首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown previously that insulin attenuates beta1-adrenergic receptor (beta1-AR)-mediated lipolysis via activation of protein kinase C (PKC) in rat adipocytes. This antilipolysis persists after removal of insulin and is independent of the phosphodiesterase 3B activity, and phorbol 12-myristate 13-acetate (PMA) could substitute for insulin to produce the same effect. Here, we attempted to identify the PKC isoform responsible for antilipolysis. Isolated adipocytes were treated with high and low concentrations of PMA for up to 6 h to degrade specific PKC isoforms. In the PMA-treated cells, the downregulation profiles of PKC isoforms alpha and betaI, but not betaII, delta, epsilon, or zeta, correlated well with a decrease of lipolysis-attenuating effect of PMA. After rats fasted for 24 h, adipocyte expression of PKC isoform alpha increased, while expression of PKCdelta decreased. Fasting did not change the potency of PMA to attenuate lipolysis, however. The lipolysis-attenuating effect of PMA was blocked by the PKCbetaI/betaII inhibitor LY 333531, but not by the PKCbetaII inhibitor CGP 53353 or the PKCdelta inhibitor rottlerin. These data suggest that PKCbetaI interacts with beta1-AR signaling and attenuates lipolysis in rat adipocytes.  相似文献   

2.
Catecholamine-induced lipolysis was investigated in 32 obese subjects (14 men and 18 premenopausal women), aged 36-50 years, whose body mass index ranged from 30 to 42 kg/m(2). Isolated subcutaneous (subc) abdominal and femoral adipocytes were studied before and after a 15-week weight reducing program, during which mean body weight loss averaged 9 vs. 10 kg in women and men, respectively (P < 0.0001). Participants were re-examined when they were weight-stable. Fat cell weight decreased by about 15;-20% in both depots (P values ranging from 0.01 to 0.05). Epinephrine (mixed alpha2-/beta-adrenoceptor (AR) agonist) induced antilipolysis at low concentrations and a net lipolytic response at higher doses, irrespective of subjects' fatness and anatomic location of fat. Basal lipolysis, maximal lipolytic responses to isoprenaline (beta-AR agonist), dobutamine and procaterol (beta1- and beta2-AR agonists, respectively) as well as maximal antilipolytic effects of epinephrine or UK-14304 (alpha2-AR agonist) were similar before and after weight reduction. However, both beta- and beta2-AR lipolytic sensitivities and the beta-AR density were increased in both genders after weight reduction, this effect being more marked in subc abdominal than in femoral adipocytes (P values ranging from 0.001 to 0.05). The alpha2-AR antilipolytic sensitivity was reduced in adipose cells from both regions in women, but only in subc abdominal adipocytes in men (P < 0.05), although the alpha2-AR density remained unchanged after weight reduction. In conclusion, a moderate weight loss leads to a higher adipose cell lipolytic efficiency which is associated with changes at receptor levels (mainly an increased beta2- and a decreased alpha2-AR sensitivities), in both genders.  相似文献   

