首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nacken W  Kerkhoff C 《FEBS letters》2007,581(26):5127-5130
S100A8, S100A9 and S100A12 proteins are associated with inflammation and tissue remodelling, both processes known to be associated with high protease activity. Here, we report that homo-oligomeric forms of S100A8 and S100A9 are readily degraded by proteases, but that the preferred hetero-oligomeric S100A8/A9 complex displays a high resistance even against proteinase K degradation. S100A12 is not as protease resistant as the S100A8/A9 complex. Since specific functions have been assigned to the homo- and heterooligomeric forms of the S100A8 and A9 proteins, this finding may point to a post-translational level of regulation of the various functions of these proteins in inflammation and tissue remodelling.  相似文献   

2.
S100A8 and S100A9 are calcium-binding proteins expressed in myeloid cells and are markers of numerous inflammatory diseases in humans. S100A9 has been associated with dystrophic calcification in human atherosclerosis. Here we demonstrate S100A8 and S100A9 expression in murine and human bone and cartilage cells. Only S100A8 was seen in preosteogenic cells whereas osteoblasts had variable, but generally weak expression of both proteins. In keeping with their reported high-mRNA expression, S100A8 and S100A9 were prominent in osteoclasts. S100A8 was expressed in alkaline phosphatase-positive hypertrophic chondrocytes, but not in proliferating chondrocytes within the growth plate where the cartilaginous matrix was calcifying. S100A9 was only evident in the invading vascular osteogenic tissue penetrating the degenerating chondrocytic zone adjacent to the primary spongiosa, where S100A8 was also expressed. Whilst, S100A8 has been shown to be associated with osteoblast differentiation, both S100A8 and S100A9 may contribute to calcification of the cartilage matrix and its replacement with trabecular bone, and to regulation of redox in bone resorption.  相似文献   

3.
S100 proteins, a multigenic family of calcium-binding proteins, have been linked to human pathologies in recent years. Deregulated expression of S100 proteins, including S100A8 and S100A9, was reported in association with neoplastic disorders. In a previous study, we identified enhanced expression of S100A8 and S100A9 in human prostate cancer. To investigate potential functional implications of S100A8 and S100A9 in prostate cancer, we examined the influence of over-expressed and of purified recombinant S100A8 and S100A9 proteins in different prostate epithelial cell lines. S100A8 and S100A9 were secreted by prostate cancer cells, a finding which prompted us to analyze a possible function as extracellular ligands. S100A8/A9 induced the activation of NF-kappaB and an increased phosphorylation of p38 and p44/42 MAP kinases. In addition, extracellular S100A8/A9 stimulated migration of benign prostatic cells in vitro. Furthermore, in immunofluorescence experiments, we found a strong speckled co-localization of intracellular S100A8/A9 with RAGE after stimulating cells with recombinant S100A8/A9 protein or by increasing cytosolic Ca2+ levels. In summary, our findings show that S100A8 and S100A9 are linked to the activation of important features of prostate cancer cells.  相似文献   

4.
S100 proteins comprise the largest family of calcium-binding proteins. Members of this family usually form homo- or heterodimers, which may associate to higher-order oligomers in a calcium-dependent manner. The heterodimers of S100A8 and S100A9 represent the major calcium-binding proteins in phagocytes. Both proteins regulate migration of these cells via modulation of tubulin polymerization. Calcium binding induces formation of (S100A8/S100A9)2 tetramers. The functional relevance of these higher-order oligomers of S100 proteins, however, is not yet clear. To investigate the importance of higher-order oligomerization for S100 proteins, we created a set of mutations within S100A9 (N69A, E78A, N69A+E78A) destroying the high-affinity C-terminal calcium-binding site (EF-hand II). Mutations in EF-hand II did not interfere with formation of the S100A8/S100A9 heterodimer as demonstrated by yeast two-hybrid experiments and pull-down assays. In contrast, mass spectrometric analysis and density gradient centrifugation revealed that calcium-induced association of (S100A8/S100A9)2 tetramers was strictly dependent on a functional EF-hand II in S100A9. Failure of tetramer formation was associated with a lack of functional activity of S100A8/S100A9 complexes in promoting the formation of microtubules. Thus, our data demonstrate that calcium-dependent formation of (S100A8/S100A9)2 tetramers is an essential prerequisite for biological function. This is the first report showing a functional relevance of calcium-induced higher-order oligomerization in the S100 family.  相似文献   

