首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chymotryptic digestion of scallop myosin yielded two different preparations of subfragment-1, having the following features. The major product from chymotryptic digestion of scallop myosin was subfragment-1 (S1) either in Ca-medium or in EDTA-medium. However, the S1 preparations obtained from the digestion in Ca-medium, abbreviated as Ca-S1(CT), had both types of light chain subunits (regulatory light chains (R-LC) and essential light chains (SH-LC], and 100 Kdaltons (Kd) heavy chain subfragments (HCs), whereas the S1 preparations obtained from the digestion in EDTA-medium, ED-S1(CT), had no R-LC, partially fragmented SH-LC (SH-LC), and 90 Kd HCs. On the other hand, Ca-S1(CT) and ED-S1(CT) were practically identical with each other in ATPase activity and in actin-binding ability. The two S1 preparations were also identical in that the Mg-ATPase activity of both S1 and acto-S1 was insensitive to calcium ions. Ca-S1(CT), which contained both R-LC and SH-LC in a stoichiometric amount, was further digested with trypsin, which is known to cleave rabbit skeletal myosin not only at the head-tail junction but also in the head. The tryptic digestion of Ca-S1(CT) appeared, in terms of the SDS-gel electrophoretic pattern, to occur at a much faster rate in Ca-medium than in EDTA-medium, and with a different digestion profile. It is therefore suggested that association of R-LC induces changes in the heavy chain conformation which result in an increase in the proteolytic digestibility of heavy chains and in an alteration of the site of proteolytic cleavage on heavy chains.  相似文献   

2.
Heavy meromyosin (HMM) and subfragment-1 (S1) were obtained from squid mantle myosin by tryptic digestion and chymotryptic digestion, respectively. Squid HMM(T) and S1(CT) preparations contained stoichiometric amounts of the two types of light chain subunit; regulatory light chain, LC-2, and essential light chain, LC-1. No difference was detected in the chymotryptic digestibilities of squid mantle myosin in Ca-medium and in EDTA-medium. This is in contrast to the digestibility of scallop adductor myosin. The Mg-ATPase activity of HMM(T) alone and that of acto-HMM(T) were both sensitive to calcium ions. In contrast, the activity of S1(CT) alone and that of acto-S1(CT) were both insensitive to calcium ions. The affinity of HMM(T) for actin was not affected by calcium ions, but the amount of HMM(T) bound to actin was increased by calcium ions from 20% to 60% of the total amount of HMM(T). On the other hand, the actin affinity of S1(CT) and the amount of S1(CT) bound to actin were both unaffected by calcium ions. The role of calcium ions in the regulation of contraction in molluscan muscles is discussed.  相似文献   

3.
Myosin fragments were fractionated on columns of the hydrophobic gel phenyl-Sepharose CL-4B. In the presence of high NaCl concentrations the fragments bound tightly to the columns; they could be eluted by decreasing the ionic strength, by increasing the pH, or by applying various concentrations of ethylene glycol. In myosin subfragment-1 (S-1), the light chains underwent partial dissociation from the heavy chain and bound separately to the column matrix. The order of strength of binding of the various species to the column was heavy chain > A1 light chain > A2 light chain > native S-1 > denatured heavy chain or S-1. Thus the hydrophobic gel appears to be able to differentiate between enzymatically active and inactive S-1. Under appropriate elution conditions it was possible to obtain S-1 preparations depleted from nicked heavy chains and with specific ATPase activities 34–130% higher than those of untreated S-1. When S-1(A2) was fractionated on phenyl-Sepharose a fivefold enrichment of the heavy chain with respect to the light chains was obtained, while the ATPase activity was equal or larger than that of the original S-1, implying that the light chains are not essential for ATPase activity. Thus, it seems that chromatography of S-1 on phenyl-Sepharose is a potentially useful method for obtaining a purified myosin heavy-chain fragment with a high ATPase specific activity.  相似文献   

