps displayed an abnormal body pattern often having an elongated hypostome and instead of one whorl, had several tentacle whorls, one upon another. Incomplete polyps with a larval anterior part instead of a basal plate are also observed. Metamorphosis induced by vanadate is promoted by amiloride and inhibited by ouabain. Vanadate also disturbs pattern control in regeneration. Up to 50% of isolated larval tails either regenerate a second mirror-image tail instead of an anterior one or develop tentacles at their anterior part (up to 20%), i.e., exhibited a reversed polarity. Vanadate is assumed to act by influencing signal transducing pathways like the phosphoinositide cycle or tyrosine phosphorylation.  相似文献   

18.
Differentiation of body column epithelial cells into tentacle epithelial cells in Hydra is accompanied by changes in both cell shape and cell-cell contact. The molecular mechanism by which epithelial cells acquire tentacle cell characteristics is unknown. Here we report that expression of a Hydra homologue of the mammalian IQGAP1 protein is strongly upregulated during tentacle formation. Like mammalian IQGAP, Hydra IQGAP1 contains an N-terminal calponin-homology domain, IQ repeats and a conserved C terminus. In adult polyps a high level of Hydra IQGAP1 mRNA is detected at the basis of tentacles. Consistent with a role in tentacle formation, IQGAP1 expression is activated during head regeneration and budding at a time when tentacles are emerging. The observations support the previous hypothesis that IQGAP proteins are involved in cytoskeletal as well as cell-cell contact rearrangements. Received: 25 January 2000 / Accepted: 2 May 2000  相似文献   

19.
Summary Diffuse and synaptic nerve nets are present in the coenenchymal mesoglea and ectoderm of Muricea and Lophogorgia colonies. The nerve nets extend into the polyp column and tentacles maintaining a subectodermalmesogleal position. The density of nerve elements is low in comparison with similar nerve nets found in pennatulids.In the column of the polyp anthocodium, and throughout the oral disk region, neurons cross the mesoglea and enter the polyp endoderm. These neurons presumably connect with the endodermal nerve net which innervates the septal musculature. The trans-mesogleal neurons probably represent the connection between colonial and polyp nervous systems.In the tentacles, longitudinal ectodermal musculature is present with an overlying nerve plexus. These muscles and nerves, as well as tentacular sensory cells, are well represented in the oral side of the tentacles only.Presumed sensory cells form ciliary cone complexes in which one cell possesses an apical cilium. The other cells as well as the centrally located nematocyte contribute microvilli to the cone. The basal portion of the sensory cells is drawn into one or more neurite-like processes which enter the ectodermal nerve plexus. Similar processes form synapses with longitudinal muscle cells and nematocytes. The sensory cells of the ciliary cones presumably include chemoreceptors which can activate or modify nematocyst discharge, local muscle twitches, and tentacle bending.This work was supported by Office of Naval Research Contract N00014-75-C-0242, NSF Grant BMS 74-23242 and General Research Funds of the University of California, Santa Barbara. We wish to thank Dr. Steven K. Fisher for the use of facilities in his lab. This paper is part of a thesis to be submitted by R.A.S. to the Department of Biological Sciences, University of California, Santa Barbara in partial fulfillment of the requirements for the Ph. D.  相似文献   

20.
The planula larva of the hydroid Clava multicornis (Forskål, 1775) has a complex nervous system, characterized by the presence of distinct, anteriorly concentrated peptidergic populations of amidated neurons, presumably involved in the detection of environmental stimuli and metamorphic signals. Differently from other hydrozoan larvae in C. multicornis planulae GLW-positive cells with putative sensory role have a peculiar dome-shaped forefront organization, followed by a belt of RF-positive nerve cells. By immunohistochemistry, we investigated the transformation of the peptidergic (GLW-amide and RF-amide) larval neuroanatomy at different stages of metamorphosis and the subsequent development of the primary polyp nervous system. By terminal transferase-mediated dUTP nick end-labeling assay, apoptotic nuclei were first identified in the anterior pole of the settled larva, in the same region occupied by GLW-amide positive putative sensory cells. In primary polyps, GLW-amide positive signals first encircled the hypostome area, later extending downwards along the polyp column or upwards over the hypostome dome, whereas RF-amide positive sensory cells initially appeared at the tentacles base to later extend in the tentacles and the polyp column. In spite of the possession of distinct neuroanatomies, different cnidarian planulae may share common developmental mechanisms underlying metamorphosis, including apoptosis and de novo differentiation. Our data confirm the hypothesis that the developmental dynamics of tissue rearrangements may be not uniform across different taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号