首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The silk spinning apparatus in the crab spider, Misumenops tricuspidatus was studied with the field emission scanning electron microscope (FESEM) and the main microstructural characteristics of the silk glands are presented. In spite of the fact that the crab spiders do not spin webs to trap a prey, they also have silk apparatus even though the functions are not fully defined. The crab spider, Misumenops tricuspidatus possesses only three types of silk glands which connected through the typical spinning tubes on the spinnerets. The spinning apparatus of Misumenops closely corresponds to that of wandering spiders such as jumping spiders or wolf spiders except some local variations. Anterior spinnerets comprise 2 pairs of the ampullates and 48 (±5) pairs of pyriform glands. Another 2 pairs of ampullate glands and nearly 20 (±3) pairs of aciniform glands were connected on the middle spinnerets. Additional 50 (±5) pairs of the aciniform glands were connected on the posterior spinnerets. The aggregate glands and the flagelliform glands which have the function of sticky capture thread production in orb‐web spiders as well as the tubuliform glands for cocoon production in females were not developed at both sexes of this spider, characteristically.  相似文献   

2.
Spiders are characterized by their spinning activity. Much of the current knowledge of the spinning apparatus comes from studies on orb web spiders and their relatives, whereas wolf spiders have been more or less neglected in this respect. Therefore, we studied developmental changes in the spinning apparatus of four wolf spiders (Tricca lutetiana, Arctosa alpigena lamperti, Pardosa amentata, and Xerolycosa nemoralis) throughout their life cycles. Each of these lycosids has a stenochronous life cycle, but of varied length (from 1 to 3 years) and number of instars (from seven to ten). Use of the spinning apparatus begins in the first instar, after leaving the egg sac. Secondary ampullate, all piriform, and all but four aciniform glands are tartipore‐accommodated. The tartipores, collared openings through which silk gland ducts pass during proecdysis, appear on the spinning field starting with the second instar. Tartipore‐accommodated glands can function during proecdysis and their evolution corresponds with the way spiders secure themselves when molting. We suggest that the function of aciniform silk in juvenile wolf spiders is to serve as an ancillary “scaffold” supporting the spider's body during ecdysis.  相似文献   

3.
Abstract— Observations of web spinning behavior in Costa Rican Dinopis sp. reveal the same behaviors synapomorphic for orb weavers: specifically frame, radius, non-sticky spiral construction, and sticky spiral construction, as well as more detailed motor patterns. Dinopids are therefore highly derived orb weavers, although the behavioral data do not conclusively indicate whether they are more closely related to the uloborid or araneoid orb weavers. A cladogram of dinopids, uloborids, and araneoids is presented.  相似文献   

4.
Summary The spinning apparatus ofLinyphia triangularis, adult females and males, was studied with the scanning electron microscope and the main anatomical and histochemical characteristics of the silk glands, including the epigastric apparatus of males, are presented. The epigastric glands seem to be important for the construction of sperm webs. A detailed account of the use of the different kinds of silk in web building is given.The spinning apparatus ofLinyphia closely corresponds to the araneid pattern. Characteristic of linyphiid spiders is the poor development of the aciniform glands. Corresponding to the minor importance of capture threads forLinyphia, the triads (aggregate and flagelliform glands) are less developed than in Araneidae.Linyphia make much less use of the secretions of the piriform glands for connecting threads than Araneidae. Capture threads adhere to other threads by their own glue; other threads seem mostly to be bound to one another by the secretion of the minor ampullate glands whose chemical properties, inLinyphia, appear especially adapted to this function. Neither the anatomical and histochemical data concerning the spinning apparatus nor the structure of the webs provide any indication of close relationships between Linyphiidae and Agelenidae, as was recently claimed.  相似文献   

