首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Opioids are the most effective analgesics for the treatment of moderate to severe pain. However, chronic opioid treatment can cause both hyperalgesia and analgesic tolerance, which limit their clinical efficacy. In this study, we determined the role of pre- and postsynaptic NMDA receptors (NMDARs) in controlling increased glutamatergic input in the spinal cord induced by chronic systemic morphine administration. Whole-cell voltage clamp recordings of excitatory postsynaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine significantly increased the amplitude of monosynaptic EPSCs evoked from the dorsal root and the frequency of spontaneous EPSCs, and these changes were largely attenuated by blocking NMDARs and by inhibiting PKC, but not PKA. Also, blocking NR2A- or NR2B-containing NMDARs significantly reduced the frequency of spontaneous EPSCs and the amplitude of evoked EPSCs in morphine-treated rats. Strikingly, morphine treatment largely decreased the amplitude of evoked NMDAR-EPSCs and NMDAR currents of dorsal horn neurons elicited by puff NMDA application. The reduction in postsynaptic NMDAR currents caused by morphine was prevented by resiniferatoxin pretreatment to ablate TRPV1-expressing primary afferents. Furthermore, intrathecal injection of the NMDAR antagonist significantly attenuated the development of analgesic tolerance and the reduction in nociceptive thresholds induced by chronic morphine. Collectively, our findings indicate that chronic opioid treatment potentiates presynaptic, but impairs postsynaptic, NMDAR activity in the spinal cord. PKC-mediated increases in NMDAR activity at nociceptive primary afferent terminals in the spinal cord contribute critically to the development of opioid hyperalgesia and analgesic tolerance.  相似文献   

2.
Neurohumoral activation, which includes augmented plasma levels of the neurohormone vasopressin (VP), is a common finding in heart failure (HF) that contributes to morbidity and mortality in this disease. While an increased activation of magnocellular neurosecretory cells (MNCs) and enhanced glutamate function in HF is well documented, the precise underlying mechanisms remain to be elucidated. Here, we combined electrophysiology and protein measurements to determine whether altered glial glutamate transporter function and/or expression occurs in the hypothalamic supraoptic nucleus (SON) during HF. Patch-clamp recordings obtained from MNCs in brain slices show that pharmacological blockade of astrocyte glutamate transporter 1 (GLT1) function [500 μM dihydrokainate (DHK)], resulted in a persistent N-methyl-D-aspartate receptor (NMDAR)-mediated inward current (tonic I(NMDA)) in sham rats, an effect that was significantly smaller in MNCs from HF rats. In addition, we found a diminished GLT1 protein content in plasma membrane (but not cytosolic) fractions of SON punches in HF rats. Conversely, astrocyte GLAST expression was significantly higher in the SON of HF rats, while nonselective blockade of glutamate transport activity (100 μM TBOA) evoked an enhanced tonic I(NMDA) activation in HF rats. Steady-state activation of NMDARs by extracellular glutamate levels was diminished during HF. Taken together, these results support a shift in the relative expression and function of two major glial glutamate transporters (from GLT1 to GLAST predominance) during HF. This shift may act as a compensatory mechanism to preserve an adequate basal glutamate uptake level in the face of an enhanced glutamatergic afferent activity in HF rats.  相似文献   

3.
GLAST and GLT-1 are the most abundant glutamate transporters in the CNS and protect neurons from glutamate neurotoxicity. Here, we investigated the role of GLAST in spinal nociceptive processing. GLAST protein expression was not altered after treatment of rats with either formalin or zymosan. Surprisingly, knock-down of GLAST in the spinal cord using antisense-oligonucleotides decreased glutamate concentrations in cerebrospinal fluid (CSF) and reduced the nociceptive behaviour in the rat formalin assay. However, it did not influence thermal hyperalgesia in the zymosan-induced paw inflammation model indicating that GLAST is associated with spontaneous rather than inflammatory nociception. Mechanisms that might explain the decreased response in the formalin assay may include compensatory activation of other glutamate transporters, inhibition of glutamate release or disturbance of glutamate recycling. In conclusion, these data suggest that inhibition of GLAST expression in the spinal cord reduces excitatory synaptic activity and thereby spontaneous responses after nociceptive stimulation of the paw.  相似文献   

