首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane-bound L-(+)-pantoyl lactone dehydrogenase, an enzyme that catalyzes the formation of ketopantoyl lactone from L-(+)-pantoyl lactone, was solubilized with Brij 35 and purified 78-fold to apparent homogeneity, with a 3.7% overall recovery, from Nocardia asteroides through purification procedures including successive ammonium sulfate fractionation, and DEAE-Sephacel, Sepharose CL-6B and Cellulofine GC-700-m column chromatography in the presence of Brij 35. The relative molecular mass of the native enzyme, as estimated on high-performance gel-permeation chromatography, is at least more than 600 kDa and its subunit molecular mass is 42 kDa. The enzyme shows high specificity for L-(+)-pantoyl lactone as a substrate (Km = 26.8 mM; Vmax = 4.22 mumol.min-1.mg protein-1). Brij 35 acts as a stabilizer and also as an efficient activator of the enzyme. The prosthetic group of L-(+)-pantoyl lactone dehydrogenase was identified as noncovalently bound FMN.  相似文献   

2.
A trypsin-like enzyme has been purified to homogeneity from eggs of the sea urchin, Strongylocentrotus intermedius. The purified enzyme efficiently hydrolyzed Z-Phe-Arg-4- methylcoumaryl -7-amide (MCA) and Pro-Phe-Arg-MCA among 12 peptidyl-Arg (or Lys)- MCAs . The substrate specificity of the enzyme was closely similar to that of the enzyme activity in the egg cortical granule exudate. Among various peptidyl-argininal (Arg-H) derivatives, Z-Phe-Arg-H and Z-Phe-Leu-Arg-H showed the strongest inhibition against both the activity of the purified enzyme and the elevation of vitelline coat. Thus, the trypsin-like enzyme of sea urchin possesses a narrow substrate specificity and participates at least in the elevation of vitelline coat during fertilization.  相似文献   

3.
Nineteen fungi were tested for their ability to degrade aflatoxin B1 (AFB1). An extracellular enzyme from the edible mushroom Pleurotus ostreatus showed afaltoxin-degradation activity detected by thin-layer chromatography (TLC). An enzyme with this activity was purified by two chromatographies on DEAE-Sepharose and Phenyl-Sepharose. The apparent molecular mass of the purified enzyme was estimated to be 90 kDa by SDS-PAGE. Optimum activities were found in the pH range between 4.0 and 5.0 and at 25 degrees C. Also, degradation activity of several dyes in the presence of H2O2 was tested, resulting in the detection of bromophenol blue-decolorizing activity. Based on these data, we suggest this enzyme is a novel enzyme with aflatoxin-degradation activity. Fluorescence measurements suggest that the enzyme cleaves the lactone ring of aflatoxin.  相似文献   

4.
Amyloid-beta (Abeta) is the principal protein constituent of 'senile plaques' and is a suspected mediator in Alzheimer's disease (AD). Senile plaques also contain acetylcholinesterase (AChE; EC 3.1.1.7), which may have a role in promoting Alphabeta-toxicity. We have found that Alphabeta can affect AChE expression in a neuron-like line, the N1E.115 neuroblastoma cell. When 1 micro mAlphabeta 1-42 or 25-35 was added for 24 h to differentiating N1E.115 in culture, AChE activity increased 30-40% in adherent cells, and 100% or more in nonadherent cells. The changes in both tetrameric (G4) and monomeric (G1) AChE forms were comparable. Turnover studies indicated that the elevation of AChE activity reflected slowed AChE degradation rather than accelerated synthesis. With a similar time course, Alphabeta also increased the quantity of muscarinic receptors on the plasma membrane. Immunocytochemistry for a lysosomal membrane protein (LAMP-1) indicated no change in abundance or localization of lysosomes in treated cells. But decreased labeling by pH-sensitive fluorescent dye pointed to an impairment of lysosomal acidification. We consider that the alteration of AChE expression after Alphabeta-exposure could reflect lysosomal dysfunction, and might itself enhance Alphabeta-toxicity.  相似文献   

