首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper was to study the interaction between neurotensin and both enkephalins or its synthetic analogue D-Ala2-metenkephalinamide, or tuftsin, on the antinonciceptive effect of these peptides in mice after intracisternal injection. Antinociception was measured by the hot-plate method. It was shown that neurotensin antagonized evidently the antinociceptive effect of enkephalins and their analogue. On the contrary, neurotensin and tuftsin were agonists in induction of analgesia. It is concluded that neurotensin modulates in an opposite way the function of the enkephalinergic neurons and the central action of tuftsin.  相似文献   

2.
A study was made of the effect of the low-molecular neuropeptides, leu- and met-enkephalins, thyroliberin (TRH), the C-end tripeptides, gastrin (MAF) and oxytocin (MIF) on the content of biogenic monoamines and their metabolites and on the production of humoral antibodies to sheep red blood cells. The action of the peptides enumerated was compared to that of the peptide immunostimulant, tuftsin. All the peptides (upon intraventricular administration) with the exception of tuftsin affect the content of brain biogenic monoamines or their metabolites. Moreover, upon intravenous injection the neuropeptides under study except met-enkephalin exert a modulating action on the immune response pattern and intensity Leu-enkephalin, MIF and MAF have immunostimulant activity similar to tuftsin. TRH given in high doses (100 and 150 mg/kg) provokes almost a two-fold decrease in the antibody titer. This peptide has an immunosuppressant effect when administered both intravenously and intracisternally. It is suggested that neuro- and immunomodulator effects have much in common at the level of cell receptors.  相似文献   

3.
Iontophoretic application of enkephalins induced inhibitory effects on unit activity of endocrine and adjacent neurones in the preoptic-septal region. Antagonism or lack of antagonism of these effects by naloxone indicated an action of enkephalins through different opiate receptors. Inhibitory effects of enkephalins were obtained during iontophoretic application of Mg2+, showing that these opioid peptides acted postsynaptically. Because enkephalin acts on endocrine neurones, these opioid peptides might be involved in the control of gonadotrophic hormone release by acting on cell bodies of LH-RH neurones.  相似文献   

4.
The influence of Ro 15-1788 and bicuculline on the action of GABA-positive drugs (muscimol), GABA cethyl ester, piracetam and depakine and benzodiazepine tranquilizers (diazepam, phenazepam) on motivated aggression has been studied. It has been shown that Ro 15-1788 which has a weak antiaggressive effect selectively antagonizes the anti-aggressive effect of tranquilizers but not that of GABA-positive drugs. Bicuculline antagonizes antiaggressive activity of the drugs of both types. The action of these antagonists on the effect of the drugs under study as regards the analgetic activity of morphine was also studied. It has been shown that Ro 15-1788 antagonizes the potentiation of morphine analgesia caused by diazepam. At the same time Ro 15-1788 does not influence morphine analgesia potentiated by muscimol. Bicuculline removes the potentiation of morphine analgesia caused both by diazepam and muscimol it is concluded that bicuculline-sensitive GABA receptors modulate the antiaggressive effect of benzodiazepines and their influence on the analgetic action of opiates.  相似文献   

5.
Some new opiate-like peptides originating from opioid peptide precursors, dinorphine, histone H2b, major myeline protein, natriuretic atriopeptide and from the immunomodulating protein splenin whose primary structure differs essentially from that of enkephalins are described. Being intracysternally injected to mice, all the peptides under study caused a naloxone-sensitive analgetic effect as could be judged from the tail pinch tests. The effects of some opiate-like peptides were much stronger than that of leu-enkephalin. According to their primary structure, the opiate-like peptides can randomly be allocated into two families. Dipeptide Lys-Arg and free arginine also possess a marked analgetic activity which is abolished by naloxone. It seems likely that the epiate-like activity of the peptides under study is due to the similarity of their secondary and ternary structure to that of enkephalins of to their involvement in the regulation of opioid peptide metabolism.  相似文献   

6.
New enkephalins analogues have been synthesized. They are characterized by linear, cyclic and branched peptide chain. A relationship has been established between antihypoxic activity of opioid peptides an their interaction with opiate receptors. Compounds efficiently interacting with mu-receptors irrespective of delta-receptors affinity, promote longer survival of mice in hypoxia. The antihypoxic effect of opioids is proportional to their specificity to mu-receptors.  相似文献   