5.
Brent D. Opell 《Zoomorphology》1987,107(5):255-259
Summary Uloborids that spin reduced webs more actively monitor them than those that construct orb webs. Hyptiotes use both their first and fourth legs to tense their triangle-webs, whereas Miagrammopes rely principally on their first legs to monitor and jerk the threads of their irregular webs. The respiratory systems of these spiders include tracheae that extend into the prosoma, bifurcate, and enter the legs. To determine if the legs responsible for active web-monitoring tactics have more extensive tracheal supplies, the total cross sectional area has been computed of the tracheae entering the legs of mature female orb web and reduced web uloborids. Each leg's value has been divided by the cross sectional area of the tracheal trunks that enter the prosoma. These indexes reveal no significant differences between the relative tracheal supplies of the orb weavers investigated (Waitkera waitkerensis, Tangaroa beattyi, Uloborus glomosus). But the first, third, and fourth legs of H. cavatus and the first legs of M. animotus and M. pinopus have greater relative tracheal supplies than those of the three orb weaving species. Relative to leg volume, the first and fourth legs of H. cavatus have the greatest and the first legs of Miagrammopes species the next greatest tracheal supplies. When tracheal lengths are considered, these differences in potential oxygen supplies remain, showing that area differences do not simply compensate for differences in the distances over which oxygen must diffuse. These differences are leg-specific and not species-specific, and uloborids with the most extensive tracheal supplies are found in moist habitats. Thus the observed differences are best explained as adaptations to meet the greater oxygen demands of legs responsible for active web-monitoring tactics and not as adaptations to reduce respiratory water loss.  相似文献   

6.
Although the basic taxonomic characteristics usually remain unchanged, some spinning apparatuses undergo consistent adaptive variations. As the presence of additional protuberances known as nubbins and tartipores have caused disagreements regarding some Araneidae spiders, more detailed definitions on the cuticular structures have recently been proposed. Reflecting this definition, microstructural organization of silk spinning apparatuses in the orb web spider Argiope bruennichi were reconsidered using field emission scanning electron microscopy. Among the seven kinds of functional spigots in females, it was revealed that two types (major ampullates and pyrifoms) are located on anterior spinnerets and another five types are distributed on median (minor ampullates, tubuliforms and aciniforms) or posterior (tubuliforms, flagelliforms, aggregates and aciniforms) spinnerets, respectively. In addition to functional spigots, cuticular remnants of the nubbins and the tartipores were found on the spinning fields, but the number of tartipores on each spinneret varied among individuals based on maturity. Nevertheless, three kinds of cuticular protuberances of ampullate silk glands were clearly visible at both the anterior and median spinnerets.  相似文献   

7.
Spinning an elastic ribbon of spider silk   总被引:3,自引:0,他引:3  
The Sicarid spider Loxosceles laeta spins broad but very thin ribbons of elastic silk that it uses to form a retreat and to capture prey. A structural investigation into this spider's silk and spinning apparatus shows that these ribbons are spun from a gland homologous to the major ampullate gland of orb web spiders. The Loxosceles gland is constructed from the same basic parts (separate transverse zones in the gland, a duct and spigot) as other spider silk glands but construction details are highly specialized. These differences are thought to relate to different ways of spinning silk in the two groups of spiders. Loxosceles uses conventional die extrusion, feeding a liquid dope (spinning solution) to the slit-like die to form a flat ribbon, while orb web spiders use an extrusion process in which the silk dope is processed in an elongated duct to produce a cylindrical thread. This is achieved by the combination of an initial internal draw down, well inside the duct, and a final draw down, after the silk has left the spigot. The spinning mechanism in Loxosceles may be more ancestral.  相似文献   

8.
Summary The web of Polenecia producta is interpreted as being a modified orb web. The position of the hub directly upon a twig amongst irregularly placed branches decides the web's structure. Since the radii have to be fixed in the vicinity corresponding to the local possibilities, and since these possibilities vary very much from case to case, a great variety of web scaffoldings results. All of them are characterized by a lack of symmetry. These asymmetries, for their part, prevent the production of capture threads by circling around and fixing them obliquely to the radii as do orb weavers. P. producta adapts itself to this situation by attaching the adhesive material along the radii. Under these circumstances temporary spirals, like those of orb weavers, would be without function. The short pieces of such spirals present in the webs of P. producta are interpreted as vestiges of once functional structures. The silk deposits P. producta lays down upon the hub can, in certain respects, be compared with stabilimenta of other Uloboridae. The relatively late onset of web building in P. producta (instar II spiderlings) is related to the ontogeny of the spinning apparatus.  相似文献   

