首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Prolactin (PRL) is a polypeptidic hormone which acts both systemically and locally to cause lactation by interacting with the PRL receptor, a Janus kinase (JAK2)-coupled cytokine receptor family member. Several studies have reported that serum PRL level elevation is associated with an increased risk for breast cancer, and evidence has suggested that PRL is one actor in the pathogenesis and progression of this cancer. We previously reported the involvement of hIKCa1 in breast cell cycle progression and cell proliferation. However, mechanisms by which PRL cooperates with these channels to modulate breast epithelial cell proliferation remain unknown. Our results showed that, in the MCF-7 breast cancer cell line, PRL increased hIKCa1 current density. These channels were functional and regulated the resting membrane potential. The PRL effects were inhibited by TRAM-34 and clotrimazole, the most used hIKCa1 blockers. Moreover, PRL increased proliferation in a dose-dependent manner without overexpressing hIKCa1. To determine whether PRL-induced proliferation and hIKCa1 activity involved the JAK2 pathway, we used pharmacological JAK2 inhibitors (AG490 and JAK inhibitor I). Indeed, PRL-induced JAK2 phosphorylation was required for both cell proliferation and hIKCa1 activity. In the presence of either hIKCa1 blockers or siRNA-hIKCa1, PRL failed to increase cell proliferation and hIKCa1 activity. Taken together, our results demonstrate that PRL plays a role in breast cancer cell proliferation by increasing hIKCa1 activity through the JAK2 signaling pathway.  相似文献   

6.
p21-activated kinase (PAK) has been shown to be an upstream mediator of JNK in angiotensin II (AngII) signaling. Little is known regarding other signaling molecules involved in activation of PAK and JNK by AngII. Rho family GTPases Rac and Cdc42 have been shown to enhance PAK activity by binding to p21-binding domain of PAK (PAK-PBD). In vascular smooth muscle cells (VSMC) AngII stimulated Rac1 binding to GST-PAK-PBD fusion protein. Pretreatment of VSMC by genistein inhibited AngII-induced Rac1 activation, whereas Src inhibitor PP1 had no effect. Inhibition of protein kinase C by phorbol 12,13-dibutyrate pretreatment also decreased AngII-mediated activation of Rac1. The adaptor molecule Nck has been shown previously to mediate PAK activation by facilitating translocation of PAK to the plasma membrane. In VSMC AngII stimulated translocation of Nck and PAK to the membrane fraction. Overexpression of dominant-negative Nck in Chinese hamster ovary (CHO) cells, stably expressing the AngII type I receptor (CHO-AT1), inhibited both PAK and JNK activation by AngII, whereas it did not affect ERK1/2. Finally, dominant-negative Nck inhibited AngII-induced DNA synthesis in CHO-AT1 cells. Our data provide evidence for Rac1 and Nck as upstream mediators of PAK and JNK in AngII signaling and implicate JNK in AngII-induced growth responses.  相似文献   

7.
8.
9.
Inactivation of the NF2 tumor suppressor gene has been observed in certain benign and malignant tumors. Recent studies have demonstrated that merlin, the product of the NF2 gene, is regulated by Rac/PAK signaling. However, the mechanism by which merlin acts as a tumor suppressor has remained obscure. In this report, we show that adenovirus-mediated expression of merlin in NF2-deficient tumor cells inhibits cell proliferation and arrests cells at G1 phase, concomitant with decreased expression of cyclin D1, inhibition of CDK4 activity, and dephosphorylation of pRB. The effect of merlin on cell cycle progression was partially overridden by ectopic expression of cyclin D1. RNA interference experiments showed that silencing of the endogenous NF2 gene results in upregulation of cyclin D1 and S-phase entry. Furthermore, PAK1-stimulated cyclin D1 promoter activity was repressed by cotransfection of NF2, and PAK activity was inhibited by expression of merlin. Interestingly, the S518A mutant form of merlin, which is refractory to phosphorylation by PAK, was more efficient than the wild-type protein in inhibiting cell cycle progression and in repressing cyclin D1 promoter activity. Collectively, our data indicate that merlin exerts its antiproliferative effect, at least in part, via repression of PAK-induced cyclin D1 expression, suggesting a unifying mechanism by which merlin inactivation might contribute to the overgrowth seen in both noninvasive and malignant tumors.  相似文献   

