首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elucidating the structure and function of joint vocal displays (e.g. duet, chorus) recorded with a conventional microphone has proved difficult in some animals owing to the complex acoustic properties of the combined signal, a problem reminiscent of multi-speaker conversations in humans. Towards this goal, we set out to simultaneously compare air-transmitted (AT) with radio-transmitted (RT) vocalizations in one pair of humans and one pair of captive Bolivian grey titi monkeys (Plecturocebus donacophilus) all equipped with an accelerometer – or vibration transducer – closely apposed to the larynx. First, we observed no crosstalk between the two radio transmitters when subjects produced vocalizations at the same time close to each other. Second, compared with AT acoustic recordings, sound segmentation and pitch tracking of the RT signal was more accurate, particularly in a noisy and reverberating environment. Third, RT signals were less noisy than AT signals and displayed more stable amplitude regardless of distance, orientation and environment of the animal. The microphone outperformed the accelerometer with respect to sound spectral bandwidth and speech intelligibility: the sounds of RT speech were more attenuated and dampened as compared to AT speech. Importantly, we show that vocal telemetry allows reliable separation of the subjects’ voices during production of joint vocalizations, which has great potential for future applications of this technique with free-ranging animals.  相似文献   

2.
We describe the production of substrate-borne vibrations in a subterranean mole rat of the genus Tachyoryctes for the first time. These signals with a supposed communication function were recorded using two approaches. Firstly, we recorded the production of spontaneous substrate-borne vibrations of individual test animals in artificial tunnels simulating a mole rat burrow system. Secondly, we recorded substrate-borne vibrations in individuals with interconnected home systems divided by a barrier. We found that Tachyoryctes produces these seismic signals by striking its head against the ceiling of the tunnel. Two types of seismic signals differing in physical parameters were identified. A slow signal (inter-pulse distance 0.12 s, inter-bout distance 3.89 s, number of pulses within each bout 9.53) was produced in both experiments, whereas a fast signal (inter-pulse distance 0.05 s, inter-bout distance 18.44 s, number of pulses within each bout 22.54) was produced mainly in close proximity to another individual. Our results indicate that fast signals are probably individually specific, because the success rate of classification according to discriminant function analysis was 70.4 % for the three tested individuals.  相似文献   

3.
Summary The behaviour of young honeybee queens and of worker bees was studied in an observation hive. Tooting and quacking signals emitted by the queens were recorded as airborne sound and as substrate vibrations of the combs by means of a microphone and a laser vibrometer, respectively. The fundamental frequency component is larger than the harmonics when the signals are measured as vibration velocity, and it is argued that the signals are carried mainly by the fundamental frequency component. The frequencies emitted depend on the queens' age, and the tooting syllables contain a frequency sweep. These observations may explain some of the very diverse frequency values reported in the literature. The fundamental carrier frequencies of the toots and quacks overlap, but the tooting syllables have longer rise times than the quacking syllables. Recordings of the vibration of cells in which queens were confined allowed us to measure the threshold for the release of quacking in the confined queens by artificial toots and by natural toots from emerged queens. Artificial toots with long syllable rise time are more efficient in releasing quacking responses than are toots with short syllable rise time. This observation may suggest that the bees recognize these signals mainly by their temporal structure. A comparison of the threshold, emission level, and attenuation with distance, suggests that these and other vibration signals are used by honey bees only for local communication within a restricted area of the comb.  相似文献   

4.
In this paper, a highly sensitive, reagentless, electrochemical strategy is reported for the detection of a cancer biomarker-Vascular Endothelial Growth Factor (VEGF). Disc shaped carbon fiber microelectrodes were used as the immunosensor platform. Ferrocene monocarboxylic acid labeled anti-VEGF was covalently immobilized on the microelectrode surface using a Jeffamine cross-linker. The formation of immunocomplexes leads to a decrease in the electrochemical signal of ferrocene monocarboxylic acid owing to increased spatial blocking of microelectrode surface. These signal changes enable quantitative detection of VEGF in solution. Voltammetric measurements were conducted to evaluate the interfacial immunoreactions and to quantitatively detect VEGF biomarker. The proposed immunosensing strategy allows a rapid and sensitive means of VEGF analysis with a limit of detection of about 38 pg/mL. This opens up the possibility of employing these electrodes for various single cell analysis and clinical applications. Further, experimental conditions such as concentration of the immobilized antibodies and incubation period were optimized. Following this, the stability and specificity of the immunosensors were also evaluated.  相似文献   