5.
Previous studies suggest that up-regulation of Ras signaling in neurons promotes gliosis and astrocytoma formation in a cell nonautonomous manner. However, the underlying mechanisms remain unknown. To address this question, we generated compound mice (LSL Kras G12D/+;CamKII-Cre) that express oncogenic Kras from its endogenous locus in postmitotic neurons after birth. These mice developed progressive gliosis, which is associated with hyperactivation of Ras signaling pathways. Microarray analysis identified S100A8 and S100A9 as two secreted molecules that are significantly overexpressed in mutant cortices. In contrast to their usual predominant expression in myeloid cells, we found that overexpression of S100A8 and S100A9 in the mutant cortex is primarily in neurons. This neuronal expression pattern is associated with increased infiltration of microglia in mutant cortex. Moreover, purified S100A8-S100A9 but not S100A8 or S100A9 alone promotes growth of primary astrocytes in vitro through both TLR4 and receptor of advanced glycation end product receptors. In summary, our results identify overexpression of S100A8-S100A9 in neurons as an early step in oncogenic Kras-induced gliosis. These molecules expressed in nonhematopoietic cells may be involved in tumorigenesis at a stage much earlier than what has been reported previously.  相似文献   

6.
Coronavirus disease 2019 (COVID-19) has a broad range of clinical manifestations, highlighting the need for specific diagnostic tools to predict disease severity and improve patient prognosis. Recently, calprotectin (S100A8/A9) has been proposed as a potential biomarker for COVID-19, as elevated serum S100A8/A9 levels are associated with critical COVID-19 cases and can distinguish between mild and severe disease states. S100A8/A9 is an alarmin that mediates host proinflammatory responses during infection and it has been postulated that S100A8/A9 modulates the cytokine storm; the hallmark of fatal COVID-19 cases. However, it has yet to be determined if S100A8/A9 is a bona-fide biomarker for COVID-19. S100A8/A9 is widely implicated in a variety of inflammatory conditions, such as cystic fibrosis (CF) and chronic obstructive pulmonary disorder (COPD), as well as pulmonary infectious diseases, including tuberculosis and influenza. Therefore, understanding how S100A8/A9 levels correlate with immune responses during inflammatory diseases is necessary to evaluate its candidacy as a potential COVID-19 biomarker. This review will outline the protective and detrimental roles of S100A8/A9 during infection, summarize the recent findings detailing the contributions of S100A8/A9 to COVID-19 pathogenesis, and highlight its potential as diagnostic biomarker and a therapeutic target for pulmonary infectious diseases, including COVID-19.  相似文献   

7.
The cross-talk between tumour cells and the surrounding supporting host cells (stroma) is a key regulator of cancer growth and progression. By undertaking 2-DE analysis of laser capture microdissected malignant and stromal components of pancreatic tumours and benign ductal elements, we have identified high levels of S100A8 and S100A9 in tumour-associated stroma but not in benign or malignant epithelia. Immunohistochemical analysis (n = 71 patients) revealed strong expression of both proteins in stromal myeloid cells, subsequently identified as CD14(+)/CD68(- )monocytes/macrophages. Co-immunofluorescence revealed that S100A8 was expressed in a subset of S100A9-positive cells. Correlation of the expression of S100A8 and S100A9 to patient parameters revealed that the microenvironments of tumours which lacked expression of the tumour suppressor protein, Smad4, had significantly reduced numbers of S100A8-immunoreactive (p = 0.023) but not S100A9-immunoreactive (p = 0.21) cells. The ratio of S100A8- to S100A9-positive cells within individual tumours was significantly lower in Smad4-negative tumours than in Smad4-positive tumours (p<0.003). Pancreatitic specimens also contained S100A8- and S100A9-expressing cells, although this was not observed in regions displaying extensive fibrosis. In conclusion, our study provides an extensive analysis of S100A8 and S100A9 in pancreatic disease and highlights a potentially important relationship between pancreatic cancer cells and their surrounding microenvironment.  相似文献   

