首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-stranded DNA-binding proteins (SSB) play an important role in most aspects of DNA metabolism including DNA replication, repair, and recombination. We report here the identification and characterization of SSB proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis. Sequence comparison of M. smegmatis SSB revealed that it is homologous to M. tuberculosis SSB, except for a small spacer connecting the larger amino-terminal domain with the extreme carboxyl-terminal tail. The purified SSB proteins of mycobacteria bound single-stranded DNA with high affinity, and the association and dissociation constants were similar to that of the prototype SSB. The proteolytic signatures of free and bound forms of SSB proteins disclosed that DNA binding was associated with structural changes at the carboxyl-terminal domain. Significantly, SSB proteins from mycobacteria displayed high affinity for cognate RecA, whereas Escherichia coli SSB did not under comparable experimental conditions. Accordingly, SSB and RecA were coimmunoprecipitated from cell lysates, further supporting an interaction between these proteins in vivo. The carboxyl-terminal domain of M. smegmatis SSB, which is not essential for interaction with ssDNA, is the site of binding of its cognate RecA. These studies provide the first evidence for stable association of eubacterial SSB proteins with their cognate RecA, suggesting that these two proteins might function together during DNA repair and/or recombination.  相似文献   

2.
Mycobacteria adapt to a decrease in oxygen tension by entry into a non-replicative persistent phase. It was shown earlier that the two-component system, DevR-DevS, was induced in Mycobacterium tuberculosis and Mycobacterium bovis BCG cultures during hypoxia, suggesting that it may play a regulatory role in their adaptation to oxygen limitation. The presence of a homologous genetic system in Mycobacterium smegmatis was predicted by scanning its unfinished genome sequence with devR and devS genes of M. tuberculosis. Rv3134c, which is cotranscribed with devR-devS in M. tuberculosis, was also present in M. smegmatis at a similar location upstream from devR. The expression of all three genes was induced at the RNA and protein levels in M. smegmatis cultures grown under microaerobic and anaerobic conditions. The M. smegmatis genome also contained the hspX gene, encoding chaperone alpha-crystallin, Acr, that was induced during hypoxia. The similarity in sequences and hypoxia-responsive behaviour of devR-devS, Rv3134c and hspX genes in M. smegmatis and M. tuberculosis suggests that the molecular mechanisms involved in the dormancy response are likely conserved in these two species. M. smegmatis could therefore serve as a useful model for the delineation of the hypoxia response in general and DevR-DevS regulated pathways in particular.  相似文献   

3.
Uracil DNA glycosylase (Ung (or UDG)) initiates the excision repair of an unusual base, uracil, in DNA. Ung is a highly conserved protein found in all organisms. Paradoxically, loss of this evolutionarily conserved enzyme has not been seen to result in severe growth phenotypes in the cellular life forms. In this study, we chose G+C-rich genome containing bacteria (Pseudomonas aeruginosa and Mycobacterium smegmatis) as model organisms to investigate the biological significance of ung. Ung deficiency was created either by expression of a highly specific inhibitor protein, Ugi, and/or by targeted disruption of the ung gene. We show that abrogation of Ung activity in P. aeruginosa and M. smegmatis confers upon them an increased mutator phenotype and sensitivity to reactive nitrogen intermediates generated by acidified nitrite. Also, in a mouse macrophage infection model, P. aeruginosa (Ung-) shows a significant decrease in its survival. Infections of the macrophages with M. smegmatis show an initial increase in the bacterial counts that remain for up to 48 h before a decline. Interestingly, abrogation of Ung activity in M. smegmatis results in nearly a total abolition of their multiplication and a much-decreased residency in macrophages stimulated with interferon gamma. These observations suggest Ung as a useful target to control growth of G+C-rich bacteria.  相似文献   

