首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering the increasing development of three dimensional (3D) imaging, the 3D assessment of the acetabular coverage is to become the most interesting tool for the detection of acetabular pathologies. Biplanar X-rays based methods allow a 3D reconstruction of the hip with a reduced radiation dose. This study proposes a 3D assessment method of the acetabular coverage from biplanar X-rays or from an anteroposterior X-ray (conventional clinical imaging). An in vitro evaluation of the method was performed on six hip joints in comparison with computed tomography. The global coverage, the local coverage and the acetabular rim orientation were estimated in 3D. The mean global acetabular coverage was 40% with an estimated mean accuracy of 1.3% for the biplanar X-rays based method. This study evaluated a 3D assessment method of the acetabular coverage from biplanar X-rays or anteroposterior X-ray and open the way for clinical in vivo applications.  相似文献   

2.
The reliability evaluation and lifetime prediction of oral restorations for dentists have always been the major concern in the field of prosthodontics. This study introduced a new methodology for dealing with stress–strength interference and an analysis to quantify the reliability of all-ceramic crowns. The response stress was based on finite element models of all-ceramic crowns, which were constructed by reverse techniques. The method utilized in this study was a probabilistic analysis that considered the all-ceramic crown as a structural component associated with multiple factors involved in the all-ceramic system including occlusal loads and mechanical properties of porcelain. The results suggested the survival probability of all-ceramic crowns after 1, 5, 10, 15, and 20 years could be computed to be 98.89%, 98.03%, 97.50%, 97.13%, and 96.93%, respectively. Probabilistic analysis methods offer a systematic technique to incorporate and account for the nature of uncertainty in ceramic restorations and allow prediction of the reliability of all-ceramic crowns under cyclic occlusal loads with accuracy.  相似文献   

3.
The tibial component of current knee prostheses made of ultra high molecular weight polyethylene (UHMWPE) has a high degree of wear that causes knee inflammation, prosthesis loosening and subsequent replacement in not more than 15 years. In order to know which UHMWPE material properties have more influence on wear, a steady state lubrication model with non-Newtonian synovial fluid has been studied through numerical solution. The results show that UHMWPE has a very high elastic modulus that makes difficult a well lubricated artificial joint and induces the formation of very thin lubricating films between the moving surfaces with the same magnitude of roughness components. This study shows that the use of deformable porous materials in the tibial component could cause the lubricating film thickness to be higher than the average roughness and the pressure levels to be lower than the one predicted for UHMWPE. These two facts imply friction and wear reduction.  相似文献   

4.
The cost and time efficiency of computational polyethylene wear simulations may enable the optimization of total knee replacements for the reduction of polyethylene wear. The present study proposes an energy dissipation wear model for polyethylene which considers the time dependent molecular behavior of polyethylene, aspects of tractive rolling and contact pressure. This time dependent – energy dissipation wear model was evaluated, along with several other wear models, by comparison to pin-on-disk results, knee simulator wear test results under various kinematic conditions and knee simulator wear test results that were performed following the ISO 14243-3 standard. The proposed time dependent – energy dissipation wear model resulted in improved accuracy for the prediction of pin-on-disk and knee simulator wear test results compared with several previously published wear models.  相似文献   

5.
Retrieval studies have shown that the interface between the ultra-high molecular weight polyethylene insert and metal tibial tray of fixed-bearing total knee replacement components can be a source of substantial amounts of wear debris due to fretting micromotion. We assessed fretting wear of polyethylene against metal as a function of metal surface finish, alloy, and micromotion amplitude, using a three-station pin-on-disc fretting wear simulator. Overall, the greatest reduction in polyethylene wear was achieved by highly polishing the metal surface. For example, highly polished titanium alloy surfaces produced nearly 20 times less polyethylene wear compared with blasted titanium alloy, whereas, decreasing the micromotion amplitude from 200 to 50 μm produced approximately four times less polyethylene wear for the same blasted titanium alloy surface. Although the effect of the metal alloy was much smaller than the effect of metal surface roughness or the micromotion amplitude, CoCr discs produced slightly greater polyethylene fretting wear than titanium alloy discs under each condition. The results are essential in design and manufacturing decisions related to fixed-bearing total knee replacements.  相似文献   

