首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Growth and Development of Maize (Zea mays L.) at Five Temperatures   总被引:1,自引:0,他引:1  
The objectives of this work were to measure growth and developmentrates over a range of temperatures and to identify processeswhich may limit vegetative yield of maize (Zea mays L.). Twosingle cross Corn Belt Dent maize hybrids were grown from sowingin a diurnal temperature regime of 16/6 °C day/night andin constant temperature environments of 16, 20, 24 and 28 °C.The 16/6 °C environment was close to the minimum for sustainedgrowth and 28 °C was near the optimum. Entire plants wereharvested at stages with 4, 6, 7 and 8 mature leaves in alltemperature treatments except 20 °C in which the final twoharvests were carried out at 9 and 10 mature leaves. Mean totalleaf number varied between 19.5 and 16.0 with the maximum occurringat 16/6 °C. Although harvests were carried out at comparableleaf numbers, and hence at similar developmental stages, thetime interval between sowing and harvest decreased considerablyas temperatures increased. The relative rates of dry weight and leaf area accumulationwith time increased with a Q10 of 2.4 between 16 and 28 °C,while leaf appearance rate increased with a Q10 of 2.9 overthe same range; both rates were highest at 28 °C. Althoughdry matter partitioning to the shoots increased with temperature,the area of individual leaves varied in a systematic patternwhich resulted in maximum leaf area, leaf area duration andconsequently dry weight being realized at 20 °C for anygiven stage of development. Zea mays, corn, low temperature stress, temperature response, growth, development  相似文献   

2.
Resistance to corn borers, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) and Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae) in maize, Zea mays L., populations is partial, and more resistant populations are needed. The objective of this research was to compare resistance to corn borers of the main maize races from North America. Twenty open-pollinated maize populations belonging to the races Southern Dent, Corn Belt Dent, and Northern Flint, and three check populations, were evaluated under artificial infestation with S. nonagrioides and O. nubilalis. None of the populations had complete resistance. Northern Flint had the lowest yield under corn borer infestation, whereas Southern Dent had the highest yield but also the largest damage. Corn Belt Dent had a shorter growing cycle and similar yield of infected plants than Southern Dent. The checks had intermediate yield and resistance and were not significantly different from Corn Belt Dent for any trait. The Southern Dent populations Tennessee Red Cob and White Dent (PI221885 and PI311232) could be used as sources of tolerance to corn borers, although they are not expected to provide great gains compared with the levels of tolerance already present in some Corn Belt Dent and European Flint populations and would require adaptation to short growing cycle. The Corn Belt Dent synthetic BS17 had the highest yield and general agronomic performance under corn borer infestation, along with Rustler and Silver King, and the European Flint composite EPS13.  相似文献   

3.
Summary North Carolina Design III and generation means analyses were used to study the inheritance of seedling emergence time and a related seedling growth parameter in crosses between 5–154, a line from CIMMYT Pool 5 with rapid seedling emergence under cool conditions, and two Corn Belt Dent lines of maize (Zea mays L.). The crosses were evaluated at low temperatures in controlled environment rooms. Additive genetic variances were larger than dominance variances in both crosses and estimates of the average levels of dominance were in the partial dominance range. Dominance was in the direction of rapid seedling emergence and rapid utilization of seed reserve. Estimates of minimum numbers of effective factors provided evidence for polygenic inheritance.  相似文献   

4.
Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill–Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker–QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in testcrosses.  相似文献   

5.
KIEL  C.; STAMP  P. 《Annals of botany》1992,70(2):125-128
The objectives of this investigation were to determine: (a)the general effect of temperature on internal root anatomy;(b) whether genotypic differences in such root traits exist;and (c) the association between internal root traits and shootgrowth, lateral root branching and cold tolerance of maize (Zeamays L.). Seedlings of 20 central European hybrids were grownunder high or low temperature (25/22·5 °C or 15/12·5°C day/night temperatures) until the third leaf was fullyexpanded. Light microscopy of cross sections revealed a largerdiameter of primary roots at low temperature which was due toa larger stele diameter and a thickening of the cortex. Concurrently,an increase in total cross sectional area of metaxylem elementswas obtained. It is assumed that the modification of the internalroot structure by temperature has an effect on both axial andradial water flow capacity. For all anatomical traits studied,variability between genotypes was apparent under both growingconditions. Furthermore, different genotypic responses to temperaturewere observed. However, basic differences between cold-tolerantand cold-sensitive genotypes did not exist. While at high temperatureroot traits and shoot growth were significantly and positivelycorrelated, at low temperature the correlation coefficient wasinsignificant. Consequently, it was not possible to characterizethe performance of the shoot at low temperature based on anatomicaltraits of the root. Moderate, positive correlation coefficientswere obtained between internal root traits and lateral rootbranching. The potential use of root anatomical traits as indirectselection criteria is discussed. Chilling tolerance, genotypes, root anatomy, Zea mays L  相似文献   