3.
4.
K T Yu  J E Pessin  M P Czech 《Biochimie》1985,67(10-11):1081-1093
The regulation of the insulin receptor kinase by phosphorylation and dephosphorylation has been examined. Under in vitro conditions, the tyrosine kinase activity of the insulin receptor toward histone is markedly activated when the receptor either undergoes autophosphorylation or is phosphorylated by a purified preparation of src tyrosine kinase on tyrosine residues of its beta subunit. The elevated kinase activity of the phosphorylated insulin receptor is readily reversed when the receptor is dephosphorylated with alkaline phosphatase. Analysis of tryptic digests of phosphorylated insulin receptor using reverse-phase high pressure liquid chromatography suggests that phosphorylation of a specific tyrosine site on the receptor beta subunit may be involved in the mechanism of the receptor kinase activation. Further studies indicate that tyrosine phosphorylation-mediated increase in insulin receptor activity also occurs in intact cells. Thus, when the histone kinase activities of insulin receptor from control and insulin-treated H-35 hepatoma cells are assayed in vitro following the purification of the receptors under conditions which preserve the phosphorylation state of the receptors, the insulin receptors extracted from insulin-treated cells exhibit histone kinase activities 100% higher than those from control cells. The elevated receptor kinase activity from insulin-treated cells appears to result from the increase in phosphotyrosine content of the receptor. Taken together, these results indicate that tyrosine phosphorylation of the insulin receptor beta subunit exerts a major stimulatory effect on the kinase activity of the receptor. Insulin receptor partially purified by specific immunoprecipitation from detergent extracts of control and isoproterenol-treated cells have similar basal but diminished insulin-stimulated beta subunit autophosphorylation activities when incubated with [gamma-32 P]ATP. Similarly, the ability of insulin to stimulate the receptor beta subunit phosphorylation in intact isoproterenol-treated adipocytes is greatly attenuated, whereas, the basal phosphorylation of the insulin receptor is slightly increased by the beta-catecholamine. These data indicate that in rat adipocytes, a cyclic AMP-mediated mechanism, possibly through serine and threonine phosphorylation of the receptor or its regulatory components, may uncouple the receptor tyrosine kinase activity from activation by insulin. Treatment of 32P-labeled H-35 hepatoma cells with phorbol myristate acetate (PMA) results in a marked increase in serine phosphorylation of the insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Catecholamine-induced lipolysis is chiefly mediated through the recently characterized beta 3-adrenergic receptor (AR) in rat adipocytes. Discrepancies between the ability of beta 3-AR agonists to stimulate adenylyl cyclase and the resulting lipolysis were recently reported. cAMP-dependent protein kinase (A-kinase) activation induced by these agonists was compared to lipolysis. Agonist potencies were similar for A-kinase activity ratios and lipolysis. The same A-kinase activity ratio to lipolysis relationship was found for the beta 3-AR agonists tested.  相似文献   

6.
Protein kinase C (PKC)-activated signal transduction pathways regulate cell growth and differentiation in many cell types. We have observed that interleukin (IL)-1beta upregulates beta2-adrenergic receptor (beta2-AR) density and beta2-AR mRNA in human airway epithelial cells (e.g., BEAS-2B). We therefore tested the hypothesis that PKC-activated pathways mediate IL-1beta-induced beta-AR upregulation. The role of PKC was assessed from the effects of 1) the PKC activator phorbol 12-myristate 13-acetate (PMA) on beta-AR density, 2) selective PKC inhibitors (calphostin C and Ro-31-8220) on beta-AR density, and 3) IL-1beta treatment on the cellular distribution of PKC isozymes. Recombinant human IL-1beta (0.2 nM for 18 h) increased beta-AR density to 213% of control values (P < 0.001). PMA (1 microM for 18 h) increased beta-AR density to 225% of control values (P < 0.005), whereas Ro-31-8220 and calphostin C inhibited the IL-1beta-induced upregulation of beta-AR in dose-dependent fashion. PKC isozymes detected by Western blotting included alpha, betaII, epsilon, mu, zeta, and lambda/iota. IL-1beta increased PKC-mu immunoreactivity in the membrane fraction and had no effect on the distribution of the other PKC isozymes identified. These data indicate that IL-1beta-induced beta-AR upregulation is mimicked by PKC activators and blocked by PKC inhibitors and appears to involve selective activation of the PKC-mu isozyme. We conclude that signal transduction pathways activated by PKC-mu upregulate beta2-AR expression in human airway epithelial cells.  相似文献   

7.
8.
The effect of HIV-1 Tat protein on the production of IL-10, an immunosuppressive cytokine, was examined in human primary monocytes obtained from healthy HIV-1-negative blood donors. As expected and in agreement with our previous data, a dose-dependent induction of IL-10 was observed. In addition, we showed that this induction is mediated by the PKC pathway: in the presence of Ro 31-8220, an inhibitor of all PKC isozymes, or after 48 h of PMA treatment, Tat protein becomes unable to stimulate IL-10 production. Among the 11 PKC isozymes, eight (PKC alpha, beta(I), beta(II), delta, epsilon, eta, zeta, mu) are expressed in monocytes. In this study, by analyzing the translocation to the membrane after Tat stimulation, we showed that PKC alpha, beta(I), beta(II), delta and epsilon isozymes are activated by Tat. Moreover, by combining different approaches including selective PKC inhibitors (G?6983, G?6976, hispidin and rottlerin), we showed that PKC beta(II) and delta isozymes are essential for the activation of IL-10 production in human monocytes following stimulation by HIV-1 Tat protein.  相似文献   

