首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxidases in Acetabularia: their possible role in development   总被引:1,自引:0,他引:1  
Abstract. Crude enzymatic extracts from Acetabularia exhibit very low peroxidase activity after a lag period. Starch gel electrophoresis of extracts from growing algae shows a single, extremely anodic band. Extracts of small, slow-growing or cap-bearing algae, which do not grow any more, do not exhibit any peroxidase band. Cytochemical staining with benzidine reveals changes in both the quantity and distribution of peroxidase along the polarized Acetabularia cell. The homogenous staining of small algae becomes distributed along a negative apico-basal gradient when the algae initiate their rapid growth phase. This polarized pattern is repeated on the hair whorls. A similar developmental sequence directs cap growth, with an initial intense staining reaction of the primordium, which later leaves only the corona inferior stained blue. Finally, the Acetabularia cell remains slightly blue at the edges of the rhizoidal out-growths and cap rays. Crude extracts of Acetabularia induce a lag in standard horseradish peroxidase (HRP) activity. The inhibitor is always present in small and growing algae; it is sometimes absent or less active in cap-bearing algae. In no case does it change the kinetics of the HRP reaction with guaïacol. The lag is completely suppressed by pretreatment with either H2O2 or ascorbate oxidase. The changes in peroxidase activity, correlated with developmental stage and according to a polarized gradient, suggest that the enzyme could be involved in some way in the control of morphogenesis in Acetabularia . An inhibitor of peroxidase activity, which disappears as the cap matures, might, in turn, exert a regulatory function.  相似文献   

2.
The reaction between indole 3-acetic acid and horseradish peroxidase   总被引:7,自引:0,他引:7  
Three distinct phases of the reaction between indole 3-acetic acid (IAA) and horse-radish peroxidase (isoenzymes B and C) were observed. When 100 μm IAA was added to an aerobic solution of the 7μm enzyme at pH 5.0 the oxidation of IAA occurred after a lag time of several seconds, during which the enzyme was partially converted into peroxide Compound II. At a time when the lag time was over the conversion of the enzyme into a green hemoprotein, called P-670 suddenly occurred at a considerable speed. The oxidation of IAA was almost over at the end of the second phase. The last phase was the restoration of the free enzyme from the remaining Compound II.Ascorbate and cytochrome c peroxidase elongated the lag phase of IAA oxidation. From these inhibition experiments it was suggested that a peroxide form of IAA would react with peroxidase to form its peroxide compounds as does hydrogen peroxide and cause the oxidation of IAA. A reaction path that the enzyme is directly reduced by IAA might be involved as an initiation step but appeared to play no essential role in the oxidation of IAA at steady state.Contrary to the cases with dihydroxyfumarate and NADH, Superoxide dismutase did not inhibit the aerobic oxidation of IAA by peroxidase. IAA peroxide radical instead of superoxide anion radical was suggested to be an intermediate in the oxidation of IAA.On the basis of stoichiometric relation of reactions between IAA and peroxidase peroxide compounds a tentative scheme of P-670 formation during the oxidation of IAA was presented.  相似文献   

3.
1. In the absence of protective agents, highly purified ascorbic acid oxidase is rapidly inactivated during the enzymatic oxidation of ascorbic acid under optimum experimental conditions. This inactivation, called reaction inactivation to distinguish it from the loss in enzyme activity that frequently occurs in diluted solutions of the oxidase prior to the reaction, is indicated by incomplete oxidation of the ascorbic acid as measured by oxygen uptake; i.e., "inactivation totals." 2. A minor portion of the reaction inactivation appears to be due to environmental factors such as rate of shaking of the manometers, pH of the system, substrate concentration, and oxidase concentration. The presence of inert protein (gelatin) in the system ameliorates the environmental inactivation to a considerable extent, and variation of the above factors in the presence of gelatin has much less effect on the inactivation totals than in the absence of gelatin. 3. A major portion of the reaction inactivation of the oxidase appears to be due to some factor inherent in the ascorbic acid-ascorbic acid oxidase-oxygen system, possibly a highly reactive "redox" form of oxygen other than H2O2 or H2O. The inactivation cannot be attributed to dehydroascorbic acid, the oxidation product of ascorbic acid. 4. Small amounts of native catalase, native peroxidase, native or denatured methemoglobin, and hemin when added to the system, markedly protect the oxidase against inactivation. Cytochrome c has no such protective action. Likewise proteins such as egg albumin, gelatin, denatured catalase, or denatured peroxidase show no such protective action. 5. None of the protective agents mentioned above affect the initial rate of oxygen uptake or change the total oxygen absorbed for complete oxidation of the ascorbic acid, and hence do not act by removal of hydrogen peroxide, per se. 6. Sodium azide and hydroxylamine hydrochloride which inhibit catalase and peroxidase activity also inhibit the protective action of these iron-porphyrin enzymes.  相似文献   