5.
Abstract. Vibrational alarm communication was studied in the New World, damp-wood termite Zootermopsis nevadensis (Isoptera: Termopsidae). Workers and soldiers react to disturbance such as sudden bright light or air currents by drumming their heads against the substratum. This drumming has been described as alarm signalling; its functional significance and perception by the nest mates, however, remained unclear. In the present study we analysed spectral and temporal properties and absolute amplitudes of the vibrational signals and used behavioural responses of the termites to determine the thresholds of the sense of vibration and to find out if and how the termites discriminate the conspecific alarm signals from the background noise.
The drumming signals are trains of pulses of vibrations of the substratum with a pulse repetition rate of about 20 Hz. The carrier frequency depends on the substratum; in the nests studied it was in the range 1–3 kHz. The highest vibrational amplitudes measured close to the signal emitters are usually about 10m/s2 (acceleration, RMS). The threshold of the behavioural response is about 1m/s2 over a wide range of frequencies (10 Hz to 5 kHz), indicating that the termites can detect these signals as vibrations of the substratum. The animals respond preferentially to temporal patterns similar those of the natural signals; temporal rather than spectral cues seem to be used for signal discrimination.  相似文献   

6.
The velocity and spectral characteristics of vibrational signals of Nezara viridula (L.) and Murgantia histrionica (Hahn) (Heteroptera: Pentatomidae) were analyzed as the signals were transmitted through different plants. The velocity parameter of the body vibrations ranges from 0.1 to 1 mm/s. According to the mechanical properties of different substrates, the signal is attenuated or amplified during transmission from the insect's body to the substrate. Attenuation of up to 20 dB occurs during transmission of signals from leaves to stalks or stems. The velocity decrease with distance is below 0.5 dB/cm during transmission through less dense green stems, whereas it ranges between 0.6 and 1.6 dB/cm during transmission through more dense, woody stems. Signal velocity decreases non-linearly with increasing distance from the signal source. Regularly repeated velocity minima (nodes) and maxima (internodes) spaced 10-15 cm apart are characteristic of signal transmission through green plants but not woody stems. The signal velocity at some internodes exceeds the input value for N. viridula but not M. histrionica signals. The relative amplitude of the dominant frequency spectral peak varies with distance, along with overall signal velocity. Variable ratios of spectral peak amplitudes are characteristic for signals recorded at different distances from the source.  相似文献   

7.
A design for an inexpensive and reliable subminiature microdrive for recording single neurons in the freely moving animal is presented. The Scribe microdrive is small and lightweight and has been used successfully to record in freely moving rats and pigeons. It would also be suitable for recording in mice. The device is simple and inexpensive yet allows for stable and precise manipulation of the recording electrodes. As a result it supports stable recordings conducted over long periods. Because the Scribe microdrive is a small-diameter device it is also suitable for multisite, multielectrode applications. Here we discuss the construction of the device and comment on its use in recording from freely moving rats and pigeons.  相似文献   

8.
The detection of surface electromyogram (EMG) by multi-electrode systems is applied in many research studies. The signal is usually recorded by means of spatial filters (linear combination of the potential under at least two electrodes) with vanishing sum of weights. Nevertheless, more information could be extracted from monopolar signals measured with respect to a reference electrode away from the muscle. Under certain conditions, surface EMG signal along a curve parallel to the fibre path has zero mean (property approximately satisfied when EMG is sampled by an array of electrodes that covers the entire support of the signal in space). This property allows estimating monopolar from single differential (SD) signals by pseudoinversion of the matrix relating monopolar to SD signals. The method applies to EMG signals from the external anal sphincter muscle, recorded using a specific cylindrical probe with an array of electrodes located along the circular path of the fibres. The performance of the algorithm for the estimation of monopolar from SD signals is tested on simulated signals. The estimation error of monopolar signals decreases by increasing the number of channels. Using at least 12 electrodes, the estimation error is negligible. The method applies to single fibre action potentials, single motor unit action potentials, and interference signals.The same method can also be applied to reduce common mode interference from SD signals from muscles with rectilinear fibres. In this case, the last SD channel defined as the difference between the potentials of the last and the first electrodes must be recorded, so that the sum of all the SD signals vanishes. The SD signals estimated from the double differential signals by pseudoinvertion are free of common mode.  相似文献   

