首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.  相似文献   

2.
Cuff JA  Barton GJ 《Proteins》1999,34(4):508-519
A new dataset of 396 protein domains is developed and used to evaluate the performance of the protein secondary structure prediction algorithms DSC, PHD, NNSSP, and PREDATOR. The maximum theoretical Q3 accuracy for combination of these methods is shown to be 78%. A simple consensus prediction on the 396 domains, with automatically generated multiple sequence alignments gives an average Q3 prediction accuracy of 72.9%. This is a 1% improvement over PHD, which was the best single method evaluated. Segment Overlap Accuracy (SOV) is 75.4% for the consensus method on the 396-protein set. The secondary structure definition method DSSP defines 8 states, but these are reduced by most authors to 3 for prediction. Application of the different published 8- to 3-state reduction methods shows variation of over 3% on apparent prediction accuracy. This suggests that care should be taken to compare methods by the same reduction method. Two new sequence datasets (CB513 and CB251) are derived which are suitable for cross-validation of secondary structure prediction methods without artifacts due to internal homology. A fully automatic World Wide Web service that predicts protein secondary structure by a combination of methods is available via http://barton.ebi.ac.uk/.  相似文献   

3.
We have analyzed the performance of majority voting on minimal combination sets of three state-of-the-art secondary structure prediction methods in order to obtain a consensus prediction. Using three large benchmark sets from the EVA server, our results show a significant improvement in the average Q3 prediction accuracy of up to 1.5 percentage points by consensus formation. The application of an additional trivial filtering procedure for predicted secondary structure elements that are too short, does not significantly affect the prediction accuracy. Our analysis also provides valuable insight into the similarity of the results of the prediction methods that we combine as well as the higher confidence in consistently predicted secondary structure.  相似文献   

4.
Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α‐helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three‐state secondary structure prediction, and 94.8% for three‐state transmembrane span prediction. These accuracies are comparable to state‐of‐the‐art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org . Proteins 2013; 81:1127–1140. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
In order to propose a reliable model for Brucella porin topology, several structure prediction methods were evaluated in their ability to predict porin topology. Four porins of known structure were selected as test-cases and their secondary structure delineated. The specificity and sensitivity of 11 methods were separately evaluated. Our critical assessment shows that some secondary structure prediction methods (PHD, Dsc, Sopma) originally designed to predict globular protein structure are useful on porin topology prediction. The overall best prediction is obtained by combining these three "generalist" methods with a transmembrane beta strand prediction technique. This "consensus" method was applied to Brucella porins Omp2b and Omp2a, sharing no sequence homology with any other porin. The predicted topology is a 16-stranded antiparallel beta barrel with Omp2a showing a higher number of negatively charged residue in the exposed loops than Omp2b. Experiments are in progress to validate the proposed topology and the functional hypotheses. The ability of the proposed consensus method to predict topology of complex outer membrane protein is briefly discussed.  相似文献   

6.
The primary and secondary structure of human plasma apolipoprotein A-I and apolipoprotein E-3 have been analyzed to further our understanding of the secondary and tertiary conformation of these proteins and the structure and function of plasma lipoprotein particles. The methods used to analyze the primary sequence of these proteins used computer programs: (a) to identify repeated patterns within these proteins on the basis of conservative substitutions and similarities within the physicochemical properties of each residue; (b) for local averaging, hydrophobic moment, and Fourier analysis of the physicochemical properties; and (c) for secondary structure prediction of each protein carried out using homology, statistical, and information theory based methods. Circular dichroism was used to study purified lipid-protein complexes of each protein and quantitate the secondary structure in a lipid environment. The data from these analyses were integrated into a single secondary structure prediction to derive a model of each protein. The sequence homology within apolipoproteins A-I, E-3, and A-IV is used to derive a consensus sequence for two 11 amino acid repeating sequences in this family of proteins.  相似文献   

7.
The secondary structure of the retrovirus integration protein (IN) was predicted from seven inferred retrovirus IN sequences. The IN sequences were aligned by computer and the phylogenetic relationships between them were determined. The secondary structure of the aligned IN sequences was predicted by two consensus prediction methods. The predicted secondary structural patterns from the two consensus prediction schemes were compared with and superimposed on a composite structural profile of hydropathic/chain flexibility/amphipathic indexes with each index profile being calculated independently for the aligned IN sequences. The use of this composite structural profile not only enhanced the prediction accuracy but also helped in defining the surface loop regions which would be otherwise unpredictable by the use of consensus prediction methods alone. An amphipathic helix was identified by these united structural prediction-chain property profiles. Helical wheel analysis gave the amphipathic helix a coiled-coil like pattern which was similar to the leucine zipper discovered for some eukaryotic gene regulatory proteins. The proposed amphipathic helix may play an essential role in defining the biological properties of IN.  相似文献   