4.
Zeng K  Xu H  Mi M  Zhang Q  Zhang Y  Chen K  Chen F  Zhu J  Yu X 《Neurochemical research》2009,34(2):244-254
The preventive effect of dietary taurine supplementation on glial alterations in retina of streptozotocin-induced diabetic rats was examined in this study. Blood glucose content, content of taurine, glutamate and <gamma>-amino butyric acid (GABA) and expression of glial fibrillary acid protein (GFAP), vascular endothelial growth factor (VEGF), glutamate transporter (GLAST), glutamine synthetase (GS) and glutamate decarboxylase (GAD) in retina were determined in diabetic rats fed without or with 5% taurine in a controlled trial lasting 12 weeks, with normal rats fed without or with 5% taurine served as controls. Dietary taurine supplementation could not lower glucose concentration in blood (> 0.05), but caused an elevation of taurine content and a decline in levels of glutamate and GABA in retina of diabetic rats (< 0.05). The content of GABA in normal control group was not altered by taurine supplementation. With supplementation of taurine in diet, lower expression of GFAP and VEGF while higher expression of GLAST, GS and GAD in retina of diabetic rats were determinated by RT-PCR, Western-blotting and immunofluorescence (< 0.05). GFAP, VEGF, GLAST, GS and GAD expressions in normal controls were not altered by taurine treatment. This may have prospective implications of using taurine to treat complications in diabetic retinopathy.  相似文献   

5.
Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the intracellular cascade in PSDC neurons mediated by PKA nociceptive neurotransmission was not known. In this study, by using multiple experimental approaches, we investigated the role of PKA in nociceptive signaling in the spinal cord and PSDC neurons in a visceral pain model in rats with the intracolonic injection of mustard oil. We found that mustard oil injection elicited visceral pain that significantly changed exploratory behavior activity in rats in terms of decreased numbers of entries, traveled distance, active and rearing time, rearing activity and increased resting time when compared to that of rats receiving mineral oil injection. However, the intrathecal infusion of PKA inhibitor, H89 partially reversed the visceral pain-induced effects. Results from Western blot studies showed that mustard oil injection significantly induced the expression of PKA protein in the lumbosacral spinal cord. Immunofluorescent staining in pre-labeled PSDC neurons showed that mustard oil injection greatly induces the neuronal profile numbers. We also found that the intrathecal infusion of a PKA inhibitor, H89 significantly blocked the visceral pain-induced phosphorylation of c-AMP-responsive element binding (CREB) protein in spinal cord in rats. The results of our study suggest that the PKA signal transduction cascade may contribute to visceral nociceptive changes in spinal PSDC pathways.  相似文献   

6.
N-methyl-D-aspartate (NMDA) receptors (NMDARs) on spinal afferent neurons regulate the peripheral and central release of neuropeptides involved in the development of hyperalgesia. We examined the effect of experimental colitis on the molecular and functional properties of NMDARs on these neurons. Lumbosacral dorsal root ganglia (DRG) were collected from adult rats 5 days after the induction of colitis for whole cell patch-clamp recording, Western blot analysis, and quantitative RT-PCR. Compared with neurons from control rats, those taken from animals with colitis had a threefold higher density of NMDA currents in both retrograde-labeled, colon-specific, and unlabeled DRG neurons. Increased current densities were not observed in DRG neurons taken from thoracic spinal levels. There was no significant change in NMDA or glycine affinity or in voltage-dependent Mg2+ inhibition; however, there was a 10-fold decrease in sensitivity to the NR2B subunit-selective antagonist ifenprodil. Quantitative RT-PCR and Western blot analysis indicated a 28% increase in the expression of NR2B with little or no change in the other three NR2 subunits. The addition of the Src family tyrosine kinase inhibitor PP2 (10 microM) decreased NMDAR currents in neurons from colitis but not control rats. Conversely, pretreatment of DRG neurons from control animals with 100 microM sodium orthovanadate increased NMDAR currents and decreased ifenprodil sensitivity to levels similar to those observed in neurons from animals with colitis. In conclusion, colonic inflammation upregulates the activity of NMDARs in all DRG neurons within ganglia innervating this tissue through mechanisms involving increased expression and persistent tyrosine phosphorylation.  相似文献   