4.
Growth and peroxidase activity of roots and stems of lentil seedlings were compared after treatment with Amo-1618, alone or in combination with gibberellic acid (GA) at varying concentrations. The peroxidase enhancement in Amo-1618 treated stems could not be attributed to a decrease in the gibberellin content since GA alone had no effect on this enzyme. In other experiments, AMO, at low concentrations, was able to induce α-amylase production in barley aleurone layers; the lag period needed for this induction, was longer than for GA. These facts seem to indicate that some growth retardants might act at least in some cases by mechanisms other than inhibition of gibberellin biosynthesis and reversal of GA action.  相似文献   

5.
The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (K(m) and k(cat) values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.  相似文献   

6.
《Phytochemistry》1987,26(12):3133-3136
Cell wall-bound peroxidase (EC 1.11.1.7) from lupin (Lupinus albus) shows a transition from oxidase to peroxidase activity when it oxidizes NADH. The oxidase phase represents a lag period in the time course of the reaction. This phase is phenol-dependent and responsible for hydrogen peroxide formation. Guaiacol, an assay substrate, and p-coumaric, ferulic and sinapic acids, precursors of the cinnamyl alcohols used in the lignification process affect both the length of lag period and the rate of the peroxidase phase of NADH oxidation. The effect of different phenols on the time course of the reaction is related to the efficacy (Vmax/Km ratio) of the enzyme when it is acting on them as a peroxidese.  相似文献   

7.
Lignin peroxidase (LiP) produced by Trametes versicolor decolorizes Remazol Brilliant Blue R (RBBR) in the presence as well as in the absence of veratryl alcohol (VA). VA enhances and stabilizes the RBBR-decolorization rates by lignin peroxidase. RBBR has better substrate reactivity than VA for LiP. RBBR is also decolorized directly by LiP and competitively inhibits VA oxidation by LiP. In the presence of higher concentrations of RBBR (i) RBBR decolorization rates improve, (ii) veratryl aldehyde appears after a lag and (iii) VA oxidation rates decrease. The lag is due to consumption of VA cation radical (VA+) generated upon LiP-catalyzed VA oxidation, during RBBR oxidation. That may result in the formation of compound III in the absence of VA+ and contributes to the inhibitory influence of RBBR on LiP activity.  相似文献   

8.
Ascorbic acid is a strong inhibitor of indole-3-acetic oxidation catalyzed by commercial horse-radish peroxidase. In the presence of excess ascorbic acid, the indole-acetic acid oxidation catalysis is apparently blocked. The activity of peroxidase for indoleacetic acid at pH 3.7 and 33°C, in the presence of 2,4-dichlorophenol and MnCl2 as promotors was measured by polarographic technique. The Km was 0.27 m M and the maximum velocity was 1.02 mmol O2 (mg protein)−1 min−1. Dixon plots lead to an apparent Ki of 1.25 (μ M for ascorbic acid and the inhibition was apparently competitive. Ascorbic acid, besides appearing to be a strong inhibitor of the IAA oxidase activity of peroxidase, seemed to protect IAA from total degradation. Addition of more than 5 μ M ascorbic acid produced both an exponential increase in the lag time before the onset of reaction and, at the end, an oxidation protection of 26 μ M IAA when 111 μ M IAA was present at the stawrt. The possibility of ascorbic acid-IAA auxin from endogenous oxidation in plants, is proposed.  相似文献   