7.
The action of bone marrow low-molecular peptides (myelopeptides) was studied in the models of physiologic and pathologic pain. Myelopeptides were demonstrated to have a pronounced analgetic effect: they increased the latent period of the rats' response in the hot plate test (physiologic pain) and suppressed severe spinal pain syndrome induced by the generator of pathologically enhanced excitation in the dorsal horn of the spinal cord (pathologic pain). In the experiments with naloxone (an opiate receptor blocker) the data on the opiate properties of myelopeptides were further substantiated. The analgetic effect of myelopeptides can be compared to that of morphine and promedol. Myelopeptides even in considerable doses did not have the side effects characteristic of the majority of opiate analgesics. Therefore, they may be recommended for clinical trials.  相似文献   

8.
The stimulation of dopaminergic receptors, inhibition of serotonin synthesis or blockade of muscurinic receptors by various modifiers led to inhibition of morphine analgesia in mice. Blockade of dopaminergic receptors or the increase in serotonergic or cholinergic activity resulted in the enhancement of morphine analgesia. Serotonergic and cholinergic systems are proposed as positive and the dopaminergic system as negative modulators of morphine analgesia. The modulation of naloxone antagonism was much more complicated than that of morphine analgesia and often the effect of biogenic amine-modifiers on antagonism differed from that on analgesia. The fact that biogenic amine-modifiers do not affect morphine analgesia and naloxone antagonism by a similar pattern suggest that interaction of narcotics and narcotic antagonists with analgesic receptors may not be exactly the same.  相似文献   

9.
A significant enhancement of the analgetic effect of morphine (6 mg/kg, subcutaneously; tail withdrawal reflex at 60 degrees C) was observed in rats 3-4 hours after single naloxone (1 mg/kg) administration. Periodical naloxone injection (0.5 mg/kg, subcutaneously, 3 times per day at 3.5-hour intervals for 3 days) led to a prominent and long-term (testing on the 20th and 105th hour after the last naloxone administration) enhancement of morphine analgesia (2.6 mg/kg subcutaneously) and insignificant inhibition of stress analgesia during two-hour immobilization of animals. These modifications of morphine and stress analgetic effects are considered a result of adaptive changes of opiate receptors after their blockade.  相似文献   

10.
The novel fluorescent amino acid, L-1-pyrenylalanine (L-Pya), was prepared by the asymmetric hydrogenation of cyclic dehydrodipeptide. Fluorescent enkephalins containing one or two Pya residues at position 1,4 or 5 of [D-Ala2, Leu5]enkephalin were synthesized by the solution method. Mono-Pya-enkephalins showed strong fluorescence intensities and potent binding affinities with specificity and selectivity for opiate receptors. However, di-Pya-enkephalins showed markedly decreased receptor binding affinities. These results indicate that the incorporation of two Pya residues into enkephalin makes the peptide unable to interact with the opiate receptors, although introduction of one Pya residue is effective to elicit a specific receptor interaction. Di-Pya-enkephalins showed intramolecular excimer spectra, indicating that the peptides are able to take possible folded conformations.  相似文献   

11.
Opioid peptides are endogenous substances present in central nervous system and various tissues whose actions are mediated by opiate receptors. They belong to two different classes: short peptides like the two pentapeptides enkephalin and substances of higher molecular weight like beta-endorphin. It appears that these various peptides play a messenger role between cells, either as neurotransmitters in the case of enkephalins or as hormones in the case of beta-endorphin.  相似文献   

12.
The calcium binding protein calmodulin and the opiate receptor binding sites are unevenly distributed in various subcellular fractions of neuroblastoma-glioma NG108-15 cells. The crude mitochondrial-membrane fraction of these cells contains two membrane fractions that are separable by sucrose gradient centrifugation. These two differ in the content of both calmodulin and opiate receptors. Leucine enkephalin and D-Ala2-methionine enkephalinamide decrease the amount of membrane-bound calmodulin in the NC108-15 cells in a time- and dose-dependent manner, whereas the opiate antagonists naloxone and levallorphan have an opposite effect. Naloxone blocks the effect of leucine enkephalin and dextrallorphan has no significant effect. The opiate alkaloids entorphine and phenazocine induce changes similar to that of the enkephalins whereas morphine is inactive even at high concentrations. The alteration in the amount of membrane-bound calmodulin after a short incubation (15 min) with the enkephalins or with naloxone is reflected as an opposite change in the amount of calmodulin in the cell cytosol. Naloxone and levallorphan also increase the number of opiate receptors in NG108-15 cells but dextrallorphan has no such effect. Modulation of the intracellular distribution of calmodulin by opioid peptides and alkaloids may control the activity of various membrane-bound and cytosolic systems that are calmodulin- and/or calcium-dependent.  相似文献   