9.
Hans M. Peters 《Zoomorphology》1993,113(3):153-163
Summary The spinning apparatus of Cyrtophora citricola closely corresponds to that of orb-weaving Araneidae, two peculiarities excepted. Firstly the spigots of the piriform glands differ extremely in size, the smallest of them being numerous and having a unique location on the anterior spinnerets. Secondly, the triad complex (on the posterior spinnerets) used by other Araneidae for producing gluey capture threads is lacking. Both these characteristics are correlated with the construction of a fine meshed sheet of dry silk by Cyrtophora instead of orbwebs with capture spirals. The sheet can be understood as being a very much enlarged central area of orb-webs. Since vestiges of triads could be found in early developmental stages of C. citricola, the origin of the meshed sheet from orb-webs with gluey capture threads is clearly demonstrated. The paper includes a study on how the spider produces thread attachments by means of the secretions of the piriform glands.  相似文献   

10.
Summary In the family Uloboridae, web reduction is associated with changes in web monitoring posture and prosomal features. A spider must extend its first pair of legs directly forward to monitor the signal line of a reduced web. This posture is facilitated by shifts in prosomal musculature that cause reduced web uloborids to have a narrower anterior prosoma, a reduced or absent anterior eye row, and prominent posterior lateral eye tubercles. The eye tubercles and larger posterior eyes of these uloborids suggest that web reduction may also be accompanied by ocular changes that compensate for reduction of the anterior eyes by expanding the visual fields of the posterior eyes. A comparison of the visual fields of the eight-eyed, orb web species Octonoba octonaria and a four-eyed, reduced web Miagrammopes species was made to determine if this is true. Physical and optical measurements determined the visual angles of each species' eyes and the pattern of each species' visual surveillance. Despite loss of the anterior four eyes, the Miagrammopes species has a visual coverage similar to that of O. octonaria. This is due to (1) an increase in the visual field of each of the four remaining Miagrammopes eyes, accruing from an extension of the retina and an increase in the lens' rear radius of curvature, and (2) a ventral shift of each visual axis, associated with the development of an eye tubercle and an asymmetrical expansion of the retina. Miagrammopes monitor their simple webs from twigs or moss where they are vulnerable to predation. Therefore, maintenance of visual cover may enable them to detect predators in time to assume or maintain their characteristic, cryptic posture. It may also allow them to observe approaching prey and permit them to adjust web tension or prepare to jerk their webs when prey strikes.  相似文献   

11.
We examined the webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall) using light and scanning electronic microscopic techniques and compared them with the better known orb‐webs. The linyphiid sheet‐web consists of an unordered meshwork of fibres of different thicknesses. The sheet is connected to the scaffolding by means of attachment discs. Thin threads with globules, which appear similar to the viscid silk droplets of orb‐webs, are present in most webs examined. Webs of M. pusilla had a higher density of these globules than did webs of L. triangularis. Webs of both species possess five types of thread connections and contain no aqueous glue for prey capture. Instead, unlike orb‐webs, the sticky substances produced by the linyphiid aggregate glands cement the different layers and threads of the sheet by drying up after being produced. Due to their function, sheet webs may not require viscid silk, thereby leading to a more economic web. The assumption made in most previous studies, that the globules in linyphiid webs have the same properties and function as viscid silk in orb‐webs, is unfounded.  相似文献   

12.
Lothar Glatz 《Zoomorphology》1967,61(2):185-214
The biology of various species of the cribellate family Oecobiidae has been known only fragmentarily. Therefore observations on web construction, catching and mating behaviour of Oecobius annulipes are made. They are paralleled by morphological investigations on the mouth parts and the spinning apparatus. The results are in closest conformity with the corresponding characters of the ecribellate spider Uroctea durandi. A close phylogenetic relationship of both families is assumed.  相似文献   

13.
Spiders that spin orb webs secrete seven types of silk. Although the spinning process of the dragline thread is beginning to be understood, the molecular events that occur in spiders' opisthosomal glands, which produce the other fibers, are unknown due to a lack of data regarding their initial and final structures. Taking advantage of the efficiency of Raman spectromicroscopy in investigating micrometer-sized biological samples, we have determined the secondary structure of proteins in the complete set of glands of the orb-weaving spider Nephila clavipes. The major and minor ampullate silks in the sac of their glands have identical secondary structures typical of natively unfolded proteins. Spidroins are converted into fibers containing highly oriented β-sheets. The capture spiral represents a distinct structural singleton. The proteins are highly disordered prior to spinning and undergo no molecular change or alignment upon spinning. The cylindrical, aciniform, and piriform proteins are folded in their initial state with a predominance of α-helices, but whereas the cylindrical gland forms a fiber similar to the major ampullate thread, the aciniform and piriform glands produce fibers dominated by moderately oriented β-sheets and α-helices. The conformation of the proteins before spinning is related to intrinsic characteristics of their primary structure. Proteins that are unfolded in the gland have repeat sequences composed of submotifs and display no sequence regions with aggregation propensity. By contrast, the folded proteins have neither submotifs nor aggregation-prone sequence regions. Taken together, the Raman data show a remarkable diversity of molecular transformations occurring upon spinning.  相似文献   