6.
During the last years increasingly cementless hip endoprostheses have been implanted. Radiological wear measurement of cemented hip endoprostheses for the material couples polyethylene cup-ceramic- or metal head has been established in the literature. However, for cups encased by metal (screwing or pressfit cups), this method of measurement is not applicable. Therefore, a method has been developed to measure wear on radiographs on cementless spherical implants. The data were compared to those, obtained from conventional wear measurements on cemented hip cups. The results indicate that both techniques generate comparable results, thus validating the new technique as being suited for cementless cup implants.  相似文献   

7.
Previous work in predicting protein localization to the chloroplast organelle in plants led to the development of an artificial neural network-based approach capable of remarkable accuracy in its prediction (ChloroP). A common criticism against such neural network models is that it is difficult to interpret the criteria that are used in making predictions. We address this concern with several new prediction methods that base predictions explicitly on the abundance of different amino acid types in the N-terminal region of the protein. Our successful prediction accuracy suggests that ChloroP uses little positional information in its decision-making; an unexpected result given the elaborate ChloroP input scheme. By removing positional information, our simpler methods allow us to identify those amino acids that are useful for successful prediction. The identification of important sequence features, such as amino acid content, is advantageous if one of the goals of localization predictors is to gain an understanding of the biological process of chloroplast localization. Our most accurate predictor combines principal component analysis and logistic regression. Web-based prediction using this method is available online at http://apicoplast.cis.upenn.edu/pclr/.  相似文献   

8.
Overranging or overscanning increases the dose delivered to patients undergoing helical Computed Tomography examinations. In order to reduce it, nowadays most of the multidetector tomographs close the X-ray beam aperture at the scan extremes. This technical innovation, usually referred to as dynamic or adaptive collimation, also influences the overranging assessment methods. In particular, the film free approach proposed in previous studies is not suitable for these modern tomographs. The present study aims to introduce a new method of estimating overranging with real time dosimetry, even suitable for tomographs equipped with adaptive collimation. The approach proposed is very easy to implement and time saving because only a pencil chamber is required. It is also equivalent in precision and in accuracy to the film based one, considered an absolute benchmark.  相似文献   

9.
Computational wear prediction is an attractive concept for evaluating new total knee replacement designs prior to physical testing and implementation. An important hurdle to such technology is the lack of in vivo contact pressure predictions. To address this issue, this study evaluates a computationally efficient simulation approach that combines the advantages of rigid and deformable body modeling. The hybrid method uses rigid body dynamics to predict body positions and orientations and elastic foundation theory to predict contact pressures between general three-dimensional surfaces. To evaluate the method, we performed static pressure experiments with a commercial knee implant in neutral alignment using flexion angles of 0, 30, 60, and 90 degrees and loads of 750, 1500, 2250, and 3000N. Using manufacturer CAD geometry for the same implant, an elastic foundation model with linear or nonlinear polyethylene material properties was implemented within a commercial multibody dynamics software program. The model's ability to predict experimental peak and average contact pressures simultaneously was evaluated by performing dynamic simulations to find the static configuration. Both the linear and nonlinear material models predicted the average contact pressure data well, while only the linear material model could simultaneously predict the trends in the peak contact pressure data. This novel modeling approach is sufficiently fast and accurate to be used in design sensitivity and optimization studies of knee implant mechanics and ultimately wear.  相似文献   

