首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial lipase (EL) plays an important physiological role in modulating HDL metabolism. Data suggest that plasma contains an inhibitor of EL, and previous studies have suggested that apolipoprotein A-II (apoA-II) inhibits the activity of several enzymes involved in HDL metabolism. Therefore, we hypothesized that apoA-II may reduce the ability of EL to influence HDL metabolism. To test this hypothesis, we determined the effect of EL expression on plasma phospholipase activity and HDL metabolism in human apoA-I and human apoA-I/A-II transgenic mice. Expression of EL in vivo resulted in lower plasma phospholipase activity and significantly less reduction of HDL-cholesterol, phospholipid, and apoA-I levels in apoA-I/A-II double transgenic mice compared with apoA-I single transgenic mice. We conclude that the presence of apoA-II on HDL particles inhibits the ability of EL to influence the metabolism of HDL in vivo.  相似文献   

2.
Abdominal obesity is associated with a decreased plasma concentration of HDL cholesterol and with qualitative modifications of HDL, such as triglyceride enrichment. Our aim was to determine, in isolated aorta rings, whether HDL from obese subjects can counteract the inhibitory effect of oxidized low density lipoprotein (OxLDL) on endothelium-dependent vasodilation as efficiently as HDL from normolipidemic, lean subjects. Plasma triglycerides were 74% higher (P < 0.005) in obese subjects compared with controls, and apolipoprotein A-I (apoA-I) and HDL cholesterol concentrations were 12% and 17% lower (P < 0.05), respectively. HDL from control subjects significantly reduced the inhibitory effect of OxLDL on vasodilation [maximal relaxation (E(max)) = 82.1 +/- 8.6% vs. 54.1 +/- 8.1%; P < 0.0001], but HDL from obese subjects had no effect (E(max) = 47.2 +/- 12.5% vs. 54.1 +/- 8.1%; NS). In HDL from abdominally obese subjects compared with HDL from controls, the apoA-I content was 12% lower (P < 0.05) and the triglyceride-to-cholesteryl ester ratio was 36% higher (P = 0.08)). E(max)(OxLDL + HDL) was correlated with HDL apoA-I content and triglyceride-to-cholesteryl ester ratio (r = 0.36 and r = -0.38, respectively; P < 0.05). We conclude that in abdominally obese subjects, the ability of HDL to counteract the inhibitory effect of OxLDL on vascular relaxation is impaired. This could contribute to the increased cardiovascular risk observed in these subjects.  相似文献   

3.
We have found that hydrogen (dihydrogen; H2) has beneficial lipid-lowering effects in high-fat diet-fed Syrian golden hamsters. The objective of this study was to characterize the effects of H2-rich water (0.9–1.0 l/day) on the content, composition, and biological activities of serum lipoproteins on 20 patients with potential metabolic syndrome. Serum analysis showed that consumption of H2-rich water for 10 weeks resulted in decreased serum total-cholesterol (TC) and LDL-cholesterol (LDL-C) levels. Western blot analysis revealed a marked decrease of apolipoprotein (apo)B100 and apoE in serum. In addition, we found H2 significantly improved HDL functionality assessed in four independent ways, namely, i) protection against LDL oxidation, ii) inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to endothelial cells, iii) stimulation of cholesterol efflux from macrophage foam cells, and iv) protection of endothelial cells from TNF-α-induced apoptosis. Further, we found consumption of H2-rich water resulted in an increase in antioxidant enzyme superoxide dismutase and a decrease in thiobarbituric acid-reactive substances in whole serum and LDL. In conclusion, supplementation with H2-rich water seems to decrease serum LDL-C and apoB levels, improve dyslipidemia-injured HDL functions, and reduce oxidative stress, and it may have a beneficial role in prevention of potential metabolic syndrome.  相似文献   