9.
The effect of order of reagent mixing in the absence and in the presence of catalase on the transient kinetics of indole-3-acetic acid (IAA) oxidation by dioxygen catalysed by horseradish peroxidase C and anionic tobacco peroxidase at neutral pH has been studied. The data suggest that haem-containing plant peroxidases are able to catalyse the reaction in the absence of exogenous hydroperoxide. The initiation proceeds via the formation of the ternary complex enzyme-->IAA-->oxygen responsible for IAA primary radical generation. The horseradish peroxidase-catalysed reaction is independent of catalase indicating a significant contribution of free radical processes into the overall mechanism. This is in contrast to the tobacco peroxidase-catalysed reaction where the peroxidase cycle plays an important role. The transient kinetics of IAA oxidation catalysed by tobacco peroxidase exhibits a biphasic character with the first phase affected by catalase. The first phase is therefore associated with the common peroxidase cycle while the second is ascribed to native enzyme interaction with skatole peroxy radicals yielding directly Compound II.  相似文献   

10.
The oxidation of phenylhydrazine in buffered aqueous solutions is a complex process involving several intermediates. It can be initiated by metal cations, such as Cu2+; in which case EDTA acts as an inhibitor. It can also be intiated by oxyhemoglobin; in which case chelating agents do not interfere. Superoxide radical is both a product of this reaction and a chain propagator. The formation of O2- could be demonstrated in terms of a reduction of nitroblue tetrazolium, which was prevented by superoxide dismutase. The importance of O2- in carrying the reaction chains was shown by the inhibition of phenylhydrazine oxidation by superoxide dismutase. Hydrogen peroxide accumulated during the reaction and could be detected with catalase. The progress of this oxidation could be monitored in terms of oxygen consumption and by following increases in absorbance at 280 or 320 nm. The oxidation was markedly autocatalytic and superoxide dismutase had the effect of extending the lag period. The absorbance at 280 nm was due to an intermediate which first accumulated and was then consumed. This intermediate appears to be benzendiazonium ion. The absorbance at 320 nm was due to a stable product, which was not identified. The time course of oxygen consumption paralleled the increase in absorbance at 320 nm and lagged behind the changes at 280 nm. Exogenous benzenediazonium ion accelerated the oxidation of phenylhydrazine and eliminated the lag phase. Benzenediazonium ion must therefore react with phenylhydrazine to produce a very reactive intermediate, possibly phenyldiazene. A mechanism was proposed which is consistent with the data. The intermediates and products of the oxidation of phenylhydrazine include superoxide radical, hydrogen peroxide, phenylhydrazyl radical, phenyldiazene, and benzenediazonium ion. This is a minimal list: others remain to be detected and identified. It appears likely that the diverse biological effects of phenylhydrazine are largely due to the reactivities of these intermediates and products.  相似文献   

11.
A comparative kinetic study of the peroxidase oxidation of three chromogenic substrates--2,2'-azino-bis(3-ethyl-2,3-dihydrobenzothiazoline-6-sulfonic acid), o-phenylenediamine (PDA), and 3,3',5,5'-tetramethylbenzidine--inhibited by trimethylhydroquinone and six tert-butylated pyrocatechols (InH) was carried out at 20 degrees C in 0.015 M phosphate-citrate buffer (pH 6.0) containing organic cosolvents (0-10% ethanol or DMF). The inhibitors were quantitatively characterized by the inhibition constants (Ki), the duration of the lag period in the oxidation product formation (delta tau), and the stoichiometric coefficient of inhibition that specifies the number of radicals terminated by one InH molecule (f). The inhibition could be competitive, noncompetitive, mixed, or uncompetitive, which depended on the nature and structure of the chromogenic substrate-diatomic phenol pair. Various substrate-diatomic phenol pairs exhibited Ki values within the range of 11-240 microM and f values from 0.7 to 2.6. The absence of a lag period was characteristic of oxidation of the substituted o-phenylenediamine-substituted pyrocatechol. The total kinetic parameters and properties of the components allowed us to suggest six chromogenic substrate-substituted diatomic phenol pairs for use in test systems for the determination of antioxidant activity in human body fluids, natural biological preparations, and food. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.  相似文献   