6.
Summary The improvement of rate of seedling emergence and early seedling growth of maize (Zea mays L.) under cool conditions has been an objective of breeding programs in cool regions for many years. To study inheritance of emergence time, and to determine if differences in emergence time were due to differences in seedling growth, F1, F2 and backcross generations of a diallel cross of two rapidly emerging lines from CIMMYT Pool 5, 5-113 and 5-154, and two elite Corn Belt Dent lines, A619 and A632, were grown in controlled environment rooms at low temperatures.The lines from Pool 5 emerged significantly faster than A619 and A632 over a range of low temperature conditions. This difference occurred both when the lines themselves were tested and when the lines were tested as male and female parents in crosses. The Pool 5 lines converted a higher proportion of their original seed to new root and shoot tissue than did A619 and A632, indicating that they had a faster seedling growth rate. Primarily this was due to a faster loss of seed reserve, rather than a more efficient conversion process.A significant difference occurred between A619 and A632 for emergence time, but this was not due to a difference in seedling growth rate.Reciprocal differences occurred only in the F1 generation in crosses involving A619, and then marked effects could be attributed to the male parent. Reciprocal differences tended to disappear in the F2. This suggested that the genotype of the embryo and endosperm was of much greater importance than the genotype of the maternal parent in determining differences of time to emergence and seedling growth.Mid-parent heterosis occurred for time to emergence and seed loss, a measure of mean rate of utilization of seed reserve, in all crosses. High parent heterosis occurred in several crosses for these traits. High parent heterosis occurred in all crosses for efficiency of utilization of seed reserve.A generation means analysis indicated that both additive and dominance effects were present for rate of seedling growth in crosses between A632 and the Pool 5 lines.  相似文献   

7.
The effects of nitrogen supply on the growth and nitrogen contentsof four cultivars of Zea mays L. of different origins were examinedunder water-culture conditions at the seedling stage. Seedlingsof cultivars CNIA12, LG11, Tusa Finn, and UNPHU XC301 were grownunder three different relative addition rates of nitrogen. Growthparameters were determined by means of functional growth analysisconducted on 10 to 19 d-old seedlings. No differences in relativegrowth rates were found among cultivars when nitrogen supplywas high. However, at the lowest rate of nitrogen supply, TusaFina and LG11 showed lower relative growth rates than CNIA12and UNPHU XC301, where relative growth rates were sustainedeven at the lowest rate of nitrogen supply, due to a higherunit leaf rate. The higher unit leaf rate of these two cultivarscorresponds directly to higher leaf and plant nitrogen contents.High positive correlations were found between plant nitrogencontents and both relative growth rate and unit leaf rate. Theresults suggest a potential for selection of genotypes withimproved performance under conditions where high rates of nitrogen-fertilizerapplication are too costly or not desirable.Copyright 1994,1999 Academic Press Maize, Zea mays, growth analysis, maize, nitrogen nutrition, nitrogen content, relative addition rates, relative growth rates, unit leaf rate  相似文献   

8.
The effects of 10 mM nitrate on the growth and nitrogenous componentsof Zea mays L. var. W64A wild type (normal) were compared tothose on its opaque-2 (high lysine) mutant during the first10 d of seedling growth at a constant temperature of 26 °Cand with a 16 h photoperiod. Nitrate supply had no effect onthe growth of embryonic axes in both lines till day 6. Growthof both lines was enhanced slightly after that time, however.Increases in 80% (v/v) ethanolsoluble and protein nitrogen werealso observed only after day 4 when the supply of nitrogen fromthe storage proteins in the endosperm was limiting. Nitratehad no effect on the synthesis of chlorophyll during leaf developmentbut it did increase the total chlorophyll in mature and senescingprimary leaves. The increase in nitrogenous components or chlorophyllin opaque-2 was more pronounced than in the normal type. Itmight be related to the lower proline or higher lysine in themutant.  相似文献   