7.
Moderate to intense light is reported to damage the chick retina, which is cone dominated. Light damage alters neurotransmitter pools, such as those of glutamate. Glutamate level in the retina is regulated by glutamate–aspartate transporter (GLAST) and glutamine synthetase (GS). We examined immunolocalization patterns and the expression levels of both markers and of glial fibrillary acidic protein (GFAP, a marker of neuronal stress) in chick retina exposed to 2000 lux under 12-h light:12-h dark (12L:12D; normal photoperiod), 18L:6D (prolonged photoperiod), and 24L:0D (constant light) at post-hatch day 30. Retinal damage (increased death of photoreceptors and inner retinal neurons and Müller cell hypertrophy) and GFAP expression in Müller cells were maximal in 24L:0D condition compared to that seen in 12L:12D and 18L:6D conditions. GS was present in Müller cells and GLAST expressed in Müller cell processes and photoreceptor inner segments. GLAST expression was decreased in 24L:0D condition, and the expression levels between 12L:12D and 18L:6D, though increased marginally, were statistically insignificant. Similar was the case with GS expression that significantly decreased in 24L:0D condition. Our previous study with chicks exposed to 2000 lux reported increased retinal glutamate level in 24L:0D condition. The present results indicate that constant light induces decreased expressions of GLAST and GS, a condition that might aggravate glutamate-mediated neurotoxicity and delay neuroprotection in a cone-dominated retina.  相似文献   

8.
ABSTRACT: BACKGROUND: The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). Results: The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). Conclusions: These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.  相似文献   

9.
The association between chronic pain and depression is widely recognized, the comorbidity of which leads to a heavier disease burden, increased disability and poor treatment response. This study examined nociceptive responding to mechanical and thermal stimuli prior to and following L5‐L6 spinal nerve ligation (SNL), a model of neuropathic pain, in the olfactory bulbectomized (OB) rat model of depression. Associated changes in the expression of genes encoding for markers of glial activation and cytokines were subsequently examined in the amygdala, a key brain region for the modulation of emotion and pain. The OB rats exhibited mechanical and cold allodynia, but not heat hyperalgesia, when compared with sham‐operated counterparts. Spinal nerve ligation induced characteristic mechanical and cold allodynia in the ipsilateral hindpaw of both sham and OB rats. The OB rats exhibited a reduced latency and number of responses to an innocuous cold stimulus following SNL, an effect positively correlated with interleukin (IL)‐6 and IL‐10 mRNA expression in the amygdala, respectively. Spinal nerve ligation reduced IL‐6 and increased IL‐10 expression in the amygdala of sham rats. The expression of CD11b (cluster of differentiation molecule 11b) and GFAP (glial fibrillary acidic protein), indicative of microglial and astrocyte activation, and IL‐1β in the amygdala was enhanced in OB animals when compared with sham counterparts, an effect not observed following SNL. This study shows that neuropathic pain‐related responding to an innocuous cold stimulus is altered in an animal model of depression, effects accompanied by changes in the expression of neuroinflammatory genes in the amygdala .  相似文献   

10.
There is growing evidence that the loss of the nigrostriatal dopaminergic neurones induces an overactivity of the corticostriatal glutamatergic pathway which seems to be central to the physiopathology of parkinsonism. Moreover, glutamatergic mechanisms involving NMDA receptors have been shown to interfere with the therapeutical action of levodopa. Given the key role played by uptake processes in glutamate neurotransmission, this study examined the effects of nigrostriatal deafferentation and of levodopa treatment on the striatal expression of the glutamate transporters GLT1, GLAST and EAAC1 in the rat. No significant changes in striatal mRNA levels of these transporters were detected after either levodopa treatment (100 mg/kg; i.p., twice a day for 21 days) or unilateral lesion of the nigrostriatal pathway by intranigral 6-hydroxydopamine injection. In contrast, animals with the lesion subsequently treated with levodopa showed a selective increase (36%) in GLT1 mRNA levels in the denervated striatum versus controls. These animals also showed increased GLT1 protein expression, as assessed by immunostaining and western blotting. These data provide the first evidence that levodopa therapy may interfere with striatal glutamate transmission through change in expression of the primarily glial glutamate transporter GLT1. We further suggest that levodopa-induced GLT1 overexpression may represent a compensatory mechanism preventing neurotoxic accumulation of endogenous glutamate.  相似文献   