5.
The purification of the latent form of a rat pancreas trypsin-like protein was performed by ion-exchange and hydrophobic chromatographies. After partial activation, the affinity on immobilized soybean trypsin inhibitor allowed the isolation of an active and an inactive form. They had 30,000 and 32,000 molecular weight, respectively, as checked by polyacrylamide slab gel electrophoresis. Active enzyme (named TLP) was not glycosylated and had an isoelectric point of 4.4. The rate of hydrolysis of different substrates and the effects of various proteinase inhibitors indicated clearly that TLP differs from proteinases previously described and belongs to the trypsin family.  相似文献   

6.
Fucosyl residues in the alpha 1----3 linkage to N-acetylglucosamine (Fuc alpha 1----3GlcNAc) on oligosaccharides of glycoproteins and glycolipids have been detected in certain human tumors and are developmentally expressed (reviewed in Foster, C. S., and Glick, M. C. (1988) Adv. Neuroblastoma Res. 2, 421-432). In order to understand control mechanisms for the biosynthesis of these fucosylated glycoconjugates, GDP-L-Fuc-N-acetyl-beta-D-glucosaminide alpha 1----3fucosyltransferase was purified from human neuroblastoma cells, CHP 134, utilizing either the immobilized oligosaccharide or disaccharide substrates. The enzyme, extracted from CHP 134 cells, was purified by DEAE- and SP-Sephadex chromatography and then by either immobilized substrate. alpha 1----3Fucosyltransferase was obtained in approximately 10% yield and was purified 45,000-fold from the cell extract. The kinetic properties of the enzyme showed an apparent KGDP-Fuc 43 microM, KGal beta 1----4GlcNAc 0.4 mM, KGal beta 1----4Glc 8.1 mM, and KFuc alpha 1----2Gal beta 1----4Glc 1.0 mM. Polyacrylamide gel electrophoresis of the affinity-purified enzyme showed two proteins which migrated, Mr = 45,000-40,000. The enzyme differed in substrate specificity, pH optimum, response to N-ethylmaleimide and ion requirements from the enzymes purified from human milk or serum. The inability of alpha 1----3fucosyltransferase to transfer to substrates containing NeuAc alpha 2----3 or alpha 2----6Gal is in contrast to the reports for the enzyme in other human tumors. This substrate specificity correlates with the oligosaccharide residues thus far defined on glycoproteins of CHP 134 cells since NeuAc and Fuc alpha 1----3GlcNAc have yet to be detected on the same oligosaccharide antenna. However, the enzyme transfers to Fuc alpha 1----2Gal beta 1----4GlcNAc/Glc with higher activity than the unfucosylated disaccharides, although neither alpha 1----2fucosyltransferase nor Fuc alpha 1----2 residues have been detected in CHP 134 cells. The different substrate specificities of alpha 1----3fucosyltransferase isolated from human tumors and normal sources leads to the suggestion that a family of alpha 1----3fucosyltransferases may exist and that they may be differentially expressed in human tumors.  相似文献   

7.
8.
We previously found a trypsin-like proteinase which momentarily appears immediately before DNA synthesis in the cell cycle of Escherichia coli synchronized by phosphate starvation and which is closely related to the initiation of DNA replication (Kato, M., Irisawa, T., Morimoto, Y. and Muramatu, M., unpublished results). The proteinase was named proteinase In. It was purified approximately 2880-fold with a recovery of 15%. The isolated enzyme appeared homogeneous by gel filtration and electrophoresis. Its molecular mass was estimated by analytical gel filtration and SDS/PAGE as approximately 66 kDa. The isoelectric point of proteinase In is 4.9 and its optimal pH is approximately 9. Although protein In hydrolyzes fluorogenic substrate for trypsin, its hydrolytic activity seems markedly affected by amino-acid sequence lying towards the N-terminal from the P1 (lysine, arginine) residue. The proteinase does not hydrolyze N2-benzoyl-D,L-arginine-4-nitronanilide and fluorogenic substrates for chymotrypsin and elastase. The proteinase activity is inhibited by leupeptin, antipain and 4-nitrophenyl 4-guanidinobenzoate, but the effects of tosyl-L-lysine chloromethane, diisopropylfluorophosphate, benzamidine and pentamidine isethionate on the proteinase activity are weak or not inhibitory. Its activity is strongly affected in the presence of NaCl and KCl, and at a concentration of 1.5 M, these increase the activity 14-fold and 13-fold, respectively, above that without salt. Proteinase In was strongly inhibited by various esters of trans-4-guanidinomethylcyclohexanecarboxylic acid, and their inhibitory effects were roughly correlated with those on growth of E. coli. Proteinase activity was found in the cytoplasmic fraction.  相似文献   