4.
The apoA-I mimetic peptide L-4F [(Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2) synthesized from all L-amino acids] has shown potential for the treatment of a variety of diseases. Here, we demonstrate that LDL promotes association between L-4F and HDL. A 2- to 3-fold greater association of L-4F with human HDL was observed in the presence of human LDL as compared with HDL by itself. This association further increased when LDL was supplemented with the oxidized lipid 15S-hydroxy-5Z, 8Z, 11Z, 13E-eicosatetraenoic acid (15HETE). Additionally, L-4F significantly (P = 0.02) promoted the transfer of 15HETE from LDL to HDL. The transfer of L-4F from LDL to HDL was demonstrated both in vitro and in C57BL/6J mice. L-4F, injected into C57BL/6J mice, associated rapidly with HDL and was then cleared quickly from the circulation. Similarly, L-4F loaded onto human HDL and injected into C57BL/6J mice was cleared quickly with T(1/2) = 23.6 min. This was accompanied by a decline in human apoA-I with little or no effect on the mouse apoA-I. Based on these results, we propose that i) LDL promotes the association of L-4F with HDL and ii) in the presence of L-4F, oxidized lipids in LDL are rapidly transferred to HDL allowing these oxidized lipids to be acted upon by HDL-associated enzymes and/or cleared from the circulation.  相似文献   

5.
Apolipoprotein A-V (apoA-V) and apoC-III are exchangeable constituents of VLDL and HDL. ApoA-V counteracts the effect of apoC-III on triglyceride (TG) metabolism with poorly defined mechanisms. To better understand the effects of apoA-V on TG and cholesterol metabolism, we delivered apoA-V cDNA into livers of hypertriglyceridemic APOC3 transgenic mice by adenovirus-mediated gene transfer. In response to hepatic apoA-V production, plasma TG levels were reduced significantly as a result of enhanced VLDL catabolism without alternations in VLDL production. This effect was associated with reduced apoC-III content in VLDL. Increased apoA-V production also resulted in decreased apoC-III and increased apoA-I content in HDL. Furthermore, apoA-V-enriched HDL was associated with enhanced LCAT activity and increased cholesterol efflux. This effect, along with apoE enrichment in HDL, contributed to HDL core expansion and alpha-HDL formation, accounting for significant increases in both the number and size of HDL particles. As a result, apoA-V-treated APOC3 transgenic mice exhibited decreased VLDL-cholesterol and increased HDL-cholesterol levels. ApoA-V-mediated reduction of apoC-III content in VLDL represents an important mechanism by which apoA-V acts to ameliorate hypertriglyceridemia in adult APOC3 transgenic mice. In addition, increased apoA-V levels accounted for cholesterol redistribution from VLDL to larger HDL particles. These data suggest that in addition to its TG-lowering effect, apoA-V plays a significant role in modulating HDL maturation and cholesterol metabolism.  相似文献   

6.
We examined the effects of fenofibrate and atorvastatin on very low density lipoprotein (VLDL) apolipoprotein (apo)E metabolism in the metabolic syndrome (MetS). We studied 11 MetS men in a randomized, double-blind, crossover trial. VLDL-apoE kinetics were examined using stable isotope methods and compartmental modeling. Compared with placebo, fenofibrate (200 mg/day) and atorvastatin (40 mg/day) decreased plasma apoE concentrations (P < 0.05). Fenofibrate decreased VLDL-apoE concentration and production rate (PR) and increased VLDL-apoE fractional catabolic rate (FCR) compared with placebo (P < 0.05). Compared with placebo, atorvastatin decreased VLDL-apoE concentration and increased VLDL-apoE FCR (P < 0.05). Fenofibrate and atorvastatin had comparable effects on VLDL-apoE concentration. The increase in VLDL-apoE FCR with fenofibrate was 22% less than that with atorvastatin (P < 0.01). With fenofibrate, the change in VLDL-apoE concentration was positively correlated with change in VLDL-apoB concentration, and negatively correlated with change in VLDL-apoB FCR. In MetS, fenofibrate and atorvastatin decreased plasma apoE concentrations. Fenofibrate decreased VLDL-apoE concentration by lowering VLDL-apoE production and increasing VLDL-apoE catabolism. By contrast, atorvastatin decreased VLDL-apoE concentration chiefly by increasing VLDL-apoE catabolism. Our study provides new insights into the mechanisms of action of two different lipid-lowering therapies on VLDL-apoE metabolism in MetS.  相似文献   