10.
11.
To evaluated the effect of recombinant adenovirus Ad-ODC-AdoMetDCas which can simultaneously express both antisense ornithine decarboxylase (ODC) and Sadenosylmethionine decarboxylase (AdoMetDC) on cell cycle distribution in colorectal cancer cell and investigated underlying regulatory responses, human colorectal cancer cells HT-29 were cultured in RPMI 1640 medium and infected with Ad-ODC-AdoMetDCas. Cell cycle progression was detected by flow cytometry analysis. The expression levels of cell cycle regulated proteins were measured by Western blot analysis. The mRNA level of cyclin D1 was measured by RT-PCR. And a luciferase reporter plasmid of cyclin D1 promoter was constructed to observe the effect of Ad-ODC-AdoMetDCas on cyclin D1 promoter activity. The results showed that recombinant adenovirus Ad-ODC-AdoMetDCas significantly induced G1 arrest, decreased levels of cyclin D1 protein and mRNA and suppressed the promoter activity. Ad-ODC-AdoMetDCas also inhibited nuclear translocation of beta-catenin. In conclusion, downregulation of ODC and AdoMetDC mediated by Ad-ODC-AdoMetDCas transfection induces G(1) arrest in HT-29 cells and the arrest was associated with suppression of cyclin D1 expression and inhibition of beta-catenin nuclear translocation. As a new anticancer reagent, the recombinant adenovirus Ad-ODC-AdoMetDCas holds promising hope for the therapy of colorectal cancers.  相似文献   

12.
Mutations in the p21-activated kinase 3 gene (pak3) are responsible for nonsyndromic forms of mental retardation. Expression of mutated PAK3 proteins in hippocampal neurons induces abnormal dendritic spine morphology and long term potentiation anomalies, whereas pak3 gene invalidation leads to cognitive impairments. How PAK3 regulates synaptic plasticity is still largely unknown. To better understand how PAK3 affects neuronal synaptic plasticity, we focused on its interaction with the Nck adaptors that play a crucial role in PAK signaling. We report here that PAK3 interacts preferentially with Nck2/Grb4 in brain extracts and in transfected cells. This interaction is independent of PAK3 kinase activity. Selective uncoupling of the Nck2 interactions in acute cortical slices using an interfering peptide leads to a rapid increase in evoked transmission to pyramidal neurons. The P12A mutation in the PAK3 protein strongly decreases the interaction with Nck2 but only slightly with Nck1. In transfected hippocampal cultures, expression of the P12A-mutated protein has no effect on spine morphogenesis or synaptic density. The PAK3-P12A mutant does not affect synaptic transmission, whereas the expression of the wild-type PAK3 protein decreases the amplitude of spontaneous miniature excitatory currents. Altogether, these data show that PAK3 down-regulates synaptic transmission through its interaction with Nck2.  相似文献   

13.
14.
The serine-threonine kinase PAK1 is activated by small GTPase-dependent and -independent mechanisms and promotes cell survival. However, the role of tyrosyl phosphorylation in the regulation of PAK1 function is poorly understood. In this study, we have shown that the prolactin-activated tyrosine kinase JAK2 phosphorylates PAK1 in vivo. Wild type, but not kinase-dead, JAK2 directly phosphorylates PAK1 in cells and in an in vitro kinase assay. PAK1 tyrosines 153, 201, and 285 were identified as sites of JAK2 tyrosyl phosphorylation by mass spectrometry and two-dimensional peptide mapping. Mutation of PAK1 tyrosines 153, 201, and 285 to phenylalanines individually or in combination implicated these PAK1 tyrosines in the regulation of PAK1 kinase activity. Tyrosyl phosphorylation by JAK2 significantly increases PAK1 kinase activity, whereas similar phosphorylation of the PAK1 Y153F,Y201F,Y285F mutant has no effect on PAK1 activity. Tyrosyl phosphorylation of wild type PAK1 decreases apoptosis induced by serum deprivation and staurosporine treatment and increases cell motility. In contrast, these parameters are unaltered in the PAK1 Y153F,Y201F,Y285F mutant. Our findings indicate that JAK2 phosphorylates PAK1 at these specific tyrosines and that this phosphorylation plays an important role in cell survival and motility.  相似文献   

15.
16.
17.
18.
The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16(INK4a), a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.  相似文献   

19.
20.
During pregnancy, pancreatic islets undergo structural and functional changes in response to an increased demand for insulin. Different hormones, especially placental lactogens, mediate these adaptive changes. Prolactin (PRL) mainly exerts its biological effects by activation of the JAK2/STAT5 pathway. PRL also stimulates some biological effects via activation of IRS-1, IRS-2, PI 3-kinase, and MAPK in different cell lines. Since IRS-2 is important for the maintenance of pancreatic islet cell mass, we investigated whether PRL affects insulin-signaling pathways in neonatal rat islets. PRL significantly potentiated glucose-induced insulin secretion in islets cultured for 7 days. This effect was blocked by the specific PI 3-kinase inhibitor wortmannin. To determine possible effects of PRL on insulin-signaling pathways, fresh islets were incubated with or without the hormone for 5 or 15 min. Immunoprecipitation and immunoblotting with specific antibodies showed that PRL induced a dose-dependent IRS-1 and IRS-2 phosphorylation compared to control islets. PRL-induced increase in IRS-1/-2 phosphorylation was accompanied by an increase in the association with and activation of PI 3-kinase. PRL-induced IRS-2 phosphorylation and its association with PI 3-kinase did not add to the effect of insulin. PRL also induced JAK2, SHC, ERK1 and ERK2 phosphorylation in neonatal islets, demonstrating that PRL can activate MAPK. These data indicate that PRL can stimulate the IRSs/PI 3-kinase and SHC/ERK pathways in islets from neonatal rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号