13.
It has been shown for the first time that biogenic amines (catecholamines and tryptophane derivatives) stimulate dose-dependently activity of adenylyl cyclase (AC) and GTP-binding of G-proteins in muscle of the skin-muscle sac of the earthworm Lumbricus terrestris. By efficiency of their stimulating action on the AC activity, biogenic amines can be arranged in the following sequence: octopamine > tyramine > tryptamine ≈ serotonin > dopamine > isoproterenol ≈ adrenalin. The sequence of efficiency of their action on GTP-binding is somewhat different: serotonin > tryptamine > octopamine > dopamine ≈ tyramine > adrenaline > isoproterenol. Sensitivity of AC and G-proteins in the worm muscle to biogenic amines is similar with that in smooth muscle of the mollusc Anodonta cygnea (invertebrates), but differs markedly by this parameter from the rat myocardium (vertebrates). It has also been revealed that AC in the worm muscle is regulated by peptide hormones, relaxin and somatostatin, whose action is comparable with that in the mollusc muscle, but much weaker that the action of these hormones on the rat myocardium AC activity. Use of Cterminal peptides of α-subunits of G-proteins of the stimulatory (385–394 Gαs) and inhibitory (346–355 Gαi2) types that disrupt selectively the hormonal signal transduction realized via Gsand Giproteins, respectively, allowed establishing that the AC-stimulating effects of relaxin, octopamine, tyramine, and dopamine in the worm muscle are realized via the receptors coupled functionally with Gs-protein; the AC-inhibiting effect of somatostatin is realized via the receptor coupled with Gi-protein, whereas serotonin and tryptamine activate both types of G-proteins.  相似文献   

14.
It has been shown for the first time that biogenic amines (catecholamines and tryptophane derivatives) stimulate dose-dependently activity of adenylyl cyclase (AC) and GTP-binding of G-proteins in muscle of the cutaneous-muscle bag of the earthworm Lumbricus terrestris. By efficiency of their stimulating action on the AC activity, biogenic amines can be arranged in the following sequence: octopamine > tyramine > tryptamine = serotonin > dopamine > isoproterenol = adrenalin. The sequence of efficiency of their action on GTP-binding is somewhat different: serotonin > tryptamine > octopamine > dopamine = tyramine > adrenaline > isoproterenol. Sensitivity of AC and G-proteins in the worm muscle to biogenic amines is similar with that in smooth muscle of the molluse Anodonta cygnea (invertebrates), but differs markedly by this parameter from the rat myocardium (vertebrates). It has also been revealed that AC in the worm muscle is regulated by peptide hormones relaxin and somatostatin whose action is comparable with that in the mollusk muscle, but much weaker that the action of these hormones on the rat myocardium AC activity. Use of C-terminal peptides of alpha-subunits of G-proteins of the stimulatory (385-394 Galpha(s)) and inhibitory (346-355 Galpha(i2)) types that disrupt selectively the hormonal signal transduction realized via G(s)- and G(i)-proteins, respectively, allowed establishing that the AC-stimulating effects of relaxin, octopamine, tyramine, and dopamine in the worm muscle are realized via the receptors coupled functionally with G(s)-protein; the AC-inhibiting effect of somatostatin is realized via the receptor coupled with G(i)-protein, whereas serotonin and tryptamine activate both types of G-proteins.  相似文献   

15.
Possible application of sensory decision theory of pain for the experimental assessment of neuropsychophysiological mechanisms of opiate analgesia has been demonstrated. The analgetic effect of morphine was found to be mediated through the influence on the measurement and estimation of pain stimulus.  相似文献   

16.
The analgetic activity of the tetrapeptide enkephalin analog, its influence on the interneuronal transmission of excitation in various areas of the central nervous system and on opiate receptors of vas deferens were studied. The tetrapeptide was found to have a marked analgetic effect during intravenous injection to mice but to be less active than morphine. The tetrapeptide as well as morphine inhibited the impulse summation in rabbits and both spontaneous and bradykinin-induced neuronal activity in the rat sensory motor cortex. The tetrapeptide inhibited the contractions of isolated vas deferens in mice. The opiate antagonist naloxone eliminated both analgetic effect of the tetrapeptide and its inhibitory effect on the impulse summation, neuronal activity and contractions of vas deferens.  相似文献   