4.
The interactions of smooth muscle myosin and its light chains have been examined by incubating sodium dodecyl sulfate-polyacrylamide gels of myosin with radioactively labeled regulatory or essential light chains. The technique involves sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fixation with methanol and acetic acid followed by an extensive series of washes. The gel is incubated overnight with labeled light chains in the presence of bovine serum albumin and then washed extensively to remove unbound protein. Following staining and destaining, the gel is autoradiographed to reveal which protein bands have bound light chain. The myosin heavy chain was able to rebind labeled regulatory or essential light chains despite the harsh procedure described above. By fragmenting the myosin heavy chain proteolytically, we were able to determine the binding site for both types of light chains to be within the 26,000-Da COOH-terminal segment of smooth muscle subfragment 1 (S-1) or the 20,000-Da COOH-terminal segment of skeletal muscle S-1. The extent of binding was 0.1-0.4 mol of light chain/mol of S-1 heavy chain. No binding was observed to portions of the myosin molecule which do not contain this segment such as myosin rod, light meromyosin, S-2, or the NH2-terminal 75,000-Da segment of S-1.  相似文献   

5.
Localisation of light chain and actin binding sites on myosin   总被引:6,自引:0,他引:6  
A gel overlay technique has been used to identify a region of the myosin S-1 heavy chain that binds myosin light chains (regulatory and essential) and actin. The 125I-labelled myosin light chains and actin bound to intact vertebrate skeletal or smooth muscle myosin, S-1 prepared from these myosins and the C-terminal tryptic fragments from them (i.e. the 20-kDa or 24-kDa fragments of skeletal muscle myosin chymotryptic or Mg2+/papain S-1 respectively). MgATP abolished actin binding to myosin and to S-1 but had no effect on binding to the C-terminal tryptic fragments of S-1. The light chains and actin appeared to bind to specific and distinct regions on the S-1 heavy chain, as there was no marked competition in gel overlay experiments in the presence of 50-100 molar excess of unlabelled competing protein. The skeletal muscle C-terminal 24-kDa fragment was isolated from a tryptic digest of Mg2+/papain S-1 by CM-cellulose chromatography, in the presence of 8 M urea. This fragment was characterised by retention of the specific label (1,5-I-AEDANS) on the SH1 thiol residue, by its amino acid composition, and by N-terminal and C-terminal sequence analyses. Electron microscopical examination of this S-1 C-terminal fragment revealed that: it had a strong tendency to form aggregates with itself, appearing as small 'segment-like' structures that formed larger aggregates, and it bound actin, apparently bundling and severing actin filaments. Further digestion of this 24-kDa fragment with Staphylococcus aureus V-8 protease produced a 10-12-kDa peptide, which retained the ability to bind light chains and actin in gel overlay experiments. This 10-12-kDa peptide was derived from the region between the SH1 thiol residue and the C-terminus of S-1. It was further shown that the C-terminal portion, but not the N-terminal portion, of the DTNB regulatory light chain bound this heavy chain region. Although at present nothing can be said about the three-dimensional arrangement of the binding sites for the two kinds of light chain (regulatory and essential) and actin in S-1, it appears that these sites are all located within a length of the S-1 heavy chain of about 100 amino acid residues.  相似文献   

6.
The S-1/S-2 swivel in myosin provides a flexible link between the head and tail portions of the molecule. We have investigated the properties of the swivel by employing limited proteolysis methods. Our results indicate that the binding of actin to heavy meromyosin inhibits both the chymotryptic and papain cleavage of the S-1/S-2 swivel, and that this effect is dependent on the presence of intact LC-2 light chains. Actin did not slow digestions carried out using heavy meromyosin previously treated with proteases to nick the LC-2 chains to 17,000 or 14,000 Mr fragments. Although the integrity of the LC-2 light chain appears to be required to transmit the effects of actin binding from the myosin head to the S-1/S-2 swivel, the binding of Ca2+ to the 17,000 Mr LC-2 fragment can still affect the chemical reactivity of SH1 thiol groups. Both chymotryptic and papain digestions of heavy meromyosin containing intact or fragmented LC-2 light chain show substantial temperature sensitivity between 5 degrees C and 35 degrees C. Calculated apparent activation energies for this process indicate that the S-1/S-2 swivel in myosin can undergo temperature-dependent structural changes independently of the state of the LC-2 light chain. Thus, both actin binding and temperature variations can induce structural transitions in the S-1/S-2 swivel.  相似文献   