4.
Mycobacterium tuberculosis and Mycobacterium bovis cause tuberculosis, which is responsible for the deaths of more people each year than any other bacterial infectious disease. Disseminated disease with Mycobacterium bovis BCG, the only currently available vaccine against tuberculosis, occurs in immunocompetent and immunodeficient individuals. Although mycobacteria are obligate aerobes, they are thought to face an anaerobic environment during infection, notably inside abscesses and granulomas. The purpose of this study was to define a metabolic pathway that could allow mycobacteria to exist under these conditions. Recently, the complete genome of M. tuberculosis has been sequenced, and genes homologous to an anaerobic nitrate reductase (narGHJI), an enzyme allowing nitrate respiration when oxygen is absent, were found. Here, we show that the narGHJI cluster of M. tuberculosis is functional as it conferred anaerobic nitrate reductase activity to Mycobacterium smegmatis. A narG mutant of M. bovis BCG was generated by targeted gene deletion. The mutant lacked the ability to reduce nitrate under anaerobic conditions. Both mutant and M. bovis BCG wild type grew equally well under aerobic conditions in vitro. Histology of immunodeficient mice (SCID) infected with M. bovis BCG wild type revealed large granulomas teeming with acid-fast bacilli; all mice showed signs of clinical disease after 50 days and succumbed after 80 days. In contrast, mice infected with the mutant had smaller granulomas containing fewer bacteria; these mice showed no signs of clinical disease after more than 200 days. Thus, it seems that nitrate respiration contributes significantly to virulence of M. bovis BCG in immunodeficient SCID mice.  相似文献   

5.
Bacterial DNA can be damaged by reactive nitrogen and oxygen intermediates (RNI and ROI) generated by host immunity, as well as by antibiotics that trigger bacterial production of ROI. Thus a pathogen's ability to repair its DNA may be important for persistent infection. A prominent role for nucleotide excision repair (NER) in disease caused by Mycobacterium tuberculosis (Mtb) was suggested by attenuation of uvrB-deficient Mtb in mice. However, it was unknown if Mtb's Uvr proteins could execute NER. Here we report that recombinant UvrA, UvrB, and UvrC from Mtb collectively bound and cleaved plasmid DNA exposed to ultraviolet (UV) irradiation or peroxynitrite. We used the DNA incision assay to test the mechanism of action of compounds identified in a high-throughput screen for their ability to delay recovery of M. smegmatis from UV irradiation. 2-(5-Amino-1,3,4-thiadiazol-2-ylbenzo[f]chromen-3-one) (ATBC) but not several closely related compounds inhibited cleavage of damaged DNA by UvrA, UvrB, and UvrC without intercalating in DNA and impaired recovery of M. smegmatis from UV irradiation. ATBC did not affect bacterial growth in the absence of UV exposure, nor did it exacerbate the growth defect of UV-irradiated mycobacteria that lacked uvrB. Thus, ATBC appears to be a cell-penetrant, selective inhibitor of mycobacterial NER. Chemical inhibitors of NER may facilitate studies of the role of NER in prokaryotic pathobiology.  相似文献   

6.
7.
Mycobacteriophage L5 is a well-characterized temperate phage that forms stable lysogens in Mycobacterium smegmatis . The host range of L5 is, however, unclear because previous reports suggested that it does not infect slow-growing mycobacteria such as Mycobacterium tuberculosis and bacille Calmette-Guérin (BCG). Moreover, luciferase reporter phage derivatives of L5 failed to produce light from BCG, suggesting that infection is blocked at or before the stage of DNA injection. In this study, we demonstrate that L5 infection of slow growing mycobacteria specifically requires a high concentration of Ca2+, conditions that differs from those required for infection of M. smegmatis by L5 and for infection of BCG by the closely related phage D29. In addition, we show that there are specific genetic determinants of L5 that confer the ability to infect slow growing mycobacteria, without altering infection of M. smegmatis . These observations extend the use of phage L5 for the diagnosis and analysis of tuberculosis and other mycobacterial diseases.  相似文献   