11.
There are divergences between neuropathic pain and visceralgia in terms of the duration, location, and character of hyperalgesia. It is generally recognized that nociceptive receptors, including P2X receptors, may play different roles in nociceptive mechanisms. The different roles of P2X1–7 receptors have not been fully understood both in neuropathic pain and visceral hyperalgesia. In order to explore the different expressions of P2X1–7 receptors in these two hyperalgesia models, the lumbosacral dorsal root ganglion (DRG) neurons from rat sciatic nerve chronic constriction injury (CCI) model and neonatal colorectal distention (NCRD) model were studied (both the primary nociceptive neuron afferents of those two models projected to the same segment of spinal cord). Both immunohistochemistry (IHC) technique and real-time fluorescence quantitative polymerase chain reaction (RT-PCR) technology were applied to analyze the protein expression levels and nucleic acid of P2X1–7 receptors. We found that except P2X2 and P2X3, the expression levels of P2X1 and P2X5 receptors increased in neuropathic pain while those expression levels of P2X4, P2X6, and P2X7 receptors increased in visceral pain. Our results also suggested that in addition to P2X2/3 heteromeric, other P2X subunits may also involved in generation heteromeric such as P2X1/5 and/or P2X2/5 in neuropathic pain and P2X4/6 and/or P2X4/7 in visceral pain.  相似文献   

12.
The hypernociceptive role played by the chemokine CCL2, and its main receptor, CCR2, in pathological settings is being increasingly recognized. We aimed to characterize the involvement of spinal CCL2 in the hyperalgesia due to the intratibial inoculation of fibrosarcoma NCTC 2472 cells in mice. The intrathecal (i.t.) administration of the CCR2 antagonist RS 504393 (1–3 μg) or an anti-CCL2 antibody inhibited tumoral hyperalgesia. No change in the expression of spinal CCR2 was detected by western blot, whereas immunohistochemical experiments demonstrated increased CCL2 staining at the superficial laminae of the spinal cord ipsilateral to the tumor. This spinal CCL2 does not seem to be released from nociceptors since CCL2 mRNA and CCL2 levels in DRGs, as measured by RT-PCR and ELISA, remain unmodified in tumor-bearing mice. In contrast, immunohistochemical assays demonstrated the spinal up-regulations of GFAP and Iba-1, respective markers of astroglia and microglia, and the expression of CCL2 in both types of glial cells at the superficial laminae of the spinal cord of tumor-bearing mice. Finally, since CCL2 could induce astroglial or microglial activation, we studied whether the blockade of CCR2 could inhibit the increased spinal glial expression. GFAP, but not Iba-1, up-regulation was reduced in tumor-bearing mice treated for 3 days with i.t. RS 504393, indicating that spinal CCL2 acts as an astroglial activator in this setting. The participation at spinal level of CCL2/CCR2 in tumoral hypernociception, together with its previously described involvement at periphery, makes attractive the modulation of this system for the alleviation of neoplastic pain.  相似文献   