7.
Bovine factor Va has been previously been shown to consist of heavy (M(r) = 94,000) and light chains (M(r) = 81,000), that interact in a manner dependent upon the presence of either calcium or manganese ions. In an attempt to understand the mechanism of subunit interaction we have studied the effects of temperature and ions on factor Va stability. The rates of formation of factor Va from isolated chains and dissociation were temperature-dependent with an energy of activation of 6.2 and 1.3 kcal mol-1, respectively. The yield of factor Va from isolated chains was inversely related to the amount of time the chains were incubated at 4 degrees C. Incubation of individual chains revealed that the heavy chain is cold-labile, an effect that is reversible. Manganese ion was observed to prevent the conversion to the inactive form. High salt tends to stabilize the two-chain structure of factor Va, but is inhibitory to its formation from isolated chains. High concentrations of either manganese or calcium ions also inhibited reconstitution of activity. The light chain, in particular, was sensitive to the presence of manganese or calcium ion. Heavy chain that had been cleaved by activated protein C had a weakened interaction with the light chain, and the resulting complex had no procoagulant activity. Cooling of the heavy chain to 4 degrees C enhanced its intrinsic fluorescence. Manganese ion prevented some of this enhancement. The heavy chain fluorescence returned to the room temperature value with a half-life of approximately 10 min. In the presence of manganese ion relaxation was accelerated. The intrinsic fluorescence of activated protein C-cleaved heavy chain was not increased when the temperature was decreased. These data suggest that the heavy chain can exist in two forms. Elevated temperature converts it to a form that can bind ions and have a productive interaction with the light chain. However, conditions that prevent the heavy chain from combining with the light chain also stabilize the two subunit structure, suggesting that the high affinity of the complex is due to conformational changes that occur after chain interaction.  相似文献   

8.
The light chains of scallop myosin as regulatory subunits   总被引:27,自引:0,他引:27  
In molluscan muscles contraction is regulated by the interaction of calcium with myosin. The calcium dependence of the aotin-activated ATPase activity of scallop myosin requires the presence of a specific light chain. This light chain is released from myosin by EDTA treatment (EDTA-light chains) and its removal desensitizes the myosin, i.e. abolishes the calcium requirement for the actin-activated ATPase activity, and reduces the amount of calcium the myosin binds; the isolated light chain, however, does not bind calcium and has no ATPase activity. Calcium regulation and calcium binding is restored when the EDTA-light chain is recombined with desensitized myosin preparations. Dissociation of the EDTA-light chain from myosin depends on the concentration of divalent cations; half dissociation is reached at about 10?5 M-magnesium or 10?7 M-calcium concentrations. The EDTA-light chain and the residual myosin are fairly stable and the components may be kept separated for a day or so before recombination.Additional light chains containing half cystine residues (SH-light chains) are detached from desensitized myosin by sodium dodecyl sulfate. The EDTA-light chains and the SH-light chains have a similar chain weight of about 18,000 daltons; however, they differ in several amino acid residues and the EDTA-light chains contain no half cystine. The SH-light chains and EDTA-light chains have different tryptic fingerprints. Both light chains can be prepared from washed myofibrils.Densitometry of dodecyl sulfate gel electrophoresis bands and Sephadex chromatography in sodium dodecyl sulfate indicate that there are three moles of light chains in a mole of purified myosin, but only two in myosin treated with EDTA. The ratio of the SH-light chains to EDTA-light chains was found to be two to one in experiments where the total light-chain complements of myosin or myofibril preparations were carboxymethylated. A similar ratio was obtained from the densitometry of urea-acrylamide gel electrophoresis bands. We conclude that a myosin molecule contains two moles of SH-light chain and one mole of EDTA-light chain, and that the removal of a single EDTA-light chain completely desensitizes scallop myosin.Heavy meromyosin and S-1 subfragment can be prepared from scallop myosin. Both of these preparations bind calcium and contain light chains in significant amounts. The heavy meromyosin of scallop is extensively degraded; the S-1 preparation, however, is remarkably intact. Significantly, heavy meromyosin has a calcium-dependent actin-activated ATPase while the S-1 does not require calcium and shows high ATPase activity in its absence. These results suggest that regulation involves a co-operativity between the two globular ends of the myosin.Desensitized scallop myosin and scallop S-1 preparations can be made calcium sensitive when mixed with rabbit actin containing the rabbit regulatory proteins. This result makes it unlikely that specific light chains of myosin are involved in the regulation of the vertebrate system.The fundamental similarity in the contractile regulation of molluscs and vertebrates is that interaction between actin and myosin in both systems requires a critical level of calcium. We propose that the difference in regulation of these systems is that the interaction between myosin and actin is prevented by blocking sites on actin in the case of vertebrate muscles, whereas in the case of molluscan muscles it is the sites on myosin which are blocked in the absence of calcium.  相似文献   