8.
9.
Mycolic acids are a key component of the mycobacterial cell wall, providing structure and forming a major permeability barrier. In Mycobacterium tuberculosis mycolic acids are synthesized by type I and type II fatty acid synthases. One of the enzymes of the type II system is encoded by fabG1. We demonstrate here that this gene can be deleted from the M. tuberculosis chromosome only when another functional copy is provided elsewhere, showing that under normal culture conditions fabG1 is essential. FabG1 activity can be replaced by the corresponding enzyme from the closely related species Mycobacterium smegmatis but not by the enzyme from Escherichia coli. M. tuberculosis carrying FabG from M. smegmatis showed no phenotypic changes, and both the mycolic acids and cell wall permeability were unchanged. Thus, M. tuberculosis and M. smegmatis enzymes are interchangeable and do not control the lengths and types of mycolic acids synthesized.  相似文献   

10.
11.
Microaerophilic adaptation has been described as one of the in vitro dormancy models for tuberculosis. Studies on Mycobacterium tuberculosis adapted to low oxygen levels showed an enhancement of glycine dehydrogenase (deaminating) activity. We studied the physiology of the fast-growing, nonpathogenic strain of Mycobacterium smegmatis ATCC 607 under low oxygen by shifting the actively growing M. smegmatis cells to static microaerophilic growth conditions. This shifting of M. smegmatis culture resulted in a similar phenomenon as seen with M. tuberculosis, i.e., elevated glycine dehydrogenase activity. Further purification of glycine dehydrogenase from M. smegmatis demonstrated glyoxylate amination, but failed to demonstrate glycine deamination, even in the purified fraction. Moreover, the purified protein showed pyruvate amination as well as L-alanine deamination activities. By activity staining, the protein band positive for glyoxylate amination demonstrated only pyruvate amination in the presence of NAD. Absence of glycine deamination activity strongly suggested that alanine dehydrogenase of M. smegmatis was responsible for glyoxylate amination in the cell lysate. This was further confirmed by demonstrating the similar level of upregulation of both glyoxylate and pyruvate amination activities in the cell lysate of the adapted culture.  相似文献   

12.
The critical role of embC in Mycobacterium tuberculosis   总被引:1,自引:0,他引:1  
  相似文献   

13.
The gene encoding of an alcohol dehydrogenase C (ADHC) from Mycobacterium smegmatis was cloned and sequenced. The protein encoded by this gene has 78% identity with Mycobacterium tuberculosis and Mycobacterium bovis BCG ADHC. The M. smegmatis ADHC was purified from M. smegmatis and the kinetic parameters of this enzyme showed that using NADPH as electron donor it has a strong preference for aliphatic and aromatic aldehyde substrates. Like the M. bovis BCG ADHC, this enzyme is more likely to act as an aldehyde reductase than as an alcohol dehydrogenase. The discovery of such an ADHC in a fast-growing, and easily engineered mycobacterial species opens the way to the utilisation of this M. smegmatis enzyme as a convenient model for the study of the physiological role of this alcohol dehydrogenase in mycobacteria.  相似文献   

14.
Jain R  Kumar P  Varshney U 《DNA Repair》2007,6(12):1774-1785
Reactive oxygen species produced as a part of cellular metabolism or environmental agent cause a multitude of damages in cell. Oxidative damages to DNA or the free nucleotide pool result in occurrence of 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA, and failure to replace it with the correct base results in a variety of mutations in the genome. Formamidopyrimidine DNA glycosylase (Fpg/MutM), a functionally conserved repair enzyme initiates the 8-oxoG repair pathway in all eubacteria. DNA in mycobacteria with G+C rich genomes is particularly vulnerable to the oxidative damage. In this study, we disrupted fpg gene in Mycobacterium smegmatis to generate an Fpg deficient strain. The strain showed an enhanced mutator phenotype and susceptibility to hydrogen peroxide. Analyses of rifampicin resistance determining region (RRDR) revealed that, in contrast to Fpg deficient Escherichia coli where C to A mutations predominate, Fpg deficient M. smegmatis shows a remarkable increase in accumulation of A to G (or T to C) mutations. Interestingly, exposure of the mutant to sub-lethal level of hydrogen peroxide results in a major shift towards C to G (or G to C) mutations. Biochemical analysis showed that mycobacterial Fpg; and MutY (which excises misincorporated A against 8-oxoG) possess substrate specificities similar to their counterparts in E. coli. However, the DNA polymerase assays with cell-free extracts showed preferential incorporation of G in M. smegmatis as opposed to an A in E. coli. Our studies highlight the importance and the distinctive features of Fpg mediated DNA repair in mycobacteria.  相似文献   