10.
The definite identification of wear particles from joint prostheses is of great importance for the development of joint replacement, as the type and quantity of different wear particles gives information on the wear resistance of implant materials. From the types of prostheses nowadays in use polyethylene wear of the sockets, bone cement wear, metallic and ceramic wear can be generated. Whereas polyethylene wear can be easily identified by its bright luminescence in polarized light and its characteristic configuration, the distinction of the small granular wear particles of the bone cement, metal and ceramic by light microscope is difficult. The laser microprobe mass analysis (LAMMA) is a method, which allows the analysis of single light microscopically detectable wear particles in tissues. Not only contrast medium particles of the bone cements (zirconium oxide or barium sulfate) but also metallic and aluminum oxide particles could be definitely identified within the pseudocapsules as well as in regional lymph nodes by LAMMA-analysis, whereby the bone cement wear predominated. In addition, the distinction between organic substances (as blood degradation products), which may appear similar to wear particles in configuration and colour, and the foreign material is also possible with this method.  相似文献   

11.
Scoring model structure is an essential component of protein structure prediction that can affect the prediction accuracy tremendously. Users of protein structure prediction results also need to score models to select the best models for their application studies. In Critical Assessment of techniques for protein Structure Prediction (CASP), model accuracy estimation methods have been tested in a blind fashion by providing models submitted by the tertiary structure prediction servers for scoring. In CASP13, model accuracy estimation results were evaluated in terms of both global and local structure accuracy. Global structure accuracy estimation was evaluated by the quality of the models selected by the global structure scores and by the absolute estimates of the global scores. Residue-wise, local structure accuracy estimations were evaluated by three different measures. A new measure introduced in CASP13 evaluates the ability to predict inaccurately modeled regions that may be improved by refinement. An intensive comparative analysis on CASP13 and the previous CASPs revealed that the tertiary structure models generated by the CASP13 servers show very distinct features. Higher consensus toward models of higher global accuracy appeared even for free modeling targets, and many models of high global accuracy were not well optimized at the atomic level. This is related to the new technology in CASP13, deep learning for tertiary contact prediction. The tertiary model structures generated by deep learning pose a new challenge for EMA (estimation of model accuracy) method developers. Model accuracy estimation itself is also an area where deep learning can potentially have an impact, although current EMA methods have not fully explored that direction.  相似文献   

12.
Considering the increasing development of three dimensional (3D) imaging, the 3D assessment of the acetabular coverage is to become the most interesting tool for the detection of acetabular pathologies. Biplanar X-rays based methods allow a 3D reconstruction of the hip with a reduced radiation dose. This study proposes a 3D assessment method of the acetabular coverage from biplanar X-rays or from an anteroposterior X-ray (conventional clinical imaging). An in vitro evaluation of the method was performed on six hip joints in comparison with computed tomography. The global coverage, the local coverage and the acetabular rim orientation were estimated in 3D. The mean global acetabular coverage was 40% with an estimated mean accuracy of 1.3% for the biplanar X-rays based method. This study evaluated a 3D assessment method of the acetabular coverage from biplanar X-rays or anteroposterior X-ray and open the way for clinical in vivo applications.  相似文献   

13.
Pre-clinical experimental wear testing of total knee replacement (TKR) components is an invaluable tool for evaluating new implant designs and materials. However, wear testing can be a lengthy and expensive process, and hence parametric studies evaluating the effects of geometric, loading, or alignment perturbations may at times be cost-prohibitive. The objectives of this study were to develop an adaptive FE method capable of simulating wear of a polyethylene tibial insert and to compare predicted kinematics, weight loss due to wear, and wear depth contours to results from a force-controlled experimental knee simulator. Finite element-based computational wear predictions were performed to 5 million gait cycles using both force- and displacement-controlled inputs. The displacement-controlled inputs, by accurately matching the experimental tibiofemoral motion, provided an evaluation of the simple wear theory. The force-controlled inputs provided an evaluation of the overall numerical method by simultaneously predicting both kinematics and wear. Analysis of the predicted wear convergence behavior indicated that 10 iterations, each representing 500,000 gait cycles, were required to achieve numerical accuracy. Using a wear factor estimated from the literature, the predicted kinematics, polyethylene wear contours, and weight loss were in reasonable agreement with the experimental data, particularly for the stance phase of gait. Although further development of the simplified wear theory is important, the initial predictions are encouraging for future use in design phase implant evaluation. In contrast to the experimental testing which occurred over approximately 2 months, computational wear predictions required only 2h.  相似文献   