8.
Secondary structure prediction with support vector machines   总被引:8,自引:0,他引:8  
MOTIVATION: A new method that uses support vector machines (SVMs) to predict protein secondary structure is described and evaluated. The study is designed to develop a reliable prediction method using an alternative technique and to investigate the applicability of SVMs to this type of bioinformatics problem. METHODS: Binary SVMs are trained to discriminate between two structural classes. The binary classifiers are combined in several ways to predict multi-class secondary structure. RESULTS: The average three-state prediction accuracy per protein (Q(3)) is estimated by cross-validation to be 77.07 +/- 0.26% with a segment overlap (Sov) score of 73.32 +/- 0.39%. The SVM performs similarly to the 'state-of-the-art' PSIPRED prediction method on a non-homologous test set of 121 proteins despite being trained on substantially fewer examples. A simple consensus of the SVM, PSIPRED and PROFsec achieves significantly higher prediction accuracy than the individual methods.  相似文献   

9.
A collective secondary structure prediction for the human erythrocyte spectrin 106-residue repeat segment is developed, based on the sequences of nine segments that have been reported in the literature, utilizing a consensus of several secondary structure prediction methods for locating turn regions. The analysis predicts a five-fold structure, with three alpha-helices and two beta-strand regions, and differs from previous models on the lengths of the helices and the existence of beta-strand structure. We also demonstrate that this structural motif can be folded into tertiary structures that satisfy the experimental spectrin data and several general principles of protein organization.  相似文献   

10.
The major aim of tertiary structure prediction is to obtain protein models with the highest possible accuracy. Fold recognition, homology modeling, and de novo prediction methods typically use predicted secondary structures as input, and all of these methods may significantly benefit from more accurate secondary structure predictions. Although there are many different secondary structure prediction methods available in the literature, their cross-validated prediction accuracy is generally <80%. In order to increase the prediction accuracy, we developed a novel hybrid algorithm called Consensus Data Mining (CDM) that combines our two previous successful methods: (1) Fragment Database Mining (FDM), which exploits the Protein Data Bank structures, and (2) GOR V, which is based on information theory, Bayesian statistics, and multiple sequence alignments (MSA). In CDM, the target sequence is dissected into smaller fragments that are compared with fragments obtained from related sequences in the PDB. For fragments with a sequence identity above a certain sequence identity threshold, the FDM method is applied for the prediction. The remainder of the fragments are predicted by GOR V. The results of the CDM are provided as a function of the upper sequence identities of aligned fragments and the sequence identity threshold. We observe that the value 50% is the optimum sequence identity threshold, and that the accuracy of the CDM method measured by Q(3) ranges from 67.5% to 93.2%, depending on the availability of known structural fragments with sufficiently high sequence identity. As the Protein Data Bank grows, it is anticipated that this consensus method will improve because it will rely more upon the structural fragments.  相似文献   

11.
MOTIVATION: A new representation for protein secondary structure prediction based on frequent amino acid patterns is described and evaluated. We discuss in detail how to identify frequent patterns in a protein sequence database using a level-wise search technique, how to define a set of features from those patterns and how to use those features in the prediction of the secondary structure of a protein sequence using support vector machines (SVMs). RESULTS: Three different sets of features based on frequent patterns are evaluated in a blind testing setup using 150 targets from the EVA contest and compared to predictions of PSI-PRED, PHD and PROFsec. Despite being trained on only 940 proteins, a simple SVM classifier based on this new representation yields results comparable to PSI-PRED and PROFsec. Finally, we show that the method contributes significant information to consensus predictions. AVAILABILITY: The method is available from the authors upon request.  相似文献   