9.
Previous studies on the role of microtubule-associated protein 1B (MAP1B) in adapting microtubules for nerve cell-specific functions have examined the activity of the entire MAP1B protein complex consisting of heavy and light chains and revealed moderate effects on microtubule stability. Here we have analyzed the effects of the MAP1B light chain in the absence or presence of the heavy chain by immunofluorescence microscopy of transiently transfected cells. Distinct from all other MAPs, the MAP1B light chain–induced formation of stable but apparently flexible microtubules resistant to the effects of nocodazole and taxol. Light chain activity was inhibited by the heavy chain. In addition, the light chain was found to harbor an actin filament binding domain in its COOH terminus. By coimmunoprecipitation experiments using epitope-tagged fragments of MAP1B we showed that light chains can dimerize or oligomerize. Furthermore, we localized the domains for heavy chain–light chain interaction to regions containing sequences homologous to MAP1A. Our findings assign several crucial activities to the MAP1B light chain and suggest a new model for the mechanism of action of MAP1B in which the heavy chain might act as the regulatory subunit of the MAP1B complex to control light chain activity.  相似文献   

10.
During development of fast contracting skeletal muscle in the rat hindleg, embryonic and neonatal forms of the myosin heavy chain are present prior to the accumulation of the adult fast type ( Whalen , R. G., Sell, S. M., Butler-Browne, G.S., Schwartz, K., Bouveret, P., and Pinset -H arstr ?m, I. (1981) Nature (Lond.) 292, 805-809). Polypeptide mapping of the heavy chain subunit using partial proteolysis in the presence of sodium dodecyl sulfate has shown differences in the cleavage patterns for these various heavy chains. Using this technique, we have now examined subfragments, which represent functional domains, from several different myosin isozymes. The heavy chains of the S-1 subfragments containing either light chain 1 or light chain 3 are indistinguishable for the neonatal or fast myosin isozymes. We also isolated the S-1 fragments and the alpha-helical COOH-terminal half of the molecule (rod) from rat embryonic, neonatal, and adult fast and slow myosin, as well as myosin from cardiac ventricles. All of these S-1 and rod fragments were different, indicating that the previously reported differences among these different myosin heavy chain isozymes are located in both the S-1 and rod subfragments for all myosins examined. However, the polypeptide maps of neonatal and adult fast S-1 show clear similarities, as do the maps of slow and cardiac S-1. These similarities in the two pairs of polypeptide maps were confirmed by the results of immunoblotting experiments using antibodies to adult fast and to slow myosin.  相似文献   

11.
The effect of guanidine hydrochloride on ATPase activity, gel filtration, turbidity, exposure of thiol groups, far-UV circular dichroism, and the fluorescence emission intensity of myosin subfragment 1 (S-1) was studied under equilibrium conditions. It was found that the denaturation process involves several intermediate states. The enzymatic activity of S-1 is at first lost at very low concentrations of GdnHCl (lower than 0.5 M). At a slightly higher GdnHCl concentration (about 0.5 M), the light chains dissociate and this dissociation is closely followed by the formation of aggregates between the naked heavy chains of S-1 molecules in the guanidine hydrochloride range of concentrations 0.5-1 M. At GdnHCl concentrations above 1 M, aggregates gradually disappear and S-1 loses its secondary and tertiary structures. These phenomena are partly reversible, and ATPase activity is only partially recovered under highly limited conditions. These results are discussed in relation to the nature of myosin subunit assembly. The head fragment of 20 kDa is thus suggested to be implicated in the binding of light chain to heavy chain and in the self-association of free heavy chains.  相似文献   