9.
A trypsin-like protease (named RSP-V) was purified to homogeneity from rat submandibular glands by isoelectric focusing and high-performance liquid chromatography. The purified enzyme had an isoelectric point of 5.3 and an apparent molecular weight of 25,000, and consisted of two subunits with molecular weights of 19,500 and 6,000. RSP-V hydrolyzed BAEE, BAPA, and TAME, but not ATEE or BTPA. It had an optimum pH at around 10.0. RSP-V was strongly inhibited by soybean trypsin inhibitor, aprotinin, leupeptin, antipain, and benzamidine, but not by ovomucoid trypsin inhibitor, p-CMB, or iodoacetic acid. This enzyme partly resembled, but was not identical with, tonin. It was also different from kallikrein, salivain, and glandulain in rat submandibular gland. Although the physiological role of RSP-V has not yet been clarified, this enzyme inactivated dopa decarboxylase alone among catecholamine-synthesizing enzymes.  相似文献   

10.
Enzymatically active human testis angiotensin-converting enzyme (ACE) was expressed in Chinese hamster ovary (CHO) cells stably transfected with each of three vectors: p omega-ACE contains a full-length testis ACE cDNA under the control of a retroviral promoter; and pLEN-ACEVII and pLEN-ACE6/5, in which full-length and membrane anchor-minus testis ACE cDNAs, respectively, are under the control of the human metallothionein IIA promoter and SV40 enhancer. In every case, active recombinant human testis ACE (hTACE) was secreted in a soluble form into the culture media, up to 2.4 mg/liter in the media of metal-induced, high-producing clones transfected with one of the pLEN vectors. In addition, membrane-bound recombinant enzyme was recovered from detergent extracts of cell pellets of CHO cells transfected with either p omega-ACE or pLEN-ACE-VII. Recombinant converting enzyme was purified to homogeneity by single-step affinity chromatography of conditioned media and detergent-extracted cell pellets in 85 and 70% overall yield, respectively. Purified hTACE from all sources comigrated with the native testis isozyme on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with M(r) approximately 100 kDa. The native and recombinant proteins cross-reacted equally with anti-human kidney ACE antiserum on Western blotting. The catalytic activity of recombinant angiotensin-converting enzyme, in terms of angiotensin I and 2-furanacryloyl-Phe-Gly-Gly hydrolysis, chloride activation, and lisinopril inhibition, was essentially identical to that of the native enzyme. The facile recovery in high yield of fully active hTACE from the media of stably transfected CHO cells provides a suitable system for investigating structure-function relationships in this enzyme.  相似文献   