12.
蛋白质二级结构预测是蛋白质结构研究的一个重要环节,大量的新预测方法被提出的同时,也不断有新的蛋白质二级结构预测服务器出现。试验选取7种目前常用的蛋白质二级结构预测服务器:PSRSM、SPOT-1D、MUFOLD、Spider3、RaptorX,Psipred和Jpred4,对它们进行了使用方法的介绍和预测效果的评估。随机选取了PDB在2018年8月至11月份发布的180条蛋白质作为测试集,评估角度为:Q3、Sov、边界识别率、内部识别率、转角C识别率,折叠E识别率和螺旋H识别率七种角度。上述服务器180条测试数据的Q3结果分别为:89.96%、88.18%、86.74%、85.77%、83.61%,79.72%和78.29%。结果表明PSRSM的预测结果最好。180条测试集中,以同源性30%,40%,70%分类的实验结果中,PSRSM的Q3结果分别为:89.49%、90.53%、89.87%,均优于其他服务器。实验结果表明,蛋白质二级结构预测可从结合多种深度学习方法以及使用大数据训练模型方向做进一步的研究。  相似文献   

13.
We combine the results of three prediction algorithms on a test set of 21 amyloidogenic proteins to predict amyloidogenic determinants. Two prediction algorithms are recently developed prediction algorithms of amyloidogenic stretches in protein sequences, whereas the third is a secondary structure prediction algorithm capable of identifying 'conformational switches' (regions that have both the propensity for alpha-helix and beta-sheet). Surprisingly, the results of prediction agree well and also agree with experimentally investigated amyloidogenic regions. Furthermore, they suggest several previously not identified amino acid stretches as potential amyloidogenic determinants. Most predicted (and experimentally observed) amyloidogenic determinants reside on the protein surface of relevant solved crystal structures. It appears that a consensus prediction algorithm is more objective than individual prediction methods alone.  相似文献   

14.
MOTIVATION: A large body of experimental and theoretical evidence suggests that local structural determinants are frequently encoded in short segments of protein sequence. Although the local structural information, once recognized, is particularly useful in protein structural and functional analyses, it remains a difficult problem to identify embedded local structural codes based solely on sequence information. RESULTS: In this paper, we describe a local structure prediction method aiming at predicting the backbone structures of nine-residue sequence segments. Two elements are the keys for this local structure prediction procedure. The first key element is the LSBSP1 database, which contains a large number of non-redundant local structure-based sequence profiles for nine-residue structure segments. The second key element is the consensus approach, which identifies a consensus structure from a set of hit structures. The local structure prediction procedure starts by matching a query sequence segment of nine consecutive amino acid residues to all the sequence profiles in the local structure-based sequence profile database (LSBSP1). The consensus structure, which is at the center of the largest structural cluster of the hit structures, is predicted to be the native state structure adopted by the query sequence segment. This local structure prediction method is assessed with a large set of random test protein structures that have not been used in constructing the LSBSP1 database. The benchmark results indicate that the prediction capacities of the novel local structure prediction procedure exceed the prediction capacities of the local backbone structure prediction methods based on the I-sites library by a significant margin. AVAILABILITY: All the computational and assessment procedures have been implemented in the integrated computational system PrISM.1 (Protein Informatics System for Modeling). The system and associated databases for LINUX systems can be downloaded from the website: http://www.columbia.edu/~ay1/.  相似文献   

15.
ES-62, a protein secreted by filarial nematodes, parasites of vertebrates including humans, has an unusual posttranslational covalent addition of phosphorylcholine to an N-type glycan. Studies on ES-62 from the rodent parasite Acanthocheilonema viteae ascribe it a dominant role in ensuring parasite survival by modulating the host immune system. Understanding this immunomodulation at the molecular level awaits full elucidation but distinct components of ES-62 may participate: the protein contributes aminopeptidase-like activity whereas the phosphorylcholine is thought to act as a signal transducer. We have used biophysical and bioinformatics-based structure prediction methods to define a low-resolution model of ES-62. Sedimentation equilibrium showed that ES-62 is a tightly bound tetramer. The sedimentation coefficient is consistent with this oligomer and the overall molecular shape revealed by small angle x-ray scattering. A 19 A model for ES-62 was restored from the small-angle x-ray scattering data using the program DAMMIN which uses simulated annealing to find a configuration of densely packed scattering elements consistent with the experimental scattering curve. Analysis of the primary sequence with the position-specific iterated basic local alignment search tool, PSI-BLAST, identified six closely homologous proteins, five of which are peptidases, consistent with observed aminopeptidase activity in ES-62. Differences between the secondary structure content of ES-62 predicted using the consensus output from the secondary structure prediction server JPRED and measured using circular dichroism are discussed in relation to multimeric glycosylated proteins. This study represents the first attempt to understand the multifunctional properties of this important parasite-derived molecule by studying its structure.  相似文献   