12.
Human coagulation factor V is an integral component of the prothrombinase complex. Rapid activation of prothrombin is dependent on the interactions of this nonenzymatic cofactor with factor Xa and prothrombin in the presence of calcium ions and a phospholipid or platelet surface. Factor V is similar structurally and functionally to the homologous cofactor, factor VIII, which interacts with factor IXa to accelerate factor X activation in the presence of calcium and phospholipids. Both of these cofactors, when activated, possess homologous heavy and light chains. Binding to anionic phospholipids is mediated by the light chains of these two cofactors. In bovine factor Va, a phosphatidylserine-specific binding site has been localized to the amino-terminal A3 domain of the light chain. In human factor VIII, on the other hand, a region within the carboxyl-terminal C2 domain of the light chain has been shown to interact with anionic phospholipids. We have constructed a series of recombinant deletion mutants lacking domain-size fragments of the light chain of human factor V (rHFV). These mutants are expressed and secreted as single-chain proteins by COS cells. Thrombin and the factor V activator from Russell's viper venom process these deletion mutants as expected. The light chain deletion mutants possess essentially no procoagulant activity, nor are they activated by treatment with factor V activator from Russell's viper venom. Deletion of the second C-type domain results in essentially complete loss of phosphatidylserine-specific binding whereas the presence of the C2 domain alone (rHFV des-A3C1, which lacks the A3 and C1 domains of the light chain) results in significant phosphatidylserine-specific binding. The presence of the A3 domain alone (rHFV des-C1C2) does not mediate binding to immobilized phosphatidylserine. Increasing calcium ion concentrations result in decreased binding of recombinant human factor V and the mutant rHFV des-A3C1 to phosphatidylserine, similar to previous studies with purified plasma factor V and phospholipid vesicles. These results indicate that human factor V, similar to human factor VIII, possesses a phosphatidylserine-specific binding site within the C2 domain of the light chain.  相似文献   

13.
As reported by Kendrick-Jones et al. (1976), myosin from squid mantle muscle contains two types of light-chain components, different in size but similar in net charge. We were able to separate the two types of light chains by a five-step procedure, yielding LC-1 (17,000 daltons) and LC-2 (15,000 daltons). It was found that squid mantle LC-1 and LC-2 function exactly like SH-light chains and EDTA-light chains of scallop adductor myosin, respectively. In functional tests, we used "desensitized" myosin of scallop adductor muscle, simply because "EDTA washing" removed neither LC-1 nor LC-2 from squid mantle myosin. The removal and recombination of light chains were examined by gel electrophoresis, and Ca or Sr sensitivity was determined by measuring the Mg-ATPase activity of skeletal acto-scallop or squid myosin. It was found that EDTA washing readily released the EDTA-light chains of scallop myosin completely, and that the EDTA-washed scallop myosin was capable of regaining its full content of EDTA-LC as well as its full sensitivity to calcium. We also found that as regards combining with, and conferring calcium sensitivity on the EDTA-washed myosin of scallop adductor, squid mantle LC-2 could effectively replace scallop adductor EDTA-LC. In addition, calcium or strontium ions were found to induce changes in the UV absorption spectrum of scallop adductor EDTA-LC, although the apparent binding constants estimated from the difference spectrum were too low to account for the Ca or Sr sensitivity of scallop actomyosin-ATPase. The divalent cations also induced changes in the UV absorption spectrum of squid LC-2, and the apparent binding constants estimated from the difference spectrum were sufficiently high (1.5 X 10(5) M-1 for Ca binding, and 1.6 X 10(3) M-1 for Sr binding) to account for the Ca and Sr sensitivities of squid mantle myosin B-ATPase. The findings with scallop adductor myosin are in conflict with those reported by Kendrick-Jones et al., and must be accounted for in formulating the molecular mechanism of myosin-linked calcium regulation in molluscan muscles.  相似文献   

14.
Light chain exchange in 4.7 M NH4Cl was used to hybridize the essential light chain of cardiac myosin with the heavy chain of fast muscle myosin subfragment 1, S-1. The actin-activated ATPase properties of this hybrid were compared to those of the two fast S-1 isoenzymes, S-1(A1), fast muscle subfragment 1 which contains only the alkali-1 light chain, and S-1(A2), fast muscle myosin subfragment 1 which contains only the alkali-2 light chain. This hybrid S-1 behaved like S-1(A1)., At low ionic strength in the presence of actin, this hybrid had a maximal rate of ATP hydrolysis about the same as that of S-1(A1) and about one-half that of S-1(A2), while at higher ionic strengths the actin-activated ATPases of these three S-2 species were all similar. Light chain exchange in NH4Cl was also used to hybridize the essential light chains of fast muscle myosin with the heavy chains of cardiac myosin and to hybridize the essential light chains of cardiac myosin with the heavy chains of fast muscle myosin. In 60 and 100 mM KCl, the actin-activated ATPases of these two hybrid myosins were very different from those of the control myosins with the same essential light chains but were very similar to those of the control myosins with the same heavy chains, differing at most by one-third.  相似文献   