9.
The Asopinae (Heteroptera: Pentatomidae) are a subfamily of stinkbugs with predaceous feeding habits and poorly understood communication systems. In this study we recorded vibratory signals emitted by Picromerus bidens L. on a non-resonant substrate and investigated their frequency characteristics. Males and females produced signals by vibration of the abdomen and tremulation. The female and male songs produced by abdominal vibrations showed gender-specific time structure. There were no differences in the temporal patterns of male or female tremulatory signals. The signals produced by abdominal vibrations were emitted below 600 Hz whereas tremulatory signals had frequency ranges extending up to 4 kHz. Spectra of male vibratory signals produced by abdominal vibrations contained different peaks, each of which may be dominant within the same song sequence. Males alternated with each other during production of rivalry signals, using different dominant frequency levels. We show that the vibratory song repertoire of P. bidens is broader than those of other predatory stinkbugs that have been investigated. The emission of vibrational signals with different dominant frequencies but the same production mechanism has not yet been described in heteropteran insects, and may facilitate location of individual sources of vibration within a group.  相似文献   

10.
A knee joint that has sustained a painful injury will typically require skillful examination, by an orthopaedic surgeon, for signs of internal damage. These signs include characteristic sounds and vibrations, which are produced by the knee when it is stressed. The technique of vibration arthrometry is being developed to assist the clinical examiner in identifying these vibrations and to improve diagnostic accuracy. To detect and record the knee vibrations, small lightweight accelerometers are positioned on various bony prominences around the knee. These produce electronic signals which permit objective analysis of the vibration characteristics. It has been found that varying the investigative procedure can affect the magnitude of some parameters of the vibration signal. If these parameters are to be used in evidence of knee pathology, the effect of the investigative procedure must be normalized. The effect of speed of joint movement has been quantified in a pilot study involving 24 patients with internal knee damage. Custom-designed hardware was used to measure joint speed as the rate of change of joint angle, which was measured by an electrogoniometer. It was found that the energy content of the vibration, reflected by the peak amplitude and root mean square value was strongly affected by joint speed. However, the characteristic shape of the vibration, reflected by the peak frequency in the harmonic spectrum of the signal, remained similar for the range of joint speed in the investigation.  相似文献   

11.
The public world of insect vibrational communication   总被引:1,自引:0,他引:1  
Cocroft RB 《Molecular ecology》2011,20(10):2041-2043
Food webs involving plants, herbivorous insects and their predators account for 75% of terrestrial biodiversity (Price 2002). Within the abundant arthropod community on plants, myriad ecological and social interactions depend on the perception and production of plant-borne mechanical vibrations (Hill 2008). Study of ecological relationships has shown, for example, that termites monitor the vibrations produced by competing colonies in the same tree trunk (Evans et al. 2009), that stink bugs and spiders attend to the incidental vibrations produced by insects feeding or walking on plants (Pfannenstiel et al. 1995, Barth 1998) and that caterpillars can distinguish among the foraging-related vibrations produced by their invertebrate predators (Castellanos & Barbosa 2006). Study of social interactions has revealed that many insects and spiders have evolved the ability to generate intricate patterns of substrate vibration, allowing them to communicate with potential mates or members of their social group (Cokl & Virant-Doberlet 2003; Hill 2008). Surprisingly, research on the role of substrate vibrations in social and ecological interactions has for the most part proceeded independently, in spite of evidence from other communication modalities – acoustic, visual, chemical and electrical – that predators attend to the signals of their prey (Zuk & Kolluru 1998; Stoddard 1999). The study by Virant-Doberlet et al. (2011) in this issue of Molecular Ecology now helps bring these two areas of vibration research together, showing that the foraging behaviour of a spider is influenced by the vibrational mating signals of its leafhopper prey.  相似文献   