14.
A new definition of the experimental wear factor was established and reported as a function of cross-shear motion and contact pressure using a multi-directional pin-on-plate wear testing machine for conventional polyethylene in the present study. An independent computational wear model was developed by incorporating the cross-shear motion and contact pressure-dependent wear factor into the Archard's law, in additional to load and sliding distance. The computational prediction of wear volume was directly compared with a simulator testing of a polyethylene hip joint with a 28 mm diameter. The effect of increasing the femoral head size was subsequently considered and was shown to increase wear, as a result of increased sliding distance and reduced contact pressure.  相似文献   

15.
Proteins are generally classified into four structural classes: all-alpha proteins, all-beta proteins, alpha + beta proteins, and alpha/beta proteins. In this article, a protein is expressed as a vector of 20-dimensional space, in which its 20 components are defined by the composition of its 20 amino acids. Based on this, a new method, the so-called maximum component coefficient method, is proposed for predicting the structural class of a protein according to its amino acid composition. In comparison with the existing methods, the new method yields a higher general accuracy of prediction. Especially for the all-alpha proteins, the rate of correct prediction obtained by the new method is much higher than that by any of the existing methods. For instance, for the 19 all-alpha proteins investigated previously by P.Y. Chou, the rate of correct prediction by means of his method was 84.2%, but the correct rate when predicted with the new method would be 100%! Furthermore, the new method is characterized by an explicable physical picture. This is reflected by the process in which the vector representing a protein to be predicted is decomposed into four component vectors, each of which corresponds to one of the norms of the four protein structural classes.  相似文献   

16.
AIM: Most methods used for the determination of volumetric wear of polyethylene cups are based on the assumption that the head of the prosthesis penetrates the cup in "cylindrical" fashion. The new accurate optical method is independent of this disputable assumption. METHOD: The articulating surface of the cup is scanned with light and a data set of 60,000 pixels obtained in this way is stored in a computer. Data obtained from used cups were compared with those obtained from unused cups. The volumetric wear was calculated directly by threefold integration. To assess the changes in surface shape, the data are fitted by an ellipsoid whose long axis defines the mean direction of load. A total of 18 retrieved and 3 unused cups of different types were studied. RESULTS: The unused acetabular cups deviated only slightly from ideal hemispheres. The surfaces showed rotational symmetry, and an undulation having an amplitude of 0.1 mm between dome and equator. For all explanted cups, the assumption of cylindrical penetration of the head into the polyethylene was shown not to represent the true situation. The cup expands in all directions, and the volumetric wear is underestimated by 50% with the traditional methods. The data suggest that long-term survival may be jeopardized when the main direction of loading is centered on the dome of the cup. Ceramic heads were associated with smaller rates of volumetric wear. CONCLUSION: The new optical method is characterised by short measuring times, precision and simple application. Analysis of the wear patterns of polyethylene components using this technique may contribute to a further understanding of the complex mechanisms of aseptic loosening.  相似文献   

17.
Measurement of the relative motion between an implant and the surrounding bone over different time periods is valuable for assessing and comparing the component stability and predicting the potential future outcome. The RSA method, where small beads are implanted in the bone adjacent to the component, can measure implant-bone position to an accuracy of about 0.1 mm. However, the method involves special radiographic views and analytical software, not readily available. For purposes of component assessment on a more routine basis and for multi-centre trials, a method was developed where standard A-P and M-L radiographs were used. Computer software was written which estimated the out-of-plane rotations of the component relative to the plane of the film, and then carried out corrections to enhance the accuracy of calculation of the bead heights relative to the component. The theoretical errors were shown to be less than 0.04 mm for the expected range of out-of-plane rotations. When radiographs of components in simulated bones were taken at a range of rotations, the 95% confidence limits for axial displacement were found to be less than +0.3 mm, and for rotation in the plane to be 0.6 degrees. This indicated that the method was useful for studying knee components where the sinkage could reach a range of 0.5-2 mm in a 2 year period.  相似文献   