9.
Ammonium Tolerance and Carbohydrate Status in Maize Cultivars   总被引:7,自引:2,他引:5  
Four maize (Zea mays L.) hybrids were grown hydroponically for4 weeks with 20 mM ammonium or nitrate as the sole nitrogensource. Dry matter production was strongly depressed by ammoniumnutrition in the hybrid Helga relative to plants grown on nitrate,and moderately decreased in the hybrid Melina. Ammonium hadno inhibitory effect on total yield in the other two hybrids(Ramses and DK 261). The relative growth rate (RGR) of rootsand shoots of the sensitive hybrid Helga decreased significantlyunder ammonium nutrition during the first 2 weeks of the experiment,while at the end of the experiment nitrogen form had no effecton the RGR in any of the four hybrids. The strong reductionin RGR of Helga in the early seedling stage was correlated withthe accumulation of twice the concentration of free ammoniumin the shoot tissue relative to the other hybrids. Helga wastherefore unable to sufficiently detoxify ammonia in the roots.Root concentrations of water soluble carbohydrates (WSC) inHelga and Melina in the early seedling stage did not differunder ammonium and nitrate nutrition. In contrast, Ramses andDK 261 both had elevated WSC concentrations in ammonium-fedroots. It is hypothesized that a sufficient supply of carbonskeletons for ammonium assimilation in the roots is requiredfor maximum growth under high ammonium concentrations, and thatthere is genotypic variability in this physiological trait. Ammonium; carbohydrates; growth rate; maize; nitrate; roots; Zea mays L  相似文献   

10.
The plasticities of 16 characters were studied in four maize(Zea mays, L.) hybrids grown at seven equidistant spacings andat four growth stages in 1 year. Plasticity was a measure ofthe extent to which the expression of a character was modifiedby changes in plant density. The hybrids differed in their plasticitiesfor all characters studied. Furthermore, the characters of ahybrid showed different plasticities. The most plastic characterswere grain yield per plant and yield per unit area, and theleast plastic were ear row number and ear height. The hierarchyof plasticities was essentially identical in all hybrids. Thedouble-cross hybrids showed non-significantly higher mean plasticitiesthan the less heterogeneous genotypes M.C. 101 and Warwick SL209.  相似文献   

11.
Employing the procedures of growth analysis further pot experimentson hybrid vigour in Zea mysa have been conducted in a glasshouse.By serial sampling the changes in plant weight and leaf areahave been followed for six hybrids and their immediate parentsof either dent or flint type. Within 2–3 weeks from sowingthe relative growth-rate (RGR) of the hybrid was significantlygreater in four out of the six triplets and in the remainingtwo the rate for the hybrid exceeded that of one parent. Thesedifferences diminished with time but when observations ceasedat the end of 7 weeks the weight and area of the hybrid wasfrom 1.5 to 1.9 times greater than that of the larger parent.By this time too all but one of the hybrids but none of theparents were in flower. The two components of growth, the leaf-area ratio (LAR) andthe net assimilation rate (NAR) did not differentiate in a consistentmanner between the hybrid and the parents, because of the considerablevariation between emergence and flowering. All the hybrids atsome time up to 28 days had a significantly higher LAR thanthose of one or both parents. Similarly for NAR on no occasionup to 4 weeks did any parent exceed the level of the hybridbut for some hybrids and for some occasions the NAR was significantlyhigher than that of at least one of the parents. Later for bothparameters none of the differences within triplets were significant. A flint and a dent triplet were grown at constant air temperaturesof 10, 15, and 20 °C and illuminated for 14 h at 22 600lx and sampled during the vegetative phase. The results showedthat there were marked differences in the temperature responseswithin and between triplets. The flint hybrid grew faster thanits parents at 15 and 20 °C but not at 10 °C. In contrast,the superiority of the RGR of the dent hybrid was greatest at10 °C. These differences are largely reflected by changesin NAR rather than LAR. The higher NAR of the flint hybrid isfound at 15 and 20 °C, but the superiority of the dent hybridis most evident at 10 °C. The comparative performance within one triplet was examinedfor small and large grains. The patterns of change in the growthcomponents were not influenced by grain size. The interacting effects of genotype, stage of development, andtemperature level are discussed. It is concluded that in thefield the over-riding factor determining hybrid vigour is thehigher RGR in the postemergence phase and that the genetic variationover the six triplets is greater for NAR than LAR.  相似文献   

12.
F1 hybrids of Sorghum bicolor (L.) Moench and their inbred parentswere analysed for NADH-nitrate reductase activity during theearly stages of seedling growth. In all the hybrids both mid-parentaland better parental heterosis were discernible in shoots whereasin roots two hybrids out of the three tested, showed heteroticlevels. It is suggested that in sorghum nitrate reductase activityduring seedling stages can be used as a biochemical criterionfor evaluating hybrid vigour. Sorghum bicolor (L.) Moench, sorghum, hybrid vigour, nitrate reductase  相似文献   