12.
Egg-laying decisions are critical for insects, and particularly those competing for limited resources. Sensory information used by females to mediate egg-laying decisions has been reported to be primarily chemical, but the role of vibration has received little attention. We tested the hypothesis that vibrational cues produced by feeding larvae occupying a seed influences egg-laying decisions amongst female cowpea beetles. This hypothesis is supported by three lines of evidence using two strains of the cowpea beetle (Callosobruchus maculatus), an Indian strain with choosy females and aggressively competing larvae and a Brazilian strain with less choosy females and larvae exhibiting an “accommodating” type of competition. First, in free-choice bioassays of seed selection, choosy Indian females selected control seeds (free of eggs, larvae, or egg-laying marker) over seeds with live larvae (free of eggs and egg-laying marker), but did not discriminate between control seeds and those with dead larvae. In contrast, less choosy Brazilian females showed no preference for seeds containing live or dead larvae over controls. Second, laser-doppler vibrometer recordings confirmed that larvae feeding inside seeds generate vibrations that are available to the female during egg-laying decisions. Third, during dichotomous choice experiments where artificial vibrations approximating those produced by feeding larvae were played back during seed selection, Indian females preferred immobile control seeds over vibrating seeds, but Brazilian females showed no preference. These results support the hypothesis that females use larval vibrations in their egg-laying decisions; whether these vibrations are passive cues exploited by the female, or active signals that ‘steer’ the behaviour of the female is unknown. We propose that vibration cues and signals could be important for host selection in insects, particularly those laying on substrates where visual or chemical cues may be unreliable. This seems to be the case with females of the cowpea beetle since visual cues are not important and chemical egg-marking does not last more than two weeks, allowing vibration cues to improve discrimination of egg-laying substrate particularly by choosy females.  相似文献   

13.
EEG signals are important to capture brain disorders. They are useful for analyzing the cognitive activity of the brain and diagnosing types of seizure and potential mental health problems. The Event Related Potential can be measured through the EEG signal. However, it is always difficult to interpret due to its low amplitude and sensitivity to changes of the mental activity. In this paper, we propose a novel approach to incrementally detect the pattern of this kind of EEG signal. This approach successfully summarizes the whole stream of the EEG signal by finding the correlations across the electrodes and discriminates the signals corresponding to various tasks into different patterns. It is also able to detect the transition period between different EEG signals and identify the electrodes which contribute the most to these signals. The experimental results show that the proposed method allows the significant meaning of the EEG signal to be obtained from the extracted pattern.  相似文献   

14.
We hypothesize two functions of the vibration signal (dorsal ventral abdominal vibration = DVAV) during swarming in honey bees: 1. it enhances recruitment to the specific sites advertised by the waggle dancers which also perform the vibration signal; and 2. it acts as a nonspecific modulatory signal to stimulate activity in other bees. The stimulation of activity invoked by the second hypothesis might include increasing nest-site scouting and dance following early in the house-hunting process or rousing quiescent bees to prepare them for lift-off late in the process, or both. In studies of neotropical African bee swarms in Costa Rica and European bees in California we tested these hypotheses by looking for associations between production of vibration signals by nest-site recruiters and site attractiveness (indicated by which site was ultimately chosen and by distance from the swarm since swarms may have a distance preference). Overall, bees dancing for the chosen sites performed vibration signals to the same extent as those dancing for the other sites. There were no distance differences between sites whose scouts did and did not vibrate other bees. These results are inconsistent with the hypothesis that the vibration signal enhances recruitment to especially high quality sites and they support the hypothesis that it plays a general excitatory role in the context of house hunting by swarming bees.  相似文献   

15.
Micropipettes filled with the neutral liquid ion exchanger ETH 1001 can be used to make microelectrodes that are sensitive to cytoplasmic levels of Ca2+. They are high resistance electrodes, so that care is required in order to record the low current signal. The electrodes often yield 10-15 mV change between intracellular Ca2+ activities of 10(-6) and 10(-7) M, according to a log relation. The microelectrodes are non-destructive, even in rather small cells, and can be used to monitor Ca2+ changes during experimental interventions.  相似文献   

16.
Recently developed CMOS-based microprobes contain hundreds of electrodes on a single shaft with inter-electrode distances as small as 30 μm. So far, neuroscientists needed to select electrodes manually from hundreds of electrodes. Here we present an electronic depth control algorithm that allows to select electrodes automatically, hereby allowing to reduce the amount of data and locating those electrodes that are close to neurons. The electrodes are selected according to a new penalized signal-to-noise ratio (PSNR) criterion that demotes electrodes from becoming selected if their signals are redundant with previously selected electrodes. It is shown that, using the PSNR, interneurons generating smaller spikes are also selected. We developed a model that aims to evaluate algorithms for electronic depth control, but also generates benchmark data for testing spike sorting and spike detection algorithms. The model comprises a realistic tufted pyramidal cell, non-tufted pyramidal cells and inhibitory interneurons. All neurons are synaptically activated by hundreds of fibers. This arrangement allows the algorithms to be tested in more realistic conditions, including backgrounds of synaptic potentials, varying spike rates with bursting and spike amplitude attenuation.  相似文献   