13.
We have reported recently that intrathecal (i.t.) injection of interleukin-1beta (IL-1beta), at a dose of 100 ng, induces inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in the spinal cord and results in thermal hyperalgesia in rats. This study further examines the role of mitogen-activated protein kinase (MAPK) in i.t. IL-1beta-mediated iNOS-NO cascade in spinal nociceptive signal transduction. All rats were implanted with an i.t. catheter either with or without an additional microdialysis probe. Paw withdrawal latency to radiant heat is used to assess thermal hyperalgesia. The iNOS and MAPK protein expression in the spinal cord dorsal horn were examined by western blot. The [NO] in CSF dialysates were also measured. Intrathecal IL-1beta leads to a time-dependent up-regulation of phosphorylated p38 (p-p38) MAPK protein expression in the spinal cord 30-240 min following IL-1beta injection (i.t.). However, neither the phosphorylated extracellular signal-regulated kinase (p-ERK) nor phosphorylated c-Jun NH2-terminal kinase (p-JNK) was affected. The total amount of p38, ERK, and JNK MAPK proteins were not affected following IL-1beta injection. Intrathecal administration of either selective p38 MAPK, or JNK, or ERK inhibitor alone did not affect the thermal nociceptive threshold or iNOS protein expression in the spinal cord. However, pretreatment with a p38 MAPK inhibitor significantly reduced the IL-1beta-induced p-p38 MAPK expression by 38-49%, and nearly completely blocked the subsequent iNOS expression (reduction by 86.6%), NO production, and thermal hyperalgesia. In contrast, both ERK and JNK inhibitor pretreatments only partially (approximately 50%) inhibited the IL-1beta-induced iNOS expression in the spinal cord. Our results suggest that p38 MAPK plays a pivotal role in i.t. IL-1beta-induced spinal sensitization and nociceptive signal transduction.  相似文献   

14.
兴奋性氨基酸介导脊髓伤害性信息传递   总被引:7,自引:0,他引:7  
Song XJ 《生理科学进展》1997,28(4):322-324
NMDA和非NMDA受体广泛存在于猫脊髓背角神经元上,并参与介导伤害性信息传递;NMDA受体主要介导皮肤的伤害性传入,非NMDA受体则主要介导肌肉和内脏的伤害性传入;皮肤和肌肉的伤害性传入分别诱发释放更多的门冬氨酸和谷氨酸可能是这种差别的主要原因之一;NMDA受体的不同调节位点在伤害性信息传递中有密切的协同作用;兴奋性氨基酸和P物质及其受体在介导和调制伤害性信息传递中的相互作用可以分别发生在神经元  相似文献   

15.
Chronic exposure to excessive manganese (Mn) can lead to manganism, a type of neurotoxicity accomplished with extracellular glutamate (Glu) accumulation. To investigate this accumulation, this study focused on the role of astrocyte glutamate transporters (GluTs) and glutamine synthetase (GS), which have roles in Glu transport and metabolism, respectively. And the possible protective effects of riluzole (a glutamatergic modulator) were studied in relation to Mn exposure. At first, the astrocytes were exposed to 0, 125, 250, and 500 μM MnCl(2) for 24 h, and 100 μM riluzole was pretreated to astrocytes for 6 h before 500 μM MnCl(2) exposure. Then, [(3)H]-glutamate uptake was measured by liquid scintillation counting; Na(+)-K(+) ATPase and GS activities were determined by a colorimetric method; glutamate/aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), and GS mRNA expression were determined by RT-PCR and protein levels were measured by western blotting. The results showed that Mn inhibited Glu uptake, Na(+)-K(+) ATPase and GS activities, GLAST, GLT-1, and GS mRNA, and protein in a concentration-dependent manner. And they were significantly higher for astrocytes pretreated with 100 μM riluzole than the group exposed to 500 μM MnCl(2). The results suggested that Mn disrupted Glu transport and metabolism by inhibiting GluTs and GS. Riluzole activated protective effects on enhancing GluTs and GS to reverse Glu accumulation. In conclusion, Mn exposure results in the disruption of GLAST, GLT-1, and GS expression and function. Furthermore, riluzole attenuates this Mn toxicity.  相似文献   

16.
17.

Background

Clearance of synaptically released glutamate, and hence termination of glutamatergic neurotransmission, is carried out by glutamate transporters, most especially glutamate transporter-1 (GLT-1) and the glutamate-aspartate transporter (GLAST) that are located in astrocytes. It is becoming increasingly well appreciated that changes in the function and expression of GLT-1 and GLAST occur under different physiological and pathological conditions. Here we investigated the plasticity in expression of GLT-1 and GLAST in the spinal dorsal horn using immunohistochemistry following partial sciatic nerve ligation (PSNL) in rats.