17.
The interaction of beta-endorphin with opiate receptors was studied by using the radioiodinated, metabolically stable D-Ala2 derivative of human beta-endorphin. This analog binds specifically to rat brain membrane preparations with an apparent Kd of about 2.5 x 10-9 M. The ability of various enkephalin analogs, as well as opiate agonists and antagonists, to inhibit the binding of beta-endorphin clearly demonstrates that this peptide can bind to opiate receptors. However, the effects of various cations on the binding of 125I-[D-Ala2]beta-endorphin are markedly different from those found for enkephalin binding. Sodium ion at physiological concentrations decreases substantially the binding of enkephalins but only slightly decreases endorphin binding, whereas manganese enhances enkephalin binding but has no effect on endorphin binding. Moreover, potassium (100 mM) decreases the binding of beta-endorphin but does not affect enkephalin binding. These results suggest that beta-endorphin and enkephalin bind differently to the same receptor or bind to different receptors with overlapping specificity.  相似文献   

18.
Dextronaloxone, a recently synthesized stereoisomer, which was shown to possess much less opiate receptor affinity than levonaloxone, produces no reversal of electroacupuncture analgesia (EAA) in mice. Since levonaloxone completely reverses EAA, this proves that stereospecific opiate receptors are involved. It has been reported that there are two classes of opiate receptors: Type I and Type II. Type I opiate receptors may be responsible for opiate analgesia. Antagonists of Type I receptors, levonaloxone, naltrexone, cyclazocine and diprenorphine, all block electroacupuncture analgesia at low doses. All together, these results strongly support the hypothesis that electroacupuncture analgesia is mediated by opiate receptors. Possibly Type I receptors are the major component of this system.  相似文献   

19.
The latency to tail-flick response in the rat was significantly prolonged by cerebroventricular infusion of 1.0 microgram of somatostatin (SRIF) and more so with 10.0 microgram. The D-tryptophan analog was less effective than native SRIF. Pretreatment with naloxone eliminated analgesia but not seizures induced by SRIF. Recording of the EEG activity enabled determination of the specific state of the sleep-waking cycle in which the repeated tail-flick responses were tested: latency was generally longer in both control and test animals when tail immersion was performed during the state of sleep or drowsiness rather than during the awake state. Although animals receiving SRIF were less likely to fall asleep between subsequent test trails, the average latency was actually longer than after control saline infusion when the animals slept more. SRIF, unlike other releasing factors and peptides tested, showed significant activity in an opiate radioreceptor assay. The blockade of SRIF action by naloxone pretreatment, along with binding of SRIF to opiate receptors in vitro, suggest opiate receptors to be involved in the mediation of analgesia observed in present study.  相似文献   

20.
Utilizing the mouse tail-flick assay, the rank order of analgesic potency for various opioids (i.c.v.) is beta h-endorphin greater than D-Ala2-D-Leu5-enkephalin greater than morphine greater than D-Ala2-met-enkephalinamide much greater than met-enkephalin much greater than leu-enkephalin. Assuming mu receptor mediation of analgesia, there is an affinity and analgesic potency (ie: D-Ala2-Leu5-enkephalin has 1/7 the affinity of morphine for the mu receptor but is 18X more potent as an analgesic). Additionally, sub-analgesic doses of various opioid peptides have opposite effects on analgesic responses. Leu-enkephalin, D-Ala2-D-Leu5-enkephalin or beta h-endorphin potentiate morphine or D-Ala2-met-enkephalinamide analgesia whereas met-enkephalin or D-Ala2-met-enkephalinamide antagonize opioid-induced analgesia. Using the enkephalins as the prototypic delta ligands (100 fold selective) and based on their effects on analgesia, we suggest that Leu-enkephalin-like peptides interact with the delta receptor as an "agonist" to facilitate and met-enkephalin-like peptides as an "antagonist" to attenuate analgesia. Given the biochemical evidence of a coupling between mu and delta receptors, we suggest that the mechanism of facilitation or attenuation of analgesia by the enkephalins is a direct in vivo consequence of this coupling. Further, the analgesic potencies of various opioid ligands can be better correlated to the combination of their simultaneous occupancy of mu and delta receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号