7.
apoA-I plays important structural and functional roles in reverse cholesterol transport. We have described the molecular structure of the N-terminal domain, Δ(185-243) by X-ray crystallography. To understand the role of the C-terminal domain, constructs with sequential elongation of Δ(185-243), by increments of 11-residue sequence repeats were studied and compared with Δ(185-243) and WT apoA-I. Constructs up to residue 230 showed progressively decreased percent α-helix with similar numbers of helical residues, similar detergent and lipid binding affinity, and exposed hydrophobic surface. These observations suggest that the C-terminal domain is unstructured with the exception of the last 11-residue repeat (H10B). Similar monomer-dimer equilibrium suggests that the H10B region is responsible for nonspecific aggregation. Cholesterol efflux progressively increased with elongation up to ∼60% of full-length apoA-I in the absence of the H10B. In summary, the sequential repeats in the C-terminal domain are probably unstructured with the exception of H10B. This segment appears to be responsible for initiation of lipid binding and aggregation, as well as cholesterol efflux, and thus plays a vital role during HDL formation. Based on these observations and the Δ(185-243) crystal structure, we propose a lipid-free apoA-I structural model in solution and update the mechanism of HDL biogenesis.  相似文献   

8.
Prebeta-HDL particles act as the primary acceptors of cellular cholesterol in reverse cholesterol transport (RCT). An impairment of RCT may be the reason for the increased risk of coronary heart disease (CHD) in subjects with familial low HDL. We studied the levels of serum prebeta-HDL and the major regulating factors of HDL metabolism in 67 subjects with familial low HDL and in 64 normolipidemic subjects. We report that the subjects with familial low HDL had markedly reduced prebeta-HDL concentrations compared with the normolipidemic subjects (17.4 +/- 7.2 vs. 23.4 +/- 7.8 mg apolipoprotein A-I/dl; P < 0.001). A positive correlation was observed between prebeta-HDL concentration and serum triglyceride (TG) level (r = 0.334, P = 0.006). In addition, serum TG level was found to be the strongest predictor of prebeta-HDL concentration in subjects with familial low HDL. The activities of cholesteryl ester transfer protein and hepatic lipase were markedly increased in subjects with familial low HDL without a significant correlation to prebeta-HDL concentration. Our results support the hypothesis that impaired RCT is one mechanism behind the increased risk for CHD in subjects with familial low HDL.  相似文献   

9.
The goal of this study was to understand how the reconstituted HDL (rHDL) phospholipid (PL) composition affects its cholesterol efflux and anti-inflammatory properties. An ApoA-I mimetic peptide, 5A, was combined with either SM or POPC. Both lipid formulations exhibited similar in vitro cholesterol efflux by ABCA1, but 5A-SM exhibited higher ABCG1- and SR-BI-mediated efflux relative to 5A-POPC (P < 0.05). Injection of both rHDLs in rats resulted in mobilization of plasma cholesterol, although the relative potency was 3-fold higher for the same doses of 5A-SM than for 5A-POPC. Formation of preβ HDL was observed following incubation of rHDLs with both human and rat plasma in vitro, with 5A-SM inducing a higher extent of preβ formation relative to 5A-POPC. Both rHDLs exhibited anti-inflammatory properties, but 5A-SM showed higher inhibition of TNF-α, IL-6, and IL-1β release than did 5A-POPC (P < 0.05). Both 5A-SM and 5A-POPC showed reduction in total plaque area in ApoE−/− mice, but only 5A-SM showed a statistically significant reduction over placebo control and baseline (P < 0.01). The type of PL used to reconstitute peptide has significant influence on rHDL’s anti-inflammatory and anti-atherosclerosis properties.  相似文献   