Results

Animals were confirmed to develop hypersensitivity to mechanical stimulation by 7 days following PSNL. Baseline expression of GLT-1 and GLAST in naive animals was only observed in astrocytes and not in either microglia or neurons. Microglia and astrocytes showed evidence of reactivity to the nerve injury when assessed at 7 and 14 days following PSNL evidenced by increased expression of OX-42 and GFAP, respectively. In contrast, the total level of GLT-1 and GLAST protein decreased at both 7 and 14 days after PSNL. Importantly, the cellular location of GLT-1 and GLAST was also altered in response to nerve injury. Whereas activated astrocytes showed a marked decrease in expression of GLT-1 and GLAST, activated microglia showed de novo expression of GLT-1 and GLAST at 7 days after PSNL and this was maintained through day 14. Neurons showed no expression of GLT-1 or GLAST at any time point.

Conclusion

These results indicate that the expression of glutamate transporters in astrocytes and microglia are differentially regulated following nerve injury.  相似文献   

18.
19.
Adenoviral‐mediated transfer of ciliary neurotrophic factor (CNTF) to the retina rescued retinal ganglion cells (RGCs) from axotomy‐induced apoptosis, presumably via activation of the high affinity CNTF receptor alpha (CNTFRα) expressed on RGCs. CNTF can also activate astrocytes, via its low affinity leukemia inhibitory receptor beta expressed on mature astrocytes, suggesting that CNTF may also protect injured neurons indirectly by modulating glia. Adenoviral‐mediated overexpression of CNTF in normal and axotomized rat retinas was examined to determine if it could increase the expression of several glial markers previously demonstrated to have a neuroprotective function in the injured brain and retina. Using Western blotting, the expression of glial fibrillary acid protein (GFAP), glutamate/aspartate transporter‐1 (GLAST‐1), glutamine synthetase (GS), and connexin 43 (Cx43) was examined 7 days after intravitreal injections of Ad.CNTF or control Ad.LacZ. Compared to controls, intravitreal injection of Ad.CNTF led to significant changes in the expression of CNTFRα, pSTAT3, GFAP, GLAST, GS, and Cx43 in normal and axotomized retinas. Taken together, these results suggest that the neuroprotective effects of CNTF may result from a shift of retinal glia cells to a more neuroprotective phenotype. Moreover, the modulation of astrocytes may buffer high concentrations of glutamate that have been shown to contribute to the death of RGCs after optic nerve transection. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

20.
Hypoxic preconditioning reprogrammes the brain''s response to subsequent H/I (hypoxia–ischaemia) injury by enhancing neuroprotective mechanisms. Given that astrocytes normally support neuronal survival and function, the purpose of the present study was to test the hypothesis that a hypoxic preconditioning stimulus would activate an adaptive astrocytic response. We analysed several functional parameters 24 h after exposing rat pups to 3 h of systemic hypoxia (8% O2). Hypoxia increased neocortical astrocyte maturation as evidenced by the loss of GFAP (glial fibrillary acidic protein)-positive cells with radial morphologies and the acquisition of multipolar GFAP-positive cells. Interestingly, many of these astrocytes had nuclear S100B. Accompanying their differentiation, there was increased expression of GFAP, GS (glutamine synthetase), EAAT-1 (excitatory amino acid transporter-1; also known as GLAST), MCT-1 (monocarboxylate transporter-1) and ceruloplasmin. A subsequent H/I insult did not result in any further astrocyte activation. Some responses were cell autonomous, as levels of GS and MCT-1 increased subsequent to hypoxia in cultured forebrain astrocytes. In contrast, the expression of GFAP, GLAST and ceruloplasmin remained unaltered. Additional experiments utilized astrocytes exposed to exogenous dbcAMP (dibutyryl-cAMP), which mimicked several aspects of the preconditioning response, to determine whether activated astrocytes could protect neurons from subsequent excitotoxic injury. dbcAMP treatment increased GS and glutamate transporter expression and function, and as hypothesized, protected neurons from glutamate excitotoxicity. Taken altogether, these results indicate that a preconditioning stimulus causes the precocious differentiation of astrocytes and increases the acquisition of multiple astrocytic functions that will contribute to the neuroprotection conferred by a sublethal preconditioning stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号