14.
Many spiders use silk to construct webs that must function for days at a time, whereas many other species renew their webs daily. The mechanical properties of spider silk can change after spinning under environmental stress, which could influence web function. We hypothesize that spiders spinning longer‐lasting webs produce silks composed of proteins that are more resistant to environmental stresses. The major ampullate (MA) silks of orb web spiders are principally composed of a combination of two proteins (spidroins) called MaSp1 and MaSp2. We expected spider MA silks dominated by MaSp1 to have the greatest resistance to post‐spin property change because they have high concentrations of stable crystalline β‐sheets. Some orb web spiders that spin three‐dimensional orb webs, such as Cyrtophora, have MA silks that are predominantly composed of MaSp1. Hence, we expected that the construction of three‐dimensional orb webs might also coincide with MA silk resistance to post‐spin property change. Alternatively, the degree of post‐spin mechanical property changes in different spider silks may be explained by factors within the spider's ecosystem, such as exposure to solar radiation. We exposed the MA silks of ten spider species from five genera (Nephila, Cyclosa, Leucauge, Cyrtophora, and Argiope) to ecologically high temperatures and low humidity for 4 weeks, and compared the mechanical properties of these silks with unexposed silks. Using species pairs enabled us to assess the influence of web dimensionality and MaSp composition both with and without phylogenetic influences being accounted for. We found neither the MaSp composition nor the three‐dimensionality of the orb web to be associated with the degree of post‐spin mechanical property changes in MA silk. The MA silks in Leucauge spp. are dominated by MaSp2, which we found to have the least resistance to post‐spin property change. The MA silk in Argiope spp. is also dominated by MaSp2, but has high resistance to post‐spin property change. The ancestry of Argiope is unresolved, but it is largely a tropical genus inhabiting hot, open regions that present similar stressors to silk as those of our experiment. Ecological factors thus appear to influence the vulnerability of orb web spider MA silks to post‐spin property change. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 580–588.  相似文献   

15.
Most spider threads are on the micrometre and sub-micrometre scale. Yet, there are some spiders that spin true nano-scale fibres such as the cribellate orb spider, Uloborus plumipes. Here, we analyse the highly specialized capture silk-spinning system of this spider and compare it with the silk extrusion systems of the more standard spider dragline threads. The cribellar silk extrusion system consists of tiny, morphologically basic glands each terminating through exceptionally long and narrow ducts in uniquely shaped silk outlets. Depending on spider size, hundreds to thousands of these outlet spigots cover the cribellum, a phylogenetically ancient spinning plate. We present details on the unique functional design of the cribellate gland–duct–spigot system and discuss design requirements for its specialist fibrils. The spinning of fibres on the nano-scale seems to have been facilitated by the evolution of a highly specialist way of direct spinning, which differs from the aqua-melt silk extrusion set-up more typical for other spiders.  相似文献   

16.
Capture threads of the golden orb‐web spider Nephila clavata are produced from the silks of a pair of triad spinning units composed of a flagelliform gland (FLG) and two aggregate glands (AGG). In N. clavata, arrangement of the triad spigots is closely related to coating an axial supporting fiber with sticky aqueous droplets on a continuous and consistent basis for capture thread production. The central spigot of FLG and peripherally located AGG spigots are aligned along a single plane, and both have bullet‐type spigots with flexible segments. In particular, the pear‐shaped spigot of the AGG with a wide‐aperture nozzle provides not only sufficient luminal space for controlling transient storage of the aqueous gluey substance but also an effective spatial system that thoroughly coats the axial fibers with a viscous aqueous solution.  相似文献   