8.
S100家族是由20余个结构相似但功能各异的成员组成。该家族成员广泛参与感染、促炎、自身免疫等各种病理过程。近年来,越来越多学者发现S100家族成员在肿瘤的发展过程中也有不同程度的表达失调,且具有特异性。胃癌是我国常见的恶性肿瘤之一,国家癌症中心统计数据表明,2015年我国胃癌新发病率为679/10万,死亡率为498/10万[1],位居所有恶性肿瘤第2位。幽门螺杆菌(H.pylori)作为胃癌的Ⅰ类危险因子,目前其与胃癌的密切关系也得到了广大学者的认可。研究发现,S100家族成员——S100A8、S100A9在H.pylori感染相关胃炎、胃癌患者病理组织中表达显著上调,因此其在胃癌发生发展中的作用受到了学者的关注。本文主要就S100A8、S100A9在H.pylori相关胃癌发生发展中的作用作一综述。  相似文献   

9.
S100A8 and S100A9 are small calcium-binding proteins that are highly expressed in neutrophil and monocyte cytosol and are found at high levels in the extracellular milieu during inflammatory conditions. Although reports have proposed a proinflammatory role for these proteins, their extracellular activity remains controversial. In this study, we report that S100A8, S100A9, and S100A8/A9 caused neutrophil chemotaxis at concentrations of 10(-12)-10(-9) M. S100A8, S100A9, and S100A8/A9 stimulated shedding of L-selectin, up-regulated and activated Mac-1, and induced neutrophil adhesion to fibrinogen in vitro. Neutralization with Ab showed that this adhesion was mediated by Mac-1. Neutrophil adhesion was also associated with an increase in intracellular calcium levels. However, neutrophil activation by S100A8, S100A9, and S100A8/A9 did not induce actin polymerization. Finally, injection of S100A8, S100A9, or S100A8/A9 into a murine air pouch model led to rapid, transient accumulation of neutrophils confirming their activities in vivo. These studies 1) show that S100A8, S100A9, and S100A8/A9 are potent stimulators of neutrophils and 2) strongly suggest that these proteins are involved in neutrophil migration to inflammatory sites.  相似文献   

10.
Summary The functional importance of members of the S100 Ca2+-binding protein family is recently emerging. A variety of activities, several of whcih are apparently opposing, are attributed to S100A8, a protein implicated in embryogenesis, growth, differentiation, and immune and inflammatory processes. Murine (m) S100A8 was initially described as a chemoattractant (CP-10) for myeloid cells. It is coordinately expressed with mS100A9 (MRP14) in neutrophils and the non-covalent heterodimer is presumed to be the functional intracellular species. The extracellular chemotactic activity of mS100A8, however, is not dependent on mS100A9 and occurs at concentrations (10−13-10−11 M) at which the non-covalent heterodimer would probably dissociate. This review focuses on the structure and post-translational modifications of mS100A8/A9 and their effects on function, particularly chemotaxis.  相似文献   

11.
The functional importance of members of the S100 Ca2+-binding protein family is recently emerging. A variety of activities, several of which are apparently opposing, are attributed to S100A8, a protein implicated in embryogenesis, growth, differentiation, and immune and inflammatory processes. Murine (m) S100A8 was initially described as a chemoattractant (CP-10) for myeloid cells. It is coordinately expressed with mS100A9 (MRP14) in neutrophils and the non-covalent heterodimer is presumed to be the functional intracellular species. The extracellular chemotactic activity of mS100A8, however, is not dependent on mS100A9 and occurs at concentrations (10-13–10-11 M) at which the non-covalent heterodimer would probably dissociate. This review focuses on the structure and post-translational modifications of mS100A8/A9 and their effects on function, particularly chemotaxis.  相似文献   