18.
【目的】分离并鉴定具有聚乙烯材料降解能力的微生物菌株,探究其降解农用地膜的效能,为地膜的微生物降解途径提供支撑。【方法】以线性低密度聚乙烯粉末为唯一碳源的培养物中分离出1株具有降解聚乙烯材料能力的真菌,利用分子生物学方法结合菌株的培养性状对该菌株进行鉴定,通过观察聚乙烯粉末降解情况和测定地膜失重率,结合红外扫描、高分辨场发射扫描电子显微镜分析该菌株对农用地膜的降解效果。【结果】筛选获得1株具有农用地膜降解效果的真菌菌株PT1,经鉴定为桔青霉(Penicillium citrinum),桔青霉PT1菌株能以重均分子量(Mw)2000和400000的聚乙烯粉末作为唯一碳源生长,经红外扫描、电镜观察发现桔青霉PT1可侵蚀传统聚乙烯地膜。桔青霉PT1能快速利用聚酯类生物降解地膜生长,35 d地膜失重率达50%左右。【结论】本文筛选到具有地膜降解特性的桔青霉PT1真菌,丰富了降解聚乙烯材料的微生物类群,同时也为废弃农用地膜的处理提供了环保的处理途径。  相似文献   

19.
Analysis of polyethylene component wear and implant loosening in total knee arthroplasty (TKA) requires precise knowledge of in vivo articular motion and loading conditions. This study presents a simultaneous in vivo measurement of tibiofemoral articular contact forces and contact kinematics in three TKA patients. These measurements were accomplished via a dual fluoroscopic imaging system and instrumented tibial implants, during dynamic single leg lunge and chair rising-sitting. The measured forces and contact locations were also used to determine mediolateral distribution of axial contact forces. Contact kinematics data showed a medial pivot during flexion of the knee, for all patients in the study. Average axial forces were higher for lunge compared to chair rising-sitting (224% vs. 187% body weight). In this study, we measured peak anteroposterior and mediolateral forces averaging 13.3% BW during lunge and 18.5% BW during chair rising-sitting. Mediolateral distributions of axial contact force were both patient and activity specific. All patients showed equitable medial-lateral loading during lunge but greater loads at the lateral compartment during chair rising-sitting. The results of this study may enable more accurate reproduction of in vivo loads and articular motion patterns in wear simulators and finite element models. This in turn may help advance our understanding of factors limiting longevity of TKA implants, such as aseptic loosening and polyethylene component wear, and enable improved TKA designs.  相似文献   

20.
Prediction of disordered regions in proteins based on the meta approach   总被引:1,自引:0,他引:1  
MOTIVATION: Intrinsically disordered regions in proteins have no unique stable structures without their partner molecules, thus these regions sometimes prevent high-quality structure determination. Furthermore, proteins with disordered regions are often involved in important biological processes, and the disordered regions are considered to play important roles in molecular interactions. Therefore, identifying disordered regions is important to obtain high-resolution structural information and to understand the functional aspects of these proteins. RESULTS: We developed a new prediction method for disordered regions in proteins based on the meta approach and implemented a web-server for this prediction method named 'metaPrDOS'. The method predicts the disorder tendency of each residue using support vector machines from the prediction results of the seven independent predictors. Evaluation of the meta approach was performed using the CASP7 prediction targets to avoid an overestimation due to the inclusion of proteins used in the training set of some component predictors. As a result, the meta approach achieved higher prediction accuracy than all methods participating in CASP7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号