15.
Molluscan myosins are regulated molecules that control muscle contraction by the selective binding of calcium. The essential and the regulatory light chains are regulatory subunits. Scallop myosin is the favorite material for studying the interactions of the light chains with the myosin heavy chain since the regulatory light chains can be reversibly removed from it and its essential light chains can be exchanged. Mutational and structural studies show that the essential light chain binds calcium provided that the Ca-binding loop is stabilized by specific interactions with the regulatory light chain and the heavy chain. The regulatory light chains are inhibitory subunits. Regulation requires the presence of both myosin heads and an intact headrod junction. Heavy meromyosin is regulated and shows cooperative features of activation while subfragment-1 is non-cooperative. The myosin heavy chains of the functionally different phasic striated and the smooth catch muscle myosins are products of a single gene, the isoforms arise from alternative splicing. The differences between residues of the isoforms are clustered at surface loop-1 of the heavy chain and account for the different ATPase activity of the two muscle types. Catch muscles contain two regulatory light chain isoforms, one phosphorylatable by gizzard myosin light chain kinase. Phosphorylation of the light chain does not alter ATPase activity. We could not find evidence that light chain phosphorylation is responsible for the catch state.  相似文献   

16.
A Muhlrad 《Biochemistry》1989,28(9):4002-4010
The 23-kDa N-terminal tryptic fragment was isolated from the heavy chain of rabbit skeletal myosin subfragment 1 (S-1). The heavy-chain fragments were dissociated by guanidine hydrochloride following limited trypsinolysis, and the 23-kDa fragment was isolated by gel filtration and ion-exchange chromatography. Finally, the fragment was renatured by removing the denaturants. The CD spectrum of the renatured fragment shows the presence of ordered structure. The tryptophan fluorescence emission spectrum of the fragment is considerably shifted to the red upon adding guanidine hydrochloride which indicates that the tryptophans are located in relatively hydrophobic environments. The two 23-kDa tryptophans, unlike the rest of the S-1 tryptophans, are fully accessible to acrylamide as indicated by fluorescence quenching. The isolated 23-kDa fragment cosediments with F-actin in the ultracentrifuge and significantly increases the light scattering of actin in solution which indicates actin binding. The binding is rather tight (Kd = 0.1 microM) and ionic strength dependent (decreasing with increasing ionic strength). ATP, pyrophosphate, and ADP dissociate the 23-kDa-actin complex with decreasing effectiveness. The isolated 23-kDa fragment does not have ATPase activity; however, it inhibits the actin-activated ATPase activity of S-1 by competing presumably with S-1 for binding sites on actin. F-Actin binds to the 23-kDa fragment immobilized on the nitrocellulose membrane. The fragment was further cleaved, and one of the resulting peptides, containing the 130-204 stretch of residues, was found to bind actin on the nitrocellulose membrane, indicating that this region of the 23-kDa fragment participates in forming an actin binding site.  相似文献   