10.
In low density lipoprotein receptor (LDLR)-deficient mice, overexpression of human plasma phospholipid transfer protein (PLTP) results in increased atherosclerosis. PLTP strongly decreases HDL levels and might alter the antiatherogenic properties of HDL particles. To study the potential interaction between human PLTP and apolipoprotein A-I (apoA-I), double transgenic animals (hPLTPtg/hApoAItg) were compared with hApoAItg mice. PLTP activity was increased 4.5-fold. Plasma total cholesterol and phospholipid were decreased. Average HDL size (analyzed by gel filtration) increased strongly, hPLTPtg/hApoAItg mice having very large, LDL-sized, HDL particles. Also, after density gradient ultracentrifugation, a substantial part of the apoA-I-containing lipoproteins in hPLTPtg/hApoAItg mice was found in the LDL density range. In cholesterol efflux studies from macrophages, HDL isolated from hPLTPtg/hApoAItg mice was less efficient than HDL isolated from hApoAItg mice. Furthermore, it was found that the largest subfraction of the HDL particles present in hPLTPtg/hApoAItg mice was markedly inferior as a cholesterol acceptor, as no labeled cholesterol was transferred to this fraction. In an LDLR-deficient background, the human PLTP-expressing mouse line showed a 2.2-fold increased atherosclerotic lesion area. These data demonstrate that the action of human PLTP in the presence of human apoA-I results in the formation of a dysfunctional HDL subfraction, which is less efficient in the uptake of cholesterol from cholesterol-laden macrophages.  相似文献   

11.
Objective: Low plasma concentrations of high‐density lipoprotein (HDL)‐cholesterol and apolipoprotein A‐I (apoA‐I) are independent predictors of coronary artery disease and are often associated with obesity and the metabolic syndrome. However, the underlying kinetic determinants of HDL metabolism are not well understood. Research Methods and Procedures: We pooled data from 13 stable isotope studies to investigate the kinetic determinants of apoA‐I concentrations in lean and overweight—obese individuals. We also examined the associations of HDL kinetics with age, sex, BMI, fasting plasma glucose, fasting insulin, Homeostasis Model Assessment score, and concentrations of apoA‐I, triglycerides, HDL‐cholesterol and low‐density lipoprotein‐cholesterol. Results: Compared with lean individuals, overweight—obese individuals had significantly higher HDL apoA‐I fractional catabolic rate (0.21 ± 0.01 vs. 0.33 ± 0.01 pools/d; p < 0.001) and production rate (PR; 11.3 ± 4.4 vs. 15.8 ± 2.77 mg/kg per day; p = 0.001). In the lean group, HDL apoA‐I PR was significantly associated with apoA‐I concentration (r = 0.455, p = 0.004), whereas in the overweight—obese group, both HDL apoA‐I fractional catabolic rate (r = ?0.396, p = 0.050) and HDL apoA‐I PR (r = 0.399, p = 0.048) were significantly associated with apoA‐I concentration. After adjustment for fasting insulin or Homeostasis Model Assessment score, HDL apoA‐I PR was an independent predictor of apoA‐I concentration. Discussion: In overweight—obese subjects, hypercatabolism of apoA‐I is paralleled by an increased production of apoA‐I, with HDL apoA‐I PR being the stronger determinant of apoA‐I concentration. This could have therapeutic implications for the management of dyslipidemia in individuals with low plasma HDL‐cholesterol.  相似文献   

12.
Given the increased prevalence of cardiovascular disease in the world, the search for genetic variations that impact risk factors associated with the development of this disease continues. Multiple genetic association studies demonstrate that procollagen C-proteinase enhancer 2 (PCPE2) modulates HDL levels. Recent studies revealed an unexpected role for this protein in the proteolytic processing of pro-apolipoprotein (apo) A-I by enhancing the cleavage of the hexapeptide extension present at the N-terminus of apoA-I. To investigate the role of the PCPE2 protein in an in vivo model, PCPE2-deficient (PCPE2 KO) mice were examined, and a detailed characterization of plasma lipid profiles, apoA-I, HDL speciation, and function was done. Results of isoelectric focusing (IEF) electrophoresis together with the identification of the amino terminal peptides DEPQSQWDK and WHVWQQDEPQSQWDVK, representing mature apoA-I and pro-apoA-I, respectively, in serum from PCPE2 KO mice confirmed that PCPE2 has a role in apoA-I maturation. Lipid profiles showed a marked increase in plasma apoA-I and HDL-cholesterol (HDL-C) levels in PCPE2 KO mice compared with wild-type littermates, regardless of gender or diet. Changes in HDL particle size and electrophoretic mobility observed in PCPE2 KO mice suggest that the presence of pro-apoA-I impairs the maturation of HDL. ABCA1-dependent cholesterol efflux is defective in PCPE2 KO mice, suggesting that the functionality of HDL is altered.  相似文献   