11.
12.
A putative proenkephalin-cleaving enzyme (PCE) extracted from bovine adrenal chromaffin granules was purified with soybean trypsin inhibitor high-performance affinity chromatography. The 12,600-fold purified enzyme was maximally active at pH 8.0. The enzyme was completely inhibited with lima bean trypsin inhibitor (0.1 mg/ml), soybean trypsin inhibitor (0.1 mg/ml), and p-(chloromercuri)benzenesulfonic acid (1.0 mM), indicating PCE is a serine protease with cysteine residues likely to be involved in its structure or activity. It exhibited significant autoproteolysis without specific substrates present. The substrate specificity and kinetic constants with the enkephalin-containing (EC) peptides Leu-9 and proenkephalin Peptides B, E, and F as substrates were studied. The cleavage patterns were substantially different than with trypsin digestion. PCE specifically recognized the paired basic amino acid residues and predominantly cleaved the peptide bonds between Lys and Arg sites and peptide bonds after Lys-Lys and Arg-Arg sites. Different Km and Vmax values for the different Lys-Arg sites indicate sequences in addition to the paired basic residues can affect enzyme activity. Also, the lower Km and Vmax of Peptide E suggest a higher affinity for this peptide but much slower cleavage. The C-terminally located Lys-Arg site appears responsible for this high affinity. Based on these observations, we propose the following: (a) the primary structure of these peptides contains enough information to be processed correctly by PCE and (b) PCE may be regulated by pH and Peptide E to prevent extensive processing of the intermediate EC peptides which are the major opioid peptides found in the adrenal chromaffin granules.  相似文献   

13.
A DNA-relaxing enzyme capable of concerted nicking and closing of DNA backbone bonds has been purified from Haemophilus gallinarum by two chromatographic steps and gel filtration. The enzyme efficiently catalyzes the removal of superhelical turns from a negatively twisted DNA and requires Mg2+ for this activity. Slight removal of superhelical turns from a positively twisted DNA generated by binding of ethidium bromide is found, but only at high enzyme concentrations. The DNA-relaxing activity is inhibited markedly with heat-denatured DNA, whereas native DNA and RNA have almost no affect on this activity.  相似文献   

14.
A butyrylcholine-hydrolyzing enzyme (EC 3.1.1.-) fo Pseudomonas polycolor IFO 3918 was purified approximately 9270-fold with a recovery of 9.9% by use of chromatographic techniques. The enzyme preparation appeared to be homogeneous when subjected to electrophoretic and ultracentrifugational analyses. The molecular weight was determined as approximately 59000 by gel filtration. Isoelectric focusing electrophoresis revealed that the enzyme had an isoelectric point around pH 5.1. The enzyme catalyzed the hydrolysis of butyrylcholine with the miximum activity among various esters tested, and split benzoylcholine, propionylcholine and some aliphatic esters, but did not attact acetylcholine. The estimated value of Km at pH 7.5 and 25 degrees C was 7-10(-4) M for butyrylcholine. The enzyme was irreversibly inhibited by organophosphorus compounds and carbamates, such as diisopropylphosphofluoridate and eserine. The enzyme was inhibited by some compounds, such as atropine and quinidine. Auaternary ammonium salts showed an inhibitory effect on the enzyme resembling co-operative inhibition.  相似文献   

15.
16.
《Insect Biochemistry》1990,20(7):709-718
A proteinase was purified from crayfish haemocytes by affinity chromatography on heparin-sepharose and phenyl-sepharose, followed by DEAE-cellulose ion-exchange chromatography. This proteinase could mediate the conversion of prophenoloxidase (proPO) to its active form, phenoloxidase (PO), and its was therefore designated a prophenoloxidase activating enzyme, ppA.The purified ppA had a molecular mass of about 36,000 Da. Since ppA was a proteinase able to cleave chromogenic peptide substrates of trypsin, and serine proteinase inhibitors were strongly inhibitory towards ppA activity, the enzyme appeared to be a serine type proteinase. It exhibited maximal enzyme activity at neutral and slightly alkaline pH, and was sensitive to heat inactivation at 58°C.  相似文献   

17.
Purification and characterization of a ketimine-reducing enzyme   总被引:1,自引:0,他引:1  
An NAD(P)H-dependent reductase able to reduce a new class of cyclic unsaturated compounds named ketimines has been detected and purified 2500-fold from pig kidney. Some molecular and kinetic properties of this enzyme have been determined. The enzymatic reduction proceeds with a classical ping-pong mechanism and some results suggest that the true substrate has the ketiminic structure and is in equilibrium with the enaminic and keto-open forms. As previously described, ketimines arise from the deamination of a number of sulfur-containing amino acids, i.e. L-cystathionine, L-lanthionine and S-aminoethyl-L-cysteine, catalyzed by a widespread mammalian transaminase. The enzymatic reduction products of ketimines have been identified as cyclothionine, 1,4-thiomorpholine 3,5-dicarboxylic acid and 1,4-thiomorpholine 3-carboxylic acid. Some of these compounds have been detected in mammals, thus suggesting a possible role of this enzyme in their biosynthesis.  相似文献   