9.
Evidence suggests that protein kinase C (PKC) and intracellular calcium are important for amphetamine-stimulated outward transport of dopamine in rat striatum. In this study, we examined the effect of select PKC isoforms on amphetamine-stimulated dopamine efflux, focusing on Ca(2+)-dependent forms of PKC. Efflux of endogenous dopamine was measured in superfused rat striatal slices; dopamine was measured by high performance liquid chromatography. The non-selective classical PKC inhibitor G?6976 inhibited amphetamine-stimulated dopamine efflux, whereas rottlerin, a specific inhibitor of PKC delta, had no effect. A highly specific PKC beta inhibitor, LY379196, blocked dopamine efflux that was stimulated by either amphetamine or the PKC activator, 12-O-tetradecanoylphorbol-13-acetate. None of the PKC inhibitors significantly altered [3H]dopamine uptake. PKC beta(I) and PKC beta(II), but not PKC alpha or PKC gamma, were co-immunoprecipitated from rat striatal membranes with the dopamine transporter (DAT). Conversely, antisera to PKC beta(I) and PKC beta(II) but not PKC alpha or PKCg amma were able to co-immunoprecipitate DAT. Amphetamine-stimulated dopamine efflux was significantly enhanced in hDAT-HEK 293 cells transfected with PKC beta(II) as compared with hDAT-HEK 293 cells alone, or hDAT-HEK 293 cells transfected with PKCa lpha or PKC beta(I). These results suggest that classical PKC beta(II) is physically associated with DAT and is important in maintaining the amphetamine-stimulated outward transport of dopamine in rat striatum.  相似文献   

10.
B Lei  Y Zhang  C Han 《Life sciences》2001,69(3):301-308
The norepinephrine (NE)-induced regulation of alpha1-adrenoceptors (ARs) expression in human embryonic kidney (HEK) 293 cells stably expressing cloned alpha1-AR subtypes with similar receptor densities was investigated. In the presence of 10 microM propranolol, the treatment of cells with 10 microM NE for 4-72 h down-regulated alpha1A- and alpha1D-AR. but increased alpha1B-AR expression in a time-dependent manner. The down-regulation of alpha1A-AR reached maximum of 40.3 +/- 14.7 % at 48h. The down-regulation of alpha1D-AR reached maximum of 51.3 +/- 3.7% at 24h. With the stimulation of NE, alpha1B-AR density was increased maximally by 112.4 +/- 43.4% at 48h. The protein kinase C (PKC) inhibitor calphostin C or R0-31-8220 abolished the NE-induced down-regulation of alpha1A- and alpha1D-AR, but showed no effect on the up-regulation of alpha1B-AR. The PKC agonist PMA not only mimicked the NE-induced down-regulation of alpha1A- and alpha1D-AR, but also induced a down-regulation of alpha1B-AR. The endoplasmic reticulum Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) or thapsigargin, or the calcium chelator BAPTA/AM did not affect the down-regulation of alpha1A-AR, but inhibited the up-regulation of alpha1B-AR induced by NE. Calmodulin antagonist W-7. tyrosine kinase inhibitor genistein or tyrphostin A25 had no effect on NE-induced up-regulation of alpha1B-AR. The results suggest that three alpha1-AR subtypes are differently regulated by sustained NE stimulation with different signal transduction pathways.  相似文献   

11.
L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Ca2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4 beta-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (alpha 1) subunit alone were initially increased and then decreased by PMA. A similar biphasic modulation was observed when the alpha 1 subunit was expressed in combination with alpha 2/delta, beta and/or gamma subunits, and when the channels were expressed following injection of total rat heart RNA. No effects on the voltage dependence of activation were observed. The effects of PMA were blocked by staurosporine, a protein kinase inhibitor. beta subunit moderate the enhancement caused by PMA. We conclude that both enhancement and inhibition of cardiac L-type Ca2+ currents by PKC are mediated via an effect on the alpha 1 subunit, while the beta subunit may play a mild modulatory role.  相似文献   