17.
We have isolated and chemically characterized several 5-thio-2-nitrobenzoate-subfragment 1 derivatives (TNB-S-1) generated by the reaction of 5,5'-dithiobis(2-nitrobenzoic acid) (DNTB, up to 10-fold molar excess) with native S-1, N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-S-1 (AEDANS-S-1), and N,N'-p-phenylenedimaleimide-S-1 (pPDM-S-1) at 4 degrees C, pH 8.0. The reaction of the reagent with AEDANS-S-1, which has a blocked -SH1 group, induced the formation of an intramolecular cystine disulfide between two vicinal -SH groups in S-1; in contrast, the treatment of pPDM-S-1 with DTNB resulted in the formation of TNB mixed disulfides only. The incorporation of the TNB groups (up to 3 mol/mol of S-1) into the native or premodified S-1 led to a local conformational change in the 50K heavy chain region that was fully reversed upon disulfide reduction. Exploiting this peculiarity of the DTNB-modified S-1's, we have realized a highly selective proteolysis of the S-1 heavy chain by thrombin and chymotrypsin, which do not act at all on the normal S-1. The 95K heavy chain was cut by thrombin into two fragments with apparent masses of 68K and 30K, whereas the "connector segments" and the light chains were unaffected. The two new fragments were issued from a primary peptide-bound cleavage between Lys-560 and Ser-561 within the amino acid sequence of the 50K region (M. Elzinga, personal communication).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Monoclonal antibodies against chicken breast myosin and its subfragment-1(S-1) were produced. One antibody, 2G41, reacted with S-1 containing a light chain 3 (LC3), but not with another S-1 containing a light chain 1 (LC1) or a mixture of the light chains. A structural difference can be assumed to exist between the head portions of the two myosin isozymes. Antigenicity of S-1 toward 2G41 could not be detected after tryptic digestion into three fragments of 50K, 27K, and 20K daltons. Another monoclonal antibody, M68, was obtained from mice immunized with myosin. M68 preferably recognized the heavy chain from S-1 containing LC3 rather than that from that containing LC1 or S-1. M68 reacted with the 27K fragment among the three.  相似文献   

19.
Calcium regulation of muscle contraction.   总被引:5,自引:0,他引:5       下载免费PDF全文
Calcium triggers contraction by reaction with regulatory proteins that in the absence of calcium prevent interaction of actin and myosin. Two different regulatory systems are found in different muscles. In actin-linked regulation troponin and tropomyosin regulate actin by blocking sites on actin required for complex formation with myosin; in myosin-linked regulation sites on myosin are blocked in the absence of calcium. The major features of actin control are as follows: there is a requirement for tropomyosin and for a troponin complex having three different subunits with different functions; the actin displays a cooperative behavior; and a movement of tropomyosin occurs controlled by the calcium binding on troponin. Myosin regulation is controlled by a regulatory subunit that can be dissociated in scallop myosin reversibly by removing divalent cations with EDTA. Myosin control can function with pure actin in the absence of tropomyosin. Calcium binding and regulation of molluscan myosins depend on the presence of regulatory light chains. It is proposed that the light chains function by sterically blocking myosin sites in the absence of calcium, and that the "off" state of myosin requires cooperation between the two myosin heads. Both myosin control and actin control are widely distributed in different organisms. Many invertebrates have muscles with both types of regulation. Actin control is absent in the muscles of molluscs and in several minor phyla that lack troponin. Myosin control is not found in striated vertebrate muscles and in the fast muscles of crustacean decapods, although regulatory light chains are present. While in vivo myosin control may not be excluded from vertebrate striated muscles, myosin control may be absent as a result of mutations of the myosin heavy chain.  相似文献   

20.
H Onishi  T Maita  G Matsuda  K Fujiwara 《Biochemistry》1992,31(4):1201-1210
The interaction between the heavy and the regulatory light chains within chicken gizzard myosin heads was investigated by using a zero-length chemical cross-linker, 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide (EDC). The chicken gizzard subfragment 1 (S-1) used was treated with papain so that the heavy chain was partly cleaved into the NH2-terminal 72K and the COOH-terminal 24K fragments and the regulatory light chain into the 16K fragment. S-1 was reacted with EDC either alone or in the presence of ATP or F-actin. In all cases, the 16K fragment of the regulatory light chain formed a covalent cross-link with the 24K heavy chain fragment but not with the 72K fragment. The 38K cross-linked peptide, which was the product of cross-linking between the 16K light chain and the 24K heavy chain fragments, was isolated and further cleaved with cyanogen bromide and arginylendopeptidase. Smaller cross-linked peptides were purified by reverse-phase HPLC and then characterized by amino acid analysis and sequencing. The results indicated that cross-linking occurred between Lys-845 in the heavy chain and Asp-168, Asp-170, or Asp-171 in the regulatory light chain. The position of the cross-linked lysine was only three amino acid residues away from the invariant proline residue mapped as the S-1-rod hinge by McLachlan and Karn [McLachlan, A. D., & Karn, J. (1982) Nature (London) 299, 226-231]. We propose that the COOH-terminal region of the regulatory light chain is located in the neck region of myosin and that this region and the phosphorylation site of the regulatory light chain together may play a role in the phosphorylation-induced conformational change of gizzard myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号