15.
16.
Mycobacterium tuberculosis, the causative agent of tuberculosis, produces a heparin-binding haemagglutinin adhesin (HBHA), which is involved in its epithelial adherence. To ascertain whether HBHA is also present in fast-growing mycobacteria, Mycobacterium smegmatis was studied using anti-HBHA monoclonal antibodies (mAbs). A cross-reactive protein was detected by immunoblotting of M. smegmatis whole-cell lysates. However, the M. tuberculosis HBHA-encoding gene failed to hybridize with M. smegmatis chromosomal DNA in Southern blot analyses. The M. smegmatis protein recognized by the anti-HBHA mAbs was purified by heparin-Sepharose chromatography, and its amino-terminal sequence was found to be identical to that of the previously described histone-like protein, indicating that M. smegmatis does not produce HBHA. Biochemical analysis of the M. smegmatis histone-like protein shows that it is glycosylated like HBHA. Immunoelectron microscopy demonstrated that the M. smegmatis protein is present on the mycobacterial surface, a cellular localization inconsistent with a histone-like function, but compatible with an adhesin activity. In vitro protein interaction assays showed that this glycoprotein binds to laminin, a major component of basement membranes. Therefore, the protein was called M. smegmatis laminin-binding protein (MS-LBP). MS-LBP does not appear to be involved in adherence in the absence of laminin but is responsible for the laminin-mediated mycobacterial adherence to human pneumocytes and macrophages. Homologous laminin-binding adhesins are also produced by virulent mycobacteria such as M. tuberculosis and Mycobacterium leprae, suggesting that this adherence mechanism may contribute to the pathogenesis of mycobacterial diseases.  相似文献   

17.
Lama A  Pawaria S  Dikshit KL 《FEBS letters》2006,580(17):4031-4041
Unraveling of microbial genome data has indicated that two distantly related truncated hemoglobins (trHbs), HbN and HbO, might occur in many species of slow-growing pathogenic mycobacteria. Involvement of HbN in bacterial defense against NO toxicity and nitrosative stress has been proposed. A gene, encoding a putative HbN homolog with conserved features of typical trHbs, has been identified within the genome sequence of fast-growing mycobacterium, Mycobacterium smegmatis. Sequence analysis of M. smegmatis HbN indicated that it is relatively smaller in size and lacks N-terminal pre-A region, carrying 12-residue polar sequence motif that is present in HbN of M. tuberculosis. HbN encoding gene of M. smegmatis was expressed in E. coli as a 12.8kD homodimeric heme protein that binds oxygen reversibly with high affinity (P50 approximately 0.081 mm Hg) and autooxidizes faster than M. tuberculosis HbN. The circular dichroism spectra indicate that HbN of M. smegmatis and M. tuberculosis are structurally similar. Interestingly, an hmp mutant of E. coli, unable to metabolize nitric oxide, exhibited very low NO uptake activity in the presence of M. smegmatis HbN as compared to HbN of M. tuberculosis. On the basis of cellular heme content, specific nitric oxide dioxygenase (NOD) activity of M. smegmatis HbN was nearly one-third of that from M. tuberculosis. Additionally, the hmp mutant of E. coli, carrying M. smegmatis HbN, exhibited nearly 10-fold lower cell survival under nitrosative stress and nitrite derived reactive nitrogen species as compared to the isogenic strain harboring HbN of M. tuberculosis. Taken together, these results suggest that NO metabolizing activity and protection provided by M. smegmatis HbN against toxicity of NO and reactive nitrogen is significantly lower than HbN of M. tuberculosis. The lower efficiency of M. smegmatis HbN for NO detoxification as compared to M. tuberculosis HbN might be related to different level of NO exposure and nitrosative stress faced by these mycobacteria during their cellular metabolism.  相似文献   