12.
Effects of protein kinase C on protein stability and activity of rat AANAT were investigated in vitro and in vivo. When COS-7 cells transfected with AANAT cDNA were treated with phorbol 12-myristate 13-acetate (PMA), both the activity and protein level of AANAT were increased. These effects of PMA were blocked by GF109203X, a specific inhibitor of PKC. Moreover, PMA increased the phosphorylation of AANAT and induced the formation of AANAT/14-3-3zeta complex. PMA did not affect the basal level of cAMP and did not involve the potentiation of the cAMP production by forskolin, indicating that PKC-dependent activation of adenylyl cyclase was excluded in transfected COS-7 cells. To identify which amino acids were phosphorylated by PKC, several conserved Thr and Ser residues in AANAT were targeted for site-directed mutagenesis. Mutations of Thr29 and Ser203 prevented the increase of enzymatic activity and protein level mediated by PMA. To explore the nature of AANAT phosphorylation, purified rat AANAT was subjected to in vitro PKC kinase assay. PKC directly phosphorylated the rat recombinant AANAT. The phosphopeptides identified by mass spectrometric analysis, and western blotting indicated that Thr29 was one of target sites for PKC. To confirm the effects of the physiological activation of PKC, rat pineal glands were treated with alpha(1)-adrenergic specific agonist phenylephrine. Phenylephrine caused the phosphorylation of endogenous AANAT whereas GF109203X or prazosin, an alpha(1)-adrenergic-specific antagonist, markedly inhibited it. These results suggest that AANAT was phosphorylated at Thr29 by PKC activation through the alpha(1)-adrenergic receptor in rat pineal glands, and that its phosphorylation might contribute to the stability and the activity of AANAT.  相似文献   

13.
We studied glucocorticoid-induced insulin resistance and possible role of protein kinase C (PKC). Pretreatment with dexamethasone, prednisolone and corticosterone for 60 min decreased insulin-induced [3H] 2-deoxyglucose (DOG) uptake in isolated rat adipocytes. Preincubation with Go6976, LY379196 or myristoylated PKC pseudosubstrate, conventional PKC inhibitor, but not cycloheximide or RU38486, recovered dexamethasone-induced insulin resistance. Dexamethasone activated immunoprecipitates with anti-PKC alpha, beta, and zeta antibodies. PKC zeta activity in adipocytes increased to 163%, and 264% from basal level (100%) with dexamethasone and insulin treatment, respectively. Dexamethasone provoked redistribution of both PKC beta and zeta from the cytosol to the membrane. These results indicate that dexamethasone activates both conventional and atypical PKC. However, conventional PKC is more important in glucocorticoid-induced insulin resistance.  相似文献   

14.
Clenbuterol, a beta2-adrenergic receptor (β2-AR) selective agonist, has been shown to decrease body fat in animals and can induce apoptosis in adipose tissue in mice. We hypothesized that direct actions of a β-adrenergic receptor agonist on adipocytes could trigger the observed apoptotic effect. The hypothesis was inspected by investigating the direct effect of clenbuterol on apoptosis, adipogenesis, and lipolysis in vitro using the 3T3-L1 cell line and rat primary adipocytes. Cells were treated with 10−9 to 10−5 M clenbuterol depending on the experiments. There was no apoptotic effect of clenbuterol both in 3T3-L1 cells and rat primary adipocytes. Adipogenesis monitored by Oil Red O staining and AdipoRed™ assay was modestly decreased by clenbuterol treatment (p < 0.05). In fully differentiated primary adipocytes, clenbuterol increased basal lipolysis compared with the control (p < 0.01). In summary, direct stimulation of β2-AR by clenbuterol does not cause apoptosis in adipocytes, despite a direct lipolytic stimulation and attenuation of adipogenesis.  相似文献   