13.
The efficacy of Bacillus thuringiensis-transformed corn (Zea mays L.) hybrids compared with comparable nontransformed corn hybrids for controlling first- and second-generation European corn borer, Ostrinia nubilalis (Hübner), and second-generation southwestern corn borer, Diatraea grandiosella Dyar, was determined. Yield comparisons were obtained from the same plots of corn hybrids. Both generations of European and the second-generation of southwestern corn borer were effectively controlled, but the Bt hybrids varied in degree of control. Hybrids from Ciba Seeds, DEKALB, and Mycogen had more European corn borer tunneling than those from Novartis or Cargill, and this was generally ascribed to different transgenic events. The Bt-transformed hybrids had virtually no leaf-feeding damage and less tunneling than the non-Bt corn hybrids. Some Bt corn hybrids had no tunneling, whereas other Bt hybrids had a small amount of tunneling. All of the non-Bt hybrids had significant leaf-feeding damage and stalk tunneling from both insects. Only three live European corn borer larvae (stunted) were found in the Bt corn hybrids while splitting stalks to assess tunnel length. When insect damage was significant, and in some evaluations where damage was not significant, differences in yields among hybrids were observed. No significant insect population differences were observed for five genera of beneficial insects for Bt versus non-Bt corn hybrids. Corn hybrids that have been transformed with the Bt gene provide an effective means of control for corn borers and efforts to reduce the likelihood of development of borer resistance are warranted.  相似文献   

14.
Seed swelling, germination, root extension, lateral root initiationand shoot growth were studied in soils of different water contents,using non-destructive, serial neutron radiography. Seeds fromthree varieties of soya beans (Glycine max L.) and one varietyeach of maize (Zea mays L.) and vetch (Vicia sativa L.) wereused. The seeds germinated when they had increased in size bya certain amount, if germination is taken as the time when theradicle first appears. The rate at which roots and shoots extendalso depend on soil water content. Glycine max L., Vicia sativa L., Zea mays L., Soya bean vetch, maize, seed germination, root extension, lateral root initiation, neutron radiography  相似文献   

15.
Allozyme polymorphisms of maize populations from southwestern China   总被引:4,自引:0,他引:4  
Maize (Zea mays L.) is one of the most-important food crops in southwestern China. The diversity of maize populations from southwestern China has been evaluated on the basis of agronomic and morphological data, but not on marker data. Our objectives were to evaluate the allozyme polymorphism of these populations, and group the populations on the basis of allozyme data. We analyzed 27 maize populations from southwestern China and two populations [BS13(S)C2 and Lancaster] from the USA for genetic variation at 18 allozyme loci. We found a total of 69 alleles at 18 allozyme loci with an average of 3.8 alleles per locus. Compared with inbreds, hybrids, and populations from the U.S. Corn Belt, the 27 Chinese populations had a significantly higher (p<0.01) number of allozyme alleles per locus. Maize populations from southwestern China have accumulated abundant genetic diversity, and might be valuable germplasm for broadening the genetic base of U.S. Corn Belt breeding germplasm. The analyses of allele-frequency distributions and the expected heterozygosity also reflected the differences between the Chinese and the U.S. germplasm. The Chinese populations might be valuable germplasm for complementing U.S. Corn Belt breeding germplasm. The analysis of gene diversity showed that 77% of the allozyme variation resided within populations and 23% between populations. This result suggested that breeders should identify one or a few Chinese populations with the best agronomic performance, and exploit the genetic variation within these selected populations. Cluster analysis classified the 29 populations into four main groups. Groupings based on allozyme data could be useful for classifying the populations into different heterotic groups and, consequently, exploiting them in hybrid breeding. Received: 12 October 2000 / Accepted: 13 March 2001  相似文献   

16.
Seminal roots of Zea mays L. show curved growth, i.e. waving,meandering and spiral growth, when water cultured. Root curvaturewas accelerated by exogenously applied indole-3-acetic acidat 10–9 M and gibberellic acid at 10–6M; this curvaturedisappeared when 10–7 M p-chlorophenoxyisobutyric acidwas added. Roots curved more when the tops of seedlings wereexposed to light than when the tops of seedlings were covered.These results suggest that auxin may induce root curvature. (Received February 29, 1980; )  相似文献   