18.
In Bacillus subtilis shikimate kinase enzyme activity can be demonstrated when a small polypeptide forms a trifunctional complex with the bifunctional enzyme 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase-chorismate mutase. The shikimate kinase polypeptide whoch carries the catalytic site has been purified to homogeneity by a five-step procedure. The skikimate kinase was determined to have a molecular weight of 10,000 by superfine Sephadex G-75 thin layer chromatography and by calculation of the minimum chemical molecular weight from its amino acid composition. This number corresponds closely to the molecular weight determined by the mobility of the protein following electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate. The enzyme aggregates with itself forming larger molecular weight proteins. Thes aggregational pattersn depend on protein concentration and sulfhydryl bridges. The enzyme activity is completely inhibited by EDTA and the requirement for Mg2+ can be partially replaced by Mn2+, Ca2+, and Co2+. The inhibition of shikimate kinase activity by p-hydroxymercuribenzoate is reversed completely when the enzyme complex is treated with dithiothreitol, suggesting the sulfhydryl groups may be involved with the active site. The trifunctional complex is relatively unstable, and the nonidentical subunits dissociate readily. This dissociation results in a 99% loss in shikimate kinase activity and a 30% decrease in the chorismate mutase-DAHP synthetase activities. Shikimate kinase activity is subject to a variety of controls. It is inhibited by the allosteric effectors chorismate and prephenate, the products of the reaction, ADP, and shikimate 5-phosphate. The activity responds to changes in the energy charge of the cell. Because of the variety of controls exerted on this enzyme, this member of the regulatory complex may represent the key enzyme in the allosteric control of the synthesis of the common precursors of aromatic acid synthesis.  相似文献   

19.
G Gil  J R Faust  D J Chin  J L Goldstein  M S Brown 《Cell》1985,41(1):249-258
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) is a single polypeptide chain with two contiguous domains: a soluble domain (548 amino acids) that catalyzes the rate-controlling step in cholesterol synthesis and a membrane-bound domain (339 amino acids) that anchors the protein to the endoplasmic reticulum (ER). HMG CoA reductase is degraded at least 10-fold more rapidly than other ER proteins; degradation is accelerated in the presence of cholesterol. To understand this controlled degradation, we transfected reductase-deficient Chinese hamster ovary (CHO) cells with a plasmid expression vector containing a reductase cDNA that lacks the segment encoding the membrane domain. The plasmid produced a truncated reductase (37 kd smaller than normal) that was enzymatically active with normal kinetics; most of the truncated enzyme was found in the cytosol. The truncated enzyme was degraded one-fifth as fast as the holoenzyme; degradation was no longer accelerated by sterols. We conclude that the membrane-bound domain of reductase plays a crucial role in the rapid and regulated degradation of this ER protein.  相似文献   

20.
1. An enzyme acting on aminoacyl-β-naphthylamides has been isolated from the soluble fraction of bovine brain and purified 205-fold by means of ammonium sulphate fractionation, hydroxyapatite adsorption and DEAE-Sephadex column chromatography. 2. Arylamidase requires thiol groups for retention of its activity, is heat-labile and is susceptible to freezing. p-Chloromercuribenzoate and N-ethylmaleimide inactivate the enzyme rapidly. 3. Metal ions are not required for its activity, but stimulation by Mn2+ and Mg2+ and inactivation by Co2+ and Zn2+ are observed. 4. Optimum pH7·5 in phosphate buffer was exhibited for all substrates tested except l-leucyl-β-naphthylamide, for which optimum pH is 6·5. 5. Km values for a number of substrates have been obtained and substrate inhibition at high concentrations was demonstrated. 6. The molecular weight is approx. 70000 as determined by Sephadex-gel filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号