12.
The hybrid Mn-peroxidase of the fungus Panus tigrinus 8/18 oxidized NADH in the absence of hydrogen peroxide, this being accompanied by the consumption of oxygen. The reaction of NADH oxidation started after a period of induction and completely depended on the presence of Mn(II). The reaction was inhibited in the presence of catalase and super-oxide dismutase. Oxidation of NADH by the enzyme or by manganese(III)acetate was accompanied by the production of hydrogen peroxide and superoxide radicals. In the presence of NADH, the enzyme was transformed into a catalytically inactive oxidized form (compound III), and the latter was inactivated with bleaching of the heme. The substrate of the hybrid Mn-peroxidase (Mn(II)) reduced compound III to yield the native form of the enzyme and prevented its inactivation. It is assumed that the hybrid Mn-peroxidase used the formed hydrogen peroxide in the usual peroxidase reaction to produce Mn(III), which was involved in the formation of hydrogen peroxide and thus accelerated the peroxidase reaction. The reaction of NADH oxidation is a peroxidase reaction and the consumption of oxygen is due to its interaction with the products of NADH oxidation. The role of Mn(II) in the oxidation of NADH consisted in the production of hydrogen peroxide and the protection of the enzyme from inactivation.__________Translated from Biokhimiya, Vol. 70, No. 4, 2005, pp. 568–574.Original Russian Text Copyright © 2005 by Lisov, Leontievsky, Golovleva.  相似文献   

13.
Sedum album and Pelargonium zonale extracts do not show any peroxidase activity. Both extracts provoke a lag phase in the horse-radish peroxidase-catalyzed oxidation of guaiacol by H2O2. Preincubation of Sedum album extract with ascorbate oxidase eliminated completely the lag phase. Ascorbic acid has been identified as the substance responsible for this lag phase by reacting with a coloured intermediary product of the analytical reaction. In the Pelargonium zonale extract, the lag phase seems to be due to competitive inhibitors of peroxidase, which are of a phenolic nature.  相似文献   

14.
1. Under defined conditions, the hydroxylation of p-coumaric acid catalysed by a phenolase from leaves of spinach beet (Beta vulgaris L.) was observed to develop its maximum rate only after a lag period. 2. By decreasing the reaction rate with lower enzyme concentrations or by increasing it with higher concentrations of reductants, the length of the lag period was inversely related to the maximum rate subsequently developed. 3. Low concentrations of caffeic acid or other o-dihydric phenols abolished this lag period. With caffeic acid, the rate of hydroxylation was independent of the reductant employed. 4. Hydroxylation was inhibited by diethyldithiocarbamate, but with low inhibitor concentrations hydroxylation recovered after a lag period. This lag could again be abolished by the addition of high concentrations of caffeic acid or other o-dihydric phenols. 5. Catechol oxidase activity showed no lag period, and did not recover from diethyldithiocarbamate inhibition. 6. The purified enzyme contained 0.17-0.33% copper; preparations with the highest specific activity were found to have the highest copper content. 7. The results are interpreted to suggest that the oxidation of o-dihydric phenols converts the enzymic copper into a species catalytically active in hydroxylation. This may represent the primary function for the catechol oxidase activity of the phenolase complex. The electron donors are concerned mainly, but not entirely, in the reduction of o-quinones produced in this reaction.  相似文献   

15.
A pathway is proposed for the oxidation of the flavonoid eriodictyol by mushroom tyrosinase. In it, the enzymatic oxidation of eriodictyol leads to the formation of eriodictyol-o-quinone, which undergoes the nucleophilic attack of another eriodictyol unit to yield a dimer. This dimer is then oxidized by the eriodictyol-o-quinone. The reaction was followed by recording the time course of formation of this second o-quinone at 475 nm. Progress curves at this wavelength showed the appearance of a lag, the length of which varied with enzyme and substrate concentrations, and which must have been caused by the chemical reactions taking place after the enzymatic reaction. When eriodictyol oxidation was studied in the presence of 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH), which competes with the substrate in the reaction with eriodictyol-o-quinone, the lag disappeared. The kinetic parameters were similar with and without MBTH. Eriodictyol oxidation was inhibited by tropolone, which behaved as a slow-binding inhibitor.  相似文献   

16.
The possible involvement of superoxide anions in the hydroxylation of tyrosine by mushroom tyrosinase was studied. Superoxide dismutase and scavengers of superoxide ions of smaller MW than superoxide dismutase, such as nitroblue tetrazolium and copper salicylate, had no direct effect on the monohydroxyphenolase activity of mushroom tyrosinase. The kinetics of tyrosine hydroxylation, but not of DOPA oxidation, by mushroom tyrosinase was atrected by the addition of a xanthine-xanthine oxidase system. In the presence of the xanthine-xanthine oxidase system, the lag period of tyrosine hydroxylation was shortened compared to the lag period in the absence of the xanthine-xanthine oxidase system. The xanthine- xanthine oxidase system alone (without mushroom tyrosinase) had no effect on tyrosine conversion to dopachrome. Superoxide dismutase, catalase and hydroxyl radical scavengers counteracted to some extent the shortening of the lag period of tyrosine hydroxylation by mushroom tyrosinase caused by the xanthin e-xanthine oxidase system. It is suggested that the shortening of the lag period is due mainly to hydroxyl radicals generated by the xanthine-xanthine oxidase system via interaction of O2?. and hydrogen paroxide (a Haber-Weiss type reaction). The data do not support the direct participation of superoxide anions in tyrosine hydroxylation by mushroom tyrosinase.  相似文献   