17.
WOLFE  DAVID W. 《Annals of botany》1991,67(3):205-212
Two chilling-sensitive (Phaseolus vulgaris L., Zea mays L.)and two chilling-tolerant (Pisum sativum L., Spinacia oleraceaL.) species were raised in growth chambers under warm (28/18°Cday/night cycle) and cool (18/12°C) temperature regimes.Growth analysis techniques were used to evaluate leaf area andbiomass partitioning during early autotrophic growth. Plantsacclimated to both temperatures were measured for leaf gas exchangeand water potential (  相似文献   

18.
Maize (Zea mays L.) productivity under drought stress dependsto some extent upon a hybrid's capacity to produce and translocateassimilate to its developing kernels during the stress periodand/or after the stress is relieved. The objective of this studywas to evaluate differences in carbon and nitrogen accumulationand partitioning under drought stress among maize hybrids thatdiffer in yield potential and/or physiological metabolism duringreproductive development. The hybrids B73 x LH38, FS854, B73xMol7and US13 were subjected to drought stress from the 7th leafstage until pollination was completed, at which time the soilof the stressed plots was replenished with water. For d. wtand chemical constituent determinations, plants of each hybridwere harvested from the irrigated and drought stressed plotsat silking, mid-grain fill, and physiological maturity. Averagedover hybrids, vegetative biomass at silking was reduced 25%as a result of the drought stress treatment, with B73 x LH38and FS854 accumulating more total biomass during the later portionof grain fill than the other two hybrids under both soil moisturetreatments. At silking, the total non-structural carbohydratecontent of the hybrids' vegetative tissue was not changed asa result of drought stress, whereas their reduced nitrogen (N)contents were decreased by an average of 33%. B73 x LH38 andFS854 had greater grain carbohydrate and reduced N contentsunder irrigation and smaller decreases in those variables asa result of soil moisture deficit than did the other two hybrids.These results indicate that the greater drought tolerance ofB73 x LH38 and FS854 to stress imposed during vegetative andearly reproductive development resulted from their more activeN uptake and assimilation and sugar production during the laterportion of grain fill and from their more efficient partitioningof assimilate to the developing kernels. Zea mays L., maize, drought stress, nitrogen, carbohydrates, hybrids, partitioning  相似文献   

19.
Dry weight of plant fractions, leaf area, leaf number and tillernumber were recorded throughout primary growth and two subsequentre-growths of hybrid Pennisetum (Pennisetum americanum x P.purpureum) at five temperature regimes from 15/10 °C to33/28 °C (day/night) in summer and winter. Seedling mortality occurred at 15/10 °C, whereas at allhigher temperatures seedlings survived and plants re-grew aftercutting at a height of 10 cm. Shoot weights increased with temperatureup to 33/28 °C when compared at a common chronological agebut showed no differences at a common developmental age. Thetemperature response was associated with increased top/rootratio and rate of leaf appearance; mean individual leaf areaand NAR did not increase beyond 27/22 °C. Shoot weight incrementsin primary growth were the same in winter and summer when expressedper unit of radiation, although leaf area per unit weight wassensitive to changes in radiation associated with differencesin daylength. The rate of shoot weight accumulation in regrowthwas greater than in primary growth because of rapid tilleringfollowing defoliation and an enhanced rate of leaf appearanceper tiller. Pennisetum hybrid, tallgrass, growth, regrowth temperature response  相似文献   

20.
The effects of different temperatures on the development ofmetaxylem were studied in the primary seminal root of winterwheat (Triticum aestivum L.) seedlings. Xylem development wasstudied microscopically at different distances behind the rootapex after safranin staining to reveal lignification. Diameter of the central late metaxylem (LMX) and its proportionto the stele cross-sectional area increased in the acropetaldirection. Diameter of the LMX and stele decreased with an increasein growing temperature. Numbers of early metaxylem (EMX) wereseven, seven and six at 10, 20 and 30 C, respectively. EMXwas lignified much more rapidly than the LMX along the seminalroot axes. Lignification of xylem elements commenced furthertowards the root apex at the higher temperatures. The LMX vesselsof the roots grown at the higher temperature had thicker secondarywalls. The relative conductivity of seminal roots, calculated fromPoiseuille's equation, decreased as growing temperature increased.In a drought-prone environment where wheat plants rely heavilyon stored soil water, a lowered axial conductivity in the rootswould be advantageous. The plants would tend to conserve waterduring vegetative growth for use during the critical periodsof flowering and grain-filling. Breeders selecting wheat plants for altered LMX diameters shouldcontrol temperatures during primary root development, sectionthe roots at the same distance from the tip and be aware thatcross walls may exist in the LMX for up to 30 cm from the tip. Wheat, Triticum aestivum L., roots, xylem development, hydraulic conductivity, temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号