12.
Expression of CD69 on neutrophils and generation of anti-CD69 autoantibodies in patients with rheumatoid arthritis (RA) have been reported. Thus natural ligands for CD69 not yet identified and/or the anti-CD69 autoantibodies possibly affect neutrophils by evoking CD69 signaling, which may further affect joint-composing cells in RA. However, the effect of the CD69 signaling in neutrophils remains largely unclear. To elucidate the issue, we tried to identify proteins affected by the crosslinking of CD69 on neutrophils using a proteomic approach. Specifically, CD69 on granulocyte-macrophage colony stimulating factor (GM-CSF)-activated neutrophils was crosslinked by anti-CD69 monoclonal antibodies, and then intracellular proteins were detected using 2-dimensional electrophoresis and further identified by mass spectrometry and subsequent protein database searching. As a result, we successfully identified multiple proteins that increased their production by the CD69 signaling. Among the proteins, we focused on one of the up-regulated proteins, S100A9 calcium binding protein (S100A9), and investigated proteome changes brought by a recombinant S100A9 in a human synovial sarcoma cell line (SW982), a human chondrosarcoma cell line (OUMS-27), and a human T leukemia cell line (Jurkat). This revealed that the recombinant S100A9 altered proteomes of SW982 and OUMS-27, and to a lesser extent, that of the Jurkat cells. Further, S100A9 induced IL-1beta production from neutrophils and the SW982 cells. These data suggest that unidentified natural ligands for CD69 and/or the anti-CD69 autoantibodies possibly affect joint-composing cell types through the increased production of S100A9 in neutrophils, providing a new insight into functions of CD69 on neutrophils in RA.  相似文献   

13.
S100A8 and S100A9 in human arterial wall. Implications for atherogenesis   总被引:1,自引:0,他引:1  
Atherogenesis is a complex process involving inflammation. S100A8 and S100A9, the Ca2+-binding neutrophil cytosolic proteins, are associated with innate immunity and regulate processes leading to leukocyte adhesion and transmigration. In neutrophils and monocytes the S100A8-S100A9 complex regulates phosphorylation, NADPH-oxidase activity, and fatty acid transport. The proteins have anti-microbial properties, and S100A8 may play a role in oxidant defense in inflammation. Murine S100A8 is regulated by inflammatory mediators and recruits macrophages with a proatherogenic phenotype. S100A9 but not S100A8 was found in macrophages in ApoE-/- murine atherosclerotic lesions, whereas both proteins are expressed in human giant cell arteritis. Here we demonstrate S100A8 and S100A9 protein and mRNA in macrophages, foam cells, and neovessels in human atheroma. Monomeric and complexed forms were detected in plaque extracts. S100A9 was strongly expressed in calcifying areas and the surrounding extracellular matrix. Vascular matrix vesicles contain high levels of Ca2+-binding proteins and phospholipids that regulate calcification. Matrix vesicles characterized by electron microscopy, x-ray microanalysis, nucleoside triphosphate pyrophosphohydrolase assay and cholesterol/phospholipid analysis contained predominantly S100A9. We propose that S100A9 associated with lipid structures in matrix vesicles may influence phospholipid-Ca2+ binding properties to promote dystrophic calcification. S100A8 and S100A9 were more sensitive to hypochlorite oxidation than albumin or low density lipoprotein and immunoaffinity confirmed S100A8-S100A9 complexes; some were resistant to reduction, suggesting that hypochlorite may contribute to protein cross-linking. S100A8 and S100A9 in atherosclerotic plaque and calcifying matrix vesicles may significantly influence redox- and Ca2+-dependent processes during atherogenesis and its chronic complications, particularly dystrophic calcification.  相似文献   

14.
It is now known that multicomponent protein assemblies strictly regulate many protein functions. The S100 protein family is known to play various physiological roles, which are associated with alternative complex formations. To prepare sufficient amounts of heterodimeric S100A8 and S100A9 proteins, we developed a method for bicistronic coexpression from a single-vector system using Escherichia coli cells as a host. The complex formation between S100A8 and S100A9 appears to be dependent on the thermodynamic stability of the protein during expression. The stable S100A8/A9 heterodimer complex spontaneously formed during coexpression, and biologically active samples were purified by cation-exchange chromatography. Semi-stable homodimers of S100A8 and S100A9 were also formed when expressed individually. These results suggest that the assembly of S100 protein complexes might be regulated by expression levels of partner proteins in vivo. Because protein assembly occurs rapidly after protein synthesis, coexpression of relevant proteins is crucial for the design of multicomponent recombinant protein expression systems.  相似文献   