17.
Neuroelectronic interfaces are imperative in investigating neural tissues as electrical signals are the main information carriers in the nervous system and metal microelectrodes have been widely used for recording and stimulation of nerve cells. For high performance microelectrodes, low tissue-electrode interfacial impedance and high charge injection limits are essential and nanoscale surface engineering has been utilized to meet the requirements for microelectrodes. We report a single-cell sized microelectrode, which has unique gold nanograin structures, using a simple electrochemical deposition method. The fabricated microelectrode had a sunflower shape with 1–5 (m of micropetals along the circumference of the microelectrode and 500 nm nanograins at the center. The nanograin electrodes had 69-fold decrease of impedance and 10-fold increase in electrical stimulation capability compared to unmodified flat gold microelectrodes. The recording and stimulation performance of nanograin electrodes was tested using dissociated rat hippocampal neuronal cultures. Noise levels were extremely low (2.89 μVrms) resulting in high signal-to-noise ratio for low-amplitude action potentials (18.6–315 μV). Small biphasic current pulses (20–60 μA) could evoke action potentials from neurons nearby electrodes. This new nanostructured neural electrode may be applicable for the development of cell-based biosensors or clinical neural prosthetic devices.  相似文献   

18.
The number of physiological investigations in the mouse, mus musculus, has experienced a recent surge, paralleling the growth in methods of genetic targeting for microcircuit dissection and disease modeling. The introduction of optogenetics, for example, has allowed for bidirectional manipulation of genetically-identified neurons, at an unprecedented temporal resolution. To capitalize on these tools and gain insight into dynamic interactions among brain microcircuits, it is essential that one has the ability to record from ensembles of neurons deep within the brain of this small rodent, in both head-fixed and freely behaving preparations. To record from deep structures and distinct cell layers requires a preparation that allows precise advancement of electrodes towards desired brain regions. To record neural ensembles, it is necessary that each electrode be independently movable, allowing the experimenter to resolve individual cells while leaving neighboring electrodes undisturbed. To do both in a freely behaving mouse requires an electrode drive that is lightweight, resilient, and highly customizable for targeting specific brain structures.A technique for designing and fabricating miniature, ultralight weight, microdrive electrode arrays that are individually customizable and easily assembled from commercially available parts is presented. These devices are easily scalable and can be customized to the structure being targeted; it has been used successfully to record from thalamic and cortical regions in a freely behaving animal during natural behavior.  相似文献   

19.
Plants respond to leaf vibrations caused by insect herbivore chewing   总被引:1,自引:0,他引:1  
H. M. Appel  R. B. Cocroft 《Oecologia》2014,175(4):1257-1266
Plant germination and growth can be influenced by sound, but the ecological significance of these responses is unclear. We asked whether acoustic energy generated by the feeding of insect herbivores was detected by plants. We report that the vibrations caused by insect feeding can elicit chemical defenses. Arabidopsis thaliana (L.) rosettes pre-treated with the vibrations caused by caterpillar feeding had higher levels of glucosinolate and anthocyanin defenses when subsequently fed upon by Pieris rapae (L.) caterpillars than did untreated plants. The plants also discriminated between the vibrations caused by chewing and those caused by wind or insect song. Plants thus respond to herbivore-generated vibrations in a selective and ecologically meaningful way. A vibration signaling pathway would complement the known signaling pathways that rely on volatile, electrical, or phloem-borne signals. We suggest that vibration may represent a new long distance signaling mechanism in plant–insect interactions that contributes to systemic induction of chemical defenses.  相似文献   

20.
Rosenberg A  Issa NP 《Neuron》2011,71(2):348-361
Neural encoding of sensory signals involves both linear and nonlinear processes. Determining which nonlinear operations are implemented by neural systems is crucial to understanding sensory processing. Here, we ask if demodulation, the process used to decode AM radio signals, describes how Y cells in the cat LGN nonlinearly encode the visual scene. In response to visual AM signals across?a wide range of carrier frequencies, Y cells were found to transmit a demodulated signal, with the firing rate of single-units fluctuating at the envelope frequency but not the carrier frequency. A comparison of temporal frequency tuning properties between LGN Y cells and neurons in two primary cortical areas suggests that Y cells initiate a distinct pathway that carries a demodulated representation of the visual scene to cortex. The nonlinear signal processing carried out by the Y cell pathway simplifies the neural representation of complex visual features and allows high spatiotemporal frequencies to drive cortical responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号