18.
Phosphatidylinositol (PI) and metabolically derived products such as the phosphatidylinositol mannosides and linear and mature branched lipomannan and lipoarabinomannan are prominent phospholipids/lipoglycans of Mycobacterium sp. believed to play important roles in the structure and physiology of the bacterium as well as during host infection. To determine if PI is an essential phospholipid of mycobacteria, we identified the pgsA gene of Mycobacterium tuberculosis encoding the phosphatidylinositol synthase enzyme and constructed a pgsA conditional mutant of Mycobacterium smegmatis. The ability of this mutant to synthesize phosphatidylinositol synthase and subsequently PI was dependent on the presence of a functional copy of the pgsA gene carried on a thermosensitive plasmid. The mutant grew like the control strain under permissive conditions (30 degrees C), but ceased growing when placed at 42 degrees C, a temperature at which the rescue plasmid is lost. Loss of cell viability at 42 degrees C was observed when PI and phosphatidylinositol dimannoside contents dropped to approximately 30 and 50% of the wild-type levels, respectively. This work provides the first evidence of the essentiality of PI to the survival of mycobacteria. PI synthase is thus an essential enzyme of Mycobacterium that shows promise as a drug target for anti-tuberculosis therapy.  相似文献   

19.
The RecA-dependent DNA damage response pathway (SOS response) appears to be the major DNA repair mechanism in most bacteria, but it has been suggested that a RecA-independent mechanism is responsible for controlling expression of most damage-inducible DNA repair genes in Mycobacterium tuberculosis. The specific reparative responses and molecular mediators involved in the DNA repair mechanism remain largely unclear in this pathogen and its related species. In this study, a mycobacterial ClpR-like regulator, corresponding to Rv2745c in M. tuberculosis and to Ms2694 in M. smegmatis mc(2)155, was found to interact with the promoter regions of multiple damage-inducible DNA repair genes. Specific binding of the ClpR-like factor to the conserved RecA-independent promoter RecA-NDp motif was then confirmed using in vitro electrophoretic mobility shift assays as well as in vivo chromatin immunoprecipitation experiments. The ClpR knock-out experiments, in combination with quantitative real time PCR assays, demonstrated that the expression of these RecA-independent genes were significantly down-regulated in the mutant strain of M. smegmatis in response to a DNA-damaging agent compared with the wild type strain. Furthermore, the ClpR-like factor was shown to contribute to mycobacterial genomic stability. These results enhance our understanding of the function of the ClpR regulator and the regulatory mechanism of RecA-independent DNA repair in mycobacteria.  相似文献   

20.
Mammalian cell entry (mce) operons, implicated in the entry of mycobacteria into host cells, are present in pathogenic and saprophytic species. It is likely that the genes in these operons have functions other than those required for entry into host cells. Using in silico analysis we have identified domains within the mce operons that might justify their occurrence in saprophytic species like Mycobacterium smegmatis. Our analysis identified in addition to the mce domain, the presence of the Ttg2B and Ttg2C domains, typical of proteins involved in transport. We have also analysed and compared the expression profile between mce operons of Mycobacterium tuberculosis, Mycobacterium bovis and M. smegmatis under different growth conditions. In case of M. smegmatis, each operon presented domain truncation for at least one gene. We observe differential expression among the operons in M. smegmatis growing under different culture conditions. Bacilli growing in nutritionally rich medium with aeration, only the mce4 operon was expressed while during stationary phase of a standing culture, all four mce operons were expressed. In M. bovis, in addition to the absence of the mce3 operon, several protein domains encoded by the other operons were truncated. We detected expression of the mce2 operon in the exponential and stationary growth phase, while the mce1 operon was only expressed in the stationary growth phase. Differential expression of mce operons and their redundancy in the genome of the majority members of mycobacteria are discussed in view of our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号