15.
S100A8 and S100A9 are Ca2+ binding proteins that belong to the S100 family. Primarily expressed in neutrophils and monocytes, S100A8 and S100A9 play critical roles in modulating various inflammatory responses and inflammation-associated diseases. Forming a common heterodimer structure S100A8/A9, S100A8 and S100A9 are widely reported to participate in multiple signaling pathways in tumor cells. Meanwhile, S100A8/A9, S100A8, and S100A9, mainly as promoters, contribute to tumor development, growth and metastasis by interfering with tumor metabolism and the microenvironment. In recent years, the potential of S100A8/A9, S100A9, and S100A8 as tumor diagnostic or prognostic biomarkers has also been demonstrated. In addition, an increasing number of potential therapies targeting S100A8/A9 and related signaling pathways have emerged. In this review, we will first expound on the characteristics of S100A8/A9, S100A9, and S100A8 in-depth, focus on their interactions with tumor cells and microenvironments, and then discuss their clinical applications as biomarkers and therapeutic targets. We also highlight current limitations and look into the future of S100A8/A9 targeted anti-cancer therapy.  相似文献   

16.
S100A8 and S100A9 are known to be up-regulated in hyperproliferative and psoriatic epidermis, but their function in epidermal keratinocytes remains largely unknown. Here we show that (1) S100A8 and S100A9 are secreted by cultured normal human keratinocytes (NHK) in a cytokine-dependent manner, (2) when applied to NHK, recombinant S100A8/A9 (a 1:1 mixture of S100A8 and S100A9) induced expression of a number of cytokine genes such as IL-8/CXCL8, CXCL1, CXCL2, CXCL3, CCL20, IL-6, and TNFalpha that are known to be up-regulated in psoriatic epidermis, (3) the S100A8/A9-induced cytokines in turn enhanced production and secretion of S100A8 and S100A9 by NHK, and (4) S100A8 and S100A8/A9 stimulated the growth of NHK at a concentration as low as 1 ng/ml. These results indicate the presence of a positive feedback loop for growth stimulation involving S100A8/A9 and cytokines in human epidermal keratinocytes, implicating the relevance of the positive feedback loop to the etiology of hyperproliferative skin diseases, including psoriasis.  相似文献   

17.
Activation of the O(2)(-) generating NADPH oxidase of phagocytes results from the assembly of the membrane-bound flavocytochrome b(558) with cytosolic proteins, p67(phox), p47(phox), and Rac. However, it has been recently reported that the arachidonic acid- and calcium-binding heterodimer S100A8/A9, abundant in neutrophil cytosol, influences the activation process. In a semi-recombinant system comprising neutrophil membranes, recombinant proteins, p67(phox), p47(phox), GTPgamma S-loaded Rac2, and arachidonic acid (AA), both the rate and the extent of the oxidase activation were increased by S100A8/A9, provided it was preloaded with AA. Binding of [(14)C]AA to S100A8/A9 was potentiated by recombinant cytosolic phox proteins and GTPgammaS, suggesting the formation of a complex, comprising oxidase activating proteins and S100A8/A9, with a greater affinity for AA. The rate constant of oxidase activation was not increased by AA-loaded S100A8/A9, whereas the maximal oxidase activity elicited was twice as high. AA-loaded S100A8/A9 increases oxidase activation probably by decreasing the deactivation rate.  相似文献   

18.
19.
20.
We show here, by using surface biotinylation, followed by Western blotting or surface plasmon resonance analysis, that very low levels of S100A8 and/or S100A9 can be detected on the surface of THP-1 cells or freshly isolated human monocytes. This was supported by immune-electron microscopy where we observed membrane-associated expression of the proteins restricted to small patches. By using confocal microscopy we could determine that S100A8 and S100A9 protein in THP-1 cells or freshly isolated human monocytes was mostly present in vesicular structures. This finding was confirmed using immune-electron microscopy. Subcellular fractionation and confocal microscopy showed that these vesicular structures are mainly early endosomes and endolysosomes. Our subsequent studies showed that accumulation of S100A8 and S100A9 in the endolysosomal compartment is associated with induction of their release from the cells. Furthermore, an inhibitor of lysosomal activity could modulate the release of S100A8 and S100A9 in the extracellular milieu. Our current results suggest that the S100A8 and S100A9 proteins are primarily associated with certain kinds of cytosolic vesicles and may be secreted via an endolysosomal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号