13.
A low level of high density lipoprotein cholesterol (HDL-C) is a powerful risk factor for cardiovascular disease. However, despite the reported key role of apolipo-proteins, specifically, apoA-I, in HDL metabolism, lipid molecular composition of HDL particles in subjects with high and low HDL-C levels is currently unknown. Here lipidomics was used to study HDL derived from well-characterized high and low HDL-C subjects. Low HDL-C subjects had elevated triacylglycerols and diminished lysophosphatidylcholines and sphingomyelins. Using information about the lipid composition of HDL particles in these two groups, we reconstituted HDL particles in silico by performing large-scale molecular dynamics simulations. In addition to confirming the measured change in particle size, we found that the changes in lipid composition also induced specific spatial distributions of lipids within the HDL particles, including a higher amount of triacylglycerols at the surface of HDL particles in low HDL-C subjects. Our findings have important implications for understanding HDL metabolism and function. For the first time we demonstrate the power of combining molecular profiling of lipoproteins with dynamic modeling of lipoprotein structure.  相似文献   

14.
15.
16.
Modifying apolipoprotein (apo) A-I mimetic peptides to include a proline-punctuated α-helical repeat increases their anti-inflammatory properties as well as allows better mimicry of full-length apoA-I function. This study compares the following mimetics, either acetylated or biotinylated (b): 4F (18mer) and 4F-proline-4F (37mer, Pro). b4F interacts with both mouse HDL (moHDL) and LDL in vitro. b4F in vivo plasma clearance kinetics are not affected by mouse HDL level. Administration of biotinylated peptides to mice demonstrates that b4F does not associate with lipoproteins smaller than LDL in vivo, though it does associate with fractions containing free hemoglobin (Hb). In contrast, bPro specifically interacts with HDL. b4F and bPro show opposite binding responses to HDL by surface plasmon resonance. Administration of acetylated Pro to apoE−/− mice significantly decreases plasma serum amyloid A levels, while acetylated 4F does not have this ability. In contrast to previous reports that inferred that 4F associates with HDL in vivo, we systematically examined this potential interaction and demonstrated that b4F does not interact with HDL in vivo but rather elutes with Hb-containing plasma fractions. bPro, however, specifically binds to moHDL in vivo. In addition, the number of amphipathic α-helices and their linker influences the anti-inflammatory effects of apoA-I mimetic peptides in vivo.  相似文献   

17.
We investigated the effect of weight loss, independent of change in diet composition, on HDL and apoAI metabolism in men with metabolic syndrome (MetS). Subjects (19 men with MetS [NCEP-ATPIII]) were fed an isoenergetic Mediterranean-style diet for 5 weeks (all foods provided). Participants then underwent a 20-week free-living period during which they were counseled to restrict energy intake, after which they were again fed an isoenergetic Mediterranean-style diet for 5 weeks. At the end of the two controlled diets, participants received a single bolus of [5,5,5-2H3] L-leucine, and fasting blood samples were collected over a 96 h period. ApoAI kinetic was assessed using multicompartmental modeling of the tracer enrichment data. Participants achieved a 9.1 ± 2.8% reduction in body weight (P < 0.001). Weight loss resulted in an increase in plasma HDL-cholesterol (HDL-C) concentrations of 6.0% (P = 0.059) and HDL3-C of 7.9% (P = 0.045), attributable to a reduction in apoAI fractional catabolic rate (−7.8%; P = 0.046) with no change in apoAI production rate (2.2%; P = 0.58). These data indicate that weight loss, independent of variation in diet composition, increases plasma HDL primarily by delaying the catabolism of apoAI.  相似文献   