17.
The microstructural organization of the silk‐spinning apparatus of the comb‐footed spider, Achaearanea tepidariorum, was observed by using a field emission scanning electron microscope. The silk glands of the spider were classified into six groups: ampullate, tubuliform, flagelliform, aggregate, aciniform and pyriform glands. Among these, three types of silk glands, the ampullate, pyriform and aciniform glands, occur only in female spiders. One (adult) or two (subadult) pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another pair of minor ampullate glands supply the median spinnerets. Three pairs of tubuliform glands in female spiders send secretory ductules to the median (one pair) and posterior (two pairs) spinnerets. Furthermore, one pair of flagelliform glands and two pairs of aggregate glands together supply the posterior spinnerets, and form a characteristic spinning structure known as a “triad” spigot. In male spiders, this combined apparatus of the flagelliform and the aggregate spigots for capture thread production is not apparent, instead only a non‐functional remnant of this triad spigot is present. In addition, the aciniform glands send ductules to the median (two pairs) and the posterior spinnerets (12–16 pairs), and the pyriform glands feed silk into the anterior spinnerets (90–100 pairs in females and 45–50 pairs in males).  相似文献   

18.
The genus Oxytate L. Koch, 1878 comprises a homogeneous group of nocturnal crab spiders that have silk apparatuses even though they do not spin webs to trap prey. We examined the microstructure of the silk spinning apparatus of the green crab spider Oxytate striatipes, using field emission scanning electron microscopy. The silk glands of the spider were classified into three types: ampullate, pyriform and aciniform. The spigots of these three types of silk gland occur in both sexes. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another two pairs of minor ampullate glands supply the median spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets (45 pairs in females and 40 pairs in males), and the aciniform glands feed silk into the median (9–12 pairs in females and 7–10 pairs in males) and the posterior (30 pairs in both sexes) spinnerets. The spigot system of O. striatipes is simpler and more primitive than other wandering spiders: even the female spiders possess neither tubuliform glands for cocoon production nor triad spigots for web‐building.  相似文献   

19.
The microstructural characteristics of the silk‐spinning apparatus and its ecological significance in the coelotine spider Paracoelotes spinivulva were examined by field emission scanning electron microscopy, with the goal of understanding the properties and the evolutionary origins of these silk constructs. The silk apparatuses of this spider were composed of four basic types of silk‐spinning spigot (ampullate, pyriform, aciniform and tubuliform), which connected with typical silk glands in the abdominal cavity. Of the three pairs of spinnerets, the posterior pairs were highly elongated along the body axis. Anterior spinnerets comprised two pairs of ampullate glands and approximately 70–80 pairs of pyriform glands in both sexes. Middle spinnerets had one to two pairs of ampullate spigots, three pairs of tubuliform spigots in females, and 50–60 (female) or 80–90 (male) pairs of aciniform spigots. An additional two pairs of tubuliform spigots in females and 70–80 (female) or 100–120 (male) pairs of aciniform spigots were counted on the spinning surfaces of the posterior spinnerets in both sexes. Although the coelotine spiders use their silk to catch prey, P. spinivulva characteristically do not have a typical “triad” spigot, including a flagelliform and two aggregate spigots, for capture thread production.  相似文献   

20.
Evolutionary convergence of phenotypic traits provides evidence for their functional success. The origin of the orb web was a critical event in the diversification of spiders that facilitated a spectacular radiation of approximately 12 000 species and promoted the evolution of novel web types. How the orb web evolved from ancestral web types, and how many times orb‐like architectures evolved in spiders, has been debated for a long time. The little known spider genus Fecenia (Psechridae) constructs a web that resembles the archetypical orb web, but morphological data suggest that Psechridae (Psechrus + Fecenia) does not belong in Orbiculariae, the ‘true orb weavers’, but to the ‘retrolateral tibial apophysis (RTA) clade’ consisting mostly of wandering spiders, but also including spiders building less regular webs. Yet, the data are sparse and no molecular phylogenetic study has estimated Fecenia's exact position in the tree of life. Adding new data to sequences pulled from GenBank, we reconstruct a phylogeny of Entelegynae and phylogenetically test the monophyly and placement of Psechridae, and in doing so, the alternative hypotheses of monophyletic origin of the orb web and the pseudo‐orb versus their independent origins, a potentially spectacular case of behavioural convergence. We also discuss the implications of our results for Entelegynae systematics. Our results firmly place a monophyletic Psechridae within the RTA clade, phylogenetically distant from true orb weavers. The architectural similarities of the orb and the pseudo‐orb are therefore clearly convergent, as also suggested by detailed comparisons of these two web types, as well as the spiders' web‐building behaviours and ontogenetic development. The convergence of Fecenia webs with true orbs provides a remarkable opportunity to investigate how these complex sets of traits may have interacted during the evolution of the orb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号