15.
Cross talk between adrenergic and insulin signaling systems may represent a fundamental molecular basis of insulin resistance. We have characterized a newly established beta(3)-adrenoceptor-deficient (beta(3)-KO) brown adipocyte cell line and have used it to selectively investigate the potential role of novel-state and typical beta-adrenoceptors (beta-AR) on insulin signaling and action. The novel-state beta(1)-AR agonist CGP-12177 strongly induced uncoupling protein-1 in beta(3)-KO brown adipocytes as opposed to the beta(3)-selective agonist CL-316,243. Furthermore, CGP-12177 potently reduced insulin-induced glucose uptake and glycogen synthesis. Neither the selective beta(1)- and beta(2)-antagonists metoprolol and ICI-118,551 nor the nonselective antagonist propranolol blocked these effects. The classical beta(1)-AR agonist dobutamine and the beta(2)-AR agonist clenbuterol also considerably diminished insulin-induced glucose uptake. In contrast to CGP-12177 treatment, these negative effects were completely abrogated by metoprolol and ICI-118,551. Stimulation with CGP-12177 did not impair insulin receptor kinase activity but decreased insulin receptor substrate-1 binding to phosphatidylinositol (PI) 3-kinase and activation of protein kinase B. Thus the present study characterizes a novel cell system to selectively analyze molecular and functional interactions between novel and classical beta-adrenoceptor types with insulin action. Furthermore, it indicates insulin receptor-independent, but PI 3-kinase-dependent, potent negative effects of the novel beta(1)-adrenoceptor state on diverse biological end points of insulin action.  相似文献   

16.
We analysed the effects of high glucose in rat1 cells overexpressing insulin receptor. High (25 mM) glucose inhibited insulin-stimulated tyrosine kinase activity completely at insulin concentrations of 1 and 5 ng/ml. Decapeptides modelled on insulin receptor sequences surrounding serines 1035 and 1270 were found to inhibit protein kinase C activity in vitro and after microinjection into cells blocked the inhibition of mitogenesis induced by glucose. Purification of receptor from 3T3L1 adipocytes revealed that only the isoenzymes beta1, betaII and delta were detected. The site of the interaction was mapped to the catalytic domain of betaII. These results demonstrate that the inhibition of insulin receptor tyrosine kinase activity can be ameliorated using insulin receptor peptide sequences and there is constitutive and differential interaction of individual PKC isoenzymes with the insulin receptor, and in the case of betaII, this interaction maps to the catalytic domain rather than the regulatory domain.  相似文献   

17.
Certain protein kinase C (PKC) isoforms, in particular PKCs beta II, delta, and zeta, are activated by insulin stimulation. In primary cultures of skeletal muscle, PKCs beta II and zeta, but not PKC delta, are activated via a phosphatidylinositol 3-kinase (PI3K)-dependent pathway. The purpose of this study was to investigate the possibility that PKC delta may be activated upstream of PI3K by direct interaction with insulin receptor (IR). Experiments were done on primary cultures of newborn rat skeletal muscle, age 5--6 days in vitro. The time course of insulin-induced activation of PKC delta closely paralleled that of IR. Insulin stimulation caused a selective coprecipitation of PKC delta with IR, and these IR immunoprecipitates from insulin-stimulated cells displayed a striking induction of PKC activity due specifically to PKC delta. To examine the involvement of PKC delta in the IR signaling cascade, we used recombinant adenovirus constructs of wild-type (W.T.) or dominant negative (D.N.) PKC delta. Overexpression of W.T.PKC delta induced PKC delta activity and coassociation of PKC delta and IR without addition of insulin. Overexpression of D.N.PKC delta abrogated insulin- induced coassociation of PKC delta and IR. Insulin-induced tyrosine phosphorylation of IR was greatly attenuated in cells overexpressing W.T.PKC delta, whereas in myotubes overexpressing D.N.PKC delta, tyrosine phosphorylation occurred without addition of insulin and was sustained longer than that in control myotubes. In control myotubes IR displayed a low level of serine phosphorylation, which was increased by insulin stimulation. In cells overexpressing W.T.PKC delta, serine phosphorylation was strikingly high under basal conditions and did not increase after insulin stimulation. In contrast, in cells overexpressing D.N.PKC delta, the level of serine phosphorylation was lower than that in nonoverexpressing cells and did not change notably after addition of insulin. Overexpression of W.T.PKC delta caused IR to localize mainly in the internal membrane fractions, and blockade of PKC delta abrogated insulin-induced IR internalization. We conclude that PKC delta is involved in regulation of IR activity and routing, and this regulation may be important in subsequent steps in the IR signaling cascade.  相似文献   