18.
Human HDLs have highly heterogeneous composition. Plasma concentrations of HDL with apoC-III and of apoE in HDL predict higher incidence of coronary heart disease (CHD). The concentrations of HDL-apoA-I containing apoE, apoC-III, or both and their distribution across HDL sizes are unknown. We studied 20 normal weight and 20 obese subjects matched by age, gender, and race. Plasma HDL was separated by sequential immunoaffinity chromatography (anti-apoA-I, anti-apoC-III, anti-apoE), followed by nondenaturing-gel electrophoresis. Mean HDL-cholesterol concentrations in normal weight and obese subjects were 65 and 50 mg/dl (P = 0.009), and total apoA-I concentrations were 119 and 118 mg/dl, respectively. HDL without apoE or apoC-III was the most prevalent HDL type representing 89% of apoA-I concentration in normal weight and 77% in obese (P = 0.01) individuals; HDL with apoE-only was 5% versus 8% (P = 0.1); HDL with apoC-III-only was 4% versus 10% (P = 0.009); and HDL with apoE and apoC-III was 1.5% versus 4.6% (P = 0.004). Concentrations of apoE and apoC-III in HDL were 1.5–2× higher in obese subjects (P ≤ 0.004). HDL with apoE or apoC-III occurred in all sizes among groups. Obese subjects had higher prevalence of HDL containing apoE or apoC-III, subfractions associated with CHD, whereas normal weight subjects had higher prevalence of HDL without apoE or apoC-III, subfractions with protective association against CHD.  相似文献   

19.
It has been suggested that ABCA1 interacts preferentially with lipid-poor apolipoprotein A-I (apoA-I). Here, we show that treatment of plasma with dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles generates prebeta(1)-apoA-I-containing lipoproteins (LpA-I)-like particles similar to those of native plasma. Isolated prebeta(1)-LpA-I-like particles inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than HDL(3) (IC(50) = 2.20 +/- 0.35 vs. 37.60 +/- 4.78 microg/ml). We next investigated the ability of DMPC-treated plasma to promote phospholipid and unesterified (free) cholesterol efflux from J774 macrophages stimulated or not with cAMP. At 2 mg DMPC/ml plasma, both phospholipid and free cholesterol efflux were increased ( approximately 50% and 40%, respectively) in cAMP-stimulated cells compared with unstimulated cells. Similarly, both phospholipid and free cholesterol efflux to either isolated native prebeta(1)-LpA-I and prebeta(1)-LpA-I-like particles were increased significantly in stimulated cells. Furthermore, glyburide significantly inhibited phospholipid and free cholesterol efflux to DMPC-treated plasma. Removal of apoA-I-containing lipoproteins from normolipidemic plasma drastically reduced free cholesterol efflux mediated by DMPC-treated plasma. Finally, treatment of Tangier disease plasma with DMPC affected the amount of neither prebeta(1)-LpA-I nor free cholesterol efflux. These results indicate that DMPC enrichment of normal plasma resulted in the redistribution of apoA-I from alpha-HDL to prebeta-HDL, allowing for more efficient ABCA1-mediated cellular lipid release. Increasing the plasma prebeta(1)-LpA-I level by either pharmacological agents or direct infusions might prevent foam cell formation and reduce atherosclerotic vascular disease.  相似文献   

20.
To evaluate functional and compositional properties of HDL in subjects from a kindred of genetic apoA-I deficiency, two homozygotes and six heterozygotes, with a nonsense mutation at APOA1 codon -2, Q[-2]X, were recruited together with age- and sex-matched healthy controls (n = 11). Homozygotes displayed undetectable plasma levels of apoA-I and reduced levels of HDL-cholesterol (HDL-C) and apoC-III (5.4% and 42.6% of controls, respectively). Heterozygotes displayed low HDL-C (21 ± 9 mg/dl), low apoA-I (79 ± 24 mg/dl), normal LDL-cholesterol (132 ± 25 mg/dl), and elevated TG (130 ± 45 mg/dl) levels. Cholesterol efflux capacity of ultracentrifugally isolated HDL subpopulations was reduced (up to −25%, P < 0.01, on a glycerophospholipid [GP] basis) in heterozygotes versus controls. Small, dense HDL3 and total HDL from heterozygotes exhibited diminished antioxidative activity (up to −48%, P < 0.001 on a total mass basis) versus controls. HDL subpopulations from both homozygotes and heterozygotes displayed altered chemical composition, with depletion in apoA-I, GP, and cholesteryl ester; enrichment in apoA-II, free cholesterol, and TG; and altered phosphosphingolipidome. The defective atheroprotective activities of HDL were correlated with altered lipid and apo composition. These data reveal that atheroprotective activities of HDL particles are impaired in homozygous and heterozygous apoA-I deficiency and are intimately related to marked alterations in protein and lipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号