16.
Exponential growth in the number of available protein sequences is unmatched by the slower growth in the number of structures. As a result, the development of efficient and fast protein secondary structure prediction methods is essential for the broad comprehension of protein structures. Computational methods that can efficiently determine secondary structure can in turn facilitate protein tertiary structure prediction, since most methods rely initially on secondary structure predictions. Recently, we have developed a fast learning optimized prediction methodology (FLOPRED) for predicting protein secondary structure (Saraswathi et al. in JMM 18:4275, 2012). Data are generated by using knowledge-based potentials combined with structure information from the CATH database. A neural network-based extreme learning machine (ELM) and advanced particle swarm optimization (PSO) are used with this data to obtain better and faster convergence to more accurate secondary structure predicted results. A five-fold cross-validated testing accuracy of 83.8 % and a segment overlap (SOV) score of 78.3 % are obtained in this study. Secondary structure predictions and their accuracy are usually presented for three secondary structure elements: α-helix, β-strand and coil but rarely have the results been analyzed with respect to their constituent amino acids. In this paper, we use the results obtained with FLOPRED to provide detailed behaviors for different amino acid types in the secondary structure prediction. We investigate the influence of the composition, physico-chemical properties and position specific occurrence preferences of amino acids within secondary structure elements. In addition, we identify the correlation between these properties and prediction accuracy. The present detailed results suggest several important ways that secondary structure predictions can be improved in the future that might lead to improved protein design and engineering.  相似文献   

17.
MOTIVATION: In this paper, we present a secondary structure prediction method YASPIN that unlike the current state-of-the-art methods utilizes a single neural network for predicting the secondary structure elements in a 7-state local structure scheme and then optimizes the output using a hidden Markov model, which results in providing more information for the prediction. RESULTS: YASPIN was compared with the current top-performing secondary structure prediction methods, such as PHDpsi, PROFsec, SSPro2, JNET and PSIPRED. The overall prediction accuracy on the independent EVA5 sequence set is comparable with that of the top performers, according to the Q3, SOV and Matthew's correlations accuracy measures. YASPIN shows the highest accuracy in terms of Q3 and SOV scores for strand prediction. AVAILABILITY: YASPIN is available on-line at the Centre for Integrative Bioinformatics website (http://ibivu.cs.vu.nl/programs/yaspinwww/) at the Vrije University in Amsterdam and will soon be mirrored on the Mathematical Biology website (http://www.mathbio.nimr.mrc.ac.uk) at the NIMR in London. CONTACT: kxlin@nimr.mrc.ac.uk  相似文献   

18.
EVA (http://cubic.bioc.columbia.edu/eva/) is a web server for evaluation of the accuracy of automated protein structure prediction methods. The evaluation is updated automatically each week, to cope with the large number of existing prediction servers and the constant changes in the prediction methods. EVA currently assesses servers for secondary structure prediction, contact prediction, comparative protein structure modelling and threading/fold recognition. Every day, sequences of newly available protein structures in the Protein Data Bank (PDB) are sent to the servers and their predictions are collected. The predictions are then compared to the experimental structures once a week; the results are published on the EVA web pages. Over time, EVA has accumulated prediction results for a large number of proteins, ranging from hundreds to thousands, depending on the prediction method. This large sample assures that methods are compared reliably. As a result, EVA provides useful information to developers as well as users of prediction methods.  相似文献   

19.
Homaeian L  Kurgan LA  Ruan J  Cios KJ  Chen K 《Proteins》2007,69(3):486-498
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure.  相似文献   

20.
Vienna RNA secondary structure server   总被引:1,自引:0,他引:1       下载免费PDF全文
The Vienna RNA secondary structure server provides a web interface to the most frequently used functions of the Vienna RNA software package for the analysis of RNA secondary structures. It currently offers prediction of secondary structure from a single sequence, prediction of the consensus secondary structure for a set of aligned sequences and the design of sequences that will fold into a predefined structure. All three services can be accessed via the Vienna RNA web server at http://rna.tbi.univie.ac.at/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号