17.
Sequeira L  Mineo L 《Plant physiology》1966,41(7):1200-1208
Extracts from roots of Nicotiana tabacum L var. Bottom Special contain oxidative enzymes capable of rapid degradation of indoleacetic acid (IAA) in the presence of Mn2+ and 2, 4-dichlorophenol. Purification of IAA oxidase was attempted by means of ammonium sulfate fractionation and elution through a column of SE-Sephadex. Two distinct fractions, both causing rapid oxidation of IAA in the absence of H2O2, were obtained. One fraction exhibited high peroxidase activity when guaiacol was used as the electron donor; the other did not oxidase guaiacol. Both enzyme fractions caused similar changes in the UV spectrum of IAA; absorption at 280 mμ was reduced, while major absorption peaks appeared at 254 and 247 mμ. The kinetics of IAA oxidation by both fractions were followed by measuring the increase in absorption at 247 mμ. The peroxidase-containing fraction showed no lag or a slight lag which could be eliminated by addition of H2O2 (3 μmoles/ml). The peroxidase-free fraction showed a longer lag, but addition of similar amounts of H2O2 inhibited the rate of IAA oxidation and did not remove the lag. With purified preparations, IAA oxidation was stimulated only at low concentrations of H2O2 (0.03 μmole/ml). A comparison of Km values for IAA oxidation by the peroxidase-containing and peroxidase-free fractions suggests that tobacco roots contain an IAA oxidase which may have higher affinity for IAA and may be more specific than the general peroxidase system previously described from other plant sources. A similar oxidase is present in commercial preparations of horseradish peroxidase. It is suggested that oxidation of IAA by horseradish peroxidase may be due to a more specific component.  相似文献   

18.
Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2' azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by beta-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

19.
Peroxidase from Mycobacterium tuberculosis H37Rv was purified to homogeneity. The homogeneous protein exhibits catalase and Y (Youatt's)-enzyme activities in addition to peroxidase activity. Further confirmation that the three activities are due to a single enzyme was accomplished by other criteria, such as differential thermal inactivation, sensitivity to different inhibitors, and co-purification. The Y enzyme (peroxidase) was separated from NADase (NAD+ glycohydrolase) inhibitor by gel filtration on Sephadex G-200. The molecular weights of peroxidase and NADase inhibitor, as determined by gel filtration, are 240000 and 98000 respectively. The Y enzyme shows two Km values for both isoniazid (isonicotinic acid hydrazide) and NAD at low and high concentrations. Analysis of the data by Hill plots revealed that the enzyme has one binding site at lower substrate concentrations and more than one at higher substrate concentration. The enzyme contains 6g-atoms of iron/mol. Highly purified preparations of peroxidases from different sources catalyse the Y-enzyme reaction, suggesting that the nature of the reaction may be a peroxidatic oxidation of isoniazid. Moreover, the Y-enzyme reaction is enhanced by O2. Isoniazid-resistant mutants do not exhibit Y-enzyme, peroxidase or catalase activities, and do not take up isoniazid. The Y-enzyme reaction is therefore implicated in the uptake of the drug.  相似文献   

20.
The mechanism of auxin protection by auxin protector-I (Pr-I) of the Japanese morning glory was studied in vitro. Four lines of evidence indicate that Pr-I acts as a strong reductant which prevents the peroxidase-catalyzed oxidation of IAA: 1) The kinetics of the reaction are best explained on this basis. 2) The Pr-I-induced lag preceding auxin destruction by peroxidase is completely eliminated by a strong oxidant such as H2O2 at a concentration which does not appreciably affect the reaction rate. 3) Strong organic reductants mimic the Pr-I-induced lag. And 4) when the reaction rate is altered by varying the concentrations of the reactants, or the temperature, the length of the Pr-I-induced lag varies inversely with the reaction rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号