18.
Insulin stimulates glucose transport and certain other metabolic processes by activating atypical PKC isoforms (lambda, zeta, iota) and protein kinase B (PKB) through increases in D3-polyphosphoinositides derived from the action of PI3K. The role of diacylglycerol-sensitive PKC isoforms is less clear as they have been suggested to be both activated by insulin and yet inhibit insulin signaling to PI3K. Presently, we found that insulin signaling to insulin receptor substrate 1-dependent PI3K, PKB, and PKC lambda, and downstream processes, glucose transport and activation of ERK, were enhanced in skeletal muscles and adipocytes of mice in which the ubiquitous conventional diacylglycerol-sensitive PKC isoform, PKC alpha, was knocked out by homologous recombination. On the other hand, insulin provoked wortmannin-insensitive increases in immunoprecipitable PKC alpha activity in adipocytes and skeletal muscles of wild-type mice and rats. We conclude that 1) PKC alpha is not required for insulin-stimulated glucose transport, and 2) PKC alpha is activated by insulin at least partly independently of PI3K, and largely serves as a physiological feedback inhibitor of insulin signaling to the insulin receptor substrate 1/PI3K/PKB/PKC lambda/zeta/iota complex and dependent metabolic processes.  相似文献   

19.
The possible involvement of different kinases in the alpha(1)-adrenoreceptor (AR)-mediated positive inotropic effect (PIE) was investigated in rat papillary muscle and compared with beta-AR-, endothelin receptor- and phorbol ester-induced changes in contractility. The alpha(1)-AR-induced PIE was not reduced by the inhibitors of protein kinase C (PKC), MAPK (ERK and p38), phosphatidyl inositol 3-kinase, or calmodulin kinase II. However, PKC inhibition attenuated the effect of phorbol 12-myristate 13-acetate (PMA) on contractility. alpha(1)-AR-induced PIE was reduced by approximately 90% during inhibition of myosin light chain kinase (MLCK) by 1-(5-chloronaphthalene-1-sulfonyl)1H-hexahydro-1,4-diazepine (ML-9). Endothelin-induced PIE was also reduced by ML-9, but ML-9 had no effect on beta-AR-induced PIE. The Rho kinase inhibitor Y-27632 also reduced the alpha(1)-AR-induced PIE. The alpha(1)-AR-induced PIE in muscle strips from explanted failing human hearts was also sensitive to MLCK inhibition. alpha(1)-AR induced a modest increase in (32)P incorporation into myosin light chain in isolated rat cardiomyocytes. This effect was eliminated by ML-9. The PIE of alpha(1)-AR stimulation seems to be dependent on MLCK phosphorylation.  相似文献   

20.
The present study was undertaken to determine the ability of protein kinase C and protein kinase A to directly phosphorylate the purified alpha 1- and beta 2-adrenergic receptors (AR). Both the catalytic subunit of protein kinase A and the protein kinase C, purified from bovine heart and pig brain, respectively, are able to phosphorylate the purified alpha 1-AR from DDT1 MF-2 smooth muscle cells. Occupancy of the receptor by an alpha 1 agonist, norepinephrine (100 microM), increases the rate of phosphorylation by protein kinase C but not by protein kinase A. The maximum stoichiometry of phosphorylation obtained is not affected by the agonist and reached 3 mol of PO4/mol of receptor for protein kinase C and 1 mol of PO4/mol of receptor for protein kinase A. The phosphopeptide maps of the trypsinized alpha 1-AR phosphorylated by each kinase differ drastically. The beta 2-AR purified from hamster lungs can also be phosphorylated by the two kinases. In contrast to the alpha 1-AR, the occupancy of the beta 2-AR by the agonist isoproterenol (20 microM) increases the rate of phosphorylation of the beta 2-AR by protein kinase A but not by protein kinase C. The maximum amount of phosphate incorporated into the receptor is not affected in either case by the agonist and reaches 1 mol of PO4/mol of receptor with protein kinase A and 0.4 mol of PO4/mol of receptor with protein kinase C. The phosphopeptide maps of the trypsinized receptor phosphorylated by either kinase reveal similar profiles. Thus, both alpha 1-AR and beta 2-AR are substrates for protein kinase A and protein kinase C. Agonist occupancy of the two receptors facilitates their phosphorylation only by the protein kinase coupled to their own signal transduction pathway. These observations suggest that "feedback" and "cross-system" phosphorylation may represent distinct and differently regulated mechanisms of modulation of receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号