首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Initial attempts at haplo-identical transplantation with T-cell replete bone marrow (BM) were associated with a high transplant-related mortality (TRM), mainly caused by severe graft-versus-host disease (GvHD), and previous efforts to prevent GvHD by ex vivo T-cell depletion of haplo-identical BM were associated with a high risk of graft failure and other complications. Improvements in large-scale T-cell depletion techniques of haplo-identical peripheral mobilized stem cells (PBSC) have overcome the human leukocyte antigen (HLA) barrier by using megadose numbers of stem cells obtained by either highly purified CD34(+) selection or negative depletion of T cells. In addition, recent insights into the role of graft-facilitating and anti-leukemic alloreactive natural killer (NK) cells, the permanent availability of the haplo-identical donor post-transplant and continuous improvements in graft-engineering techniques for the generation of effector cells for post-transplant adoptive transfer, have facilitated the development of strategies to decrease regimen-related toxicity through the use of less intensive preparative regimens, prevent severe infections by rebuilding the immune system and decrease the risk of relapse by exploiting the alloreactivity of donor NK cells and other donor-derived effector cells.  相似文献   

2.
Mantle cell lymphoma (MCL) is an aggressive B-cell neoplasm with few patients achieving long-term survival with current treatment regimens. High-dose therapy is effective in reducing the tumor burden; however, patients eventually relapse due to minimal residual disease. Having demonstrated efficacy in other malignancies, the effectiveness of dendritic cell-based immunotherapy for minimal residual MCL was examined. We demonstrated that dendritic cells (DC) primed with MCL antigens stimulated the activation of MCL-specific T cells that recognized and destroyed both MCL cell lines and primary MCL in vitro. In addition, in vivo studies demonstrated that adoptively transferred MCL-specific T cells were able to significantly inhibit tumor growth in mice with minimal residual MCL. Subsequently, when combined with CHOP chemotherapy, adoptive T-cell therapy was able to significantly extend the survival of the mice by further reducing the tumor burden. These results clearly show that MCL-specific cellular immunotherapy is effective in treating minimal residual MCL, paving the way for future clinical studies.  相似文献   

3.
Poor immune reconstitution after haplo-identical stem cell transplantation results in high mortality from viral infections and relapse. One approach to overcome this problem is to deplete alloreactive cells selectively by deleting T cells activated by recipient stimulators, using an immunotoxin directed against the activation marker CD25. However, the degree of depletion of alloreactive cells is variable following stimulation with recipient PBMC, and this can result in GvHD. We have shown that using recipient EBV-transformed LCL as stimulators to activate donor alloreactive T cells results in more consistent depletion of in vitro alloreactivity while preserving T-cell responses to viral and potential myeloid tumor Ag. Based on these data, we have embarked on a phase I clinical dose escalation study of add-back of allo-LCL-depleted donor T cells in the haplo-identical setting, to determine if the allodepletion we achieve to allow infusion of sufficient T cells to restore useful antiviral/anti-leukemic responses without causing GvHD. Fifteen patients have so far been treated. The incidence of significant acute or chronic GvHD has been low (2/15), as has mortality from infection (1/15). Preliminary data show accelerated immune reconstitution in dose level 2 patients. Infused allodepleted donor T cells appear able to expand significantly in the face of viral reactivations, and doses as low as 3 x 10(5)/kg may be sufficient to confer useful antiviral immunity in this setting. At a median follow-up of 19.5 months, nine of 15 patients are alive and disease-free. Five patients have relapsed, all of whom have died.  相似文献   

4.
Background aimsImmunomagnetic cell selection (ICS) of CD34+ cells is being used increasingly in allogeneic transplantation in order to reduce T-cell quantity. The aim of this study was to evaluate an automated washing protocol before immunomagnetic selection.MethodsThe automated method was compared with a conventional washing procedure. In the study group the cell processing using the automated procedure, both before and after antibody incubation, was performed with a Sepax S-100 device. The efficacy of the automated procedure was compared with the control group, where washing were performed using a standard method.ResultsThe results obtained after pre-incubation washing performed using the automated system showed a total nucleated cell (NC) and CD34+ cell recovery of 84.87% (71.80–105, SD 8.62; range, standard deviation) and 83.45% (47–109, SD 16.12), respectively. The NC and CD34+ cell recovery after the pre-incubation washing cycle was performed using the standard method was 75.54% (38.36–97.76, SD 22.5) and 61.51% (30.87–81.79, SD 19.3), respectively. The CD34+ cell recovery after ICS was 51.27% (13.77–98.82, SD 24.97) and 48.89% (15.57–88.24, SD 25.91) for group 1 and group 2, respectively. The average purity in group 1 was 86.46% (67.4–96.10, SD 13.07) and in group 2 84.97% (58.1–97.8, SD 15.58). Conclusions. The efficacy of the ICS led to an optimal purity without affecting cell recovery, which was higher in group 1. Overall, our data suggest that the automated method is suitable for washing hematopoietic progenitor cell apheresis (HPC-A) concentrates before immunomagnetic cell selection in daily clinical routines.  相似文献   

5.
Allogeneic bone marrow transplant is a life-saving procedure for adults and children that have high-risk or relapsed hematological malignancies. Incremental advances in the procedure, as well as expanded sources of donor hematopoietic cell grafts have significantly improved overall rates of success. Yet, the outcomes for patients for whom suitable donors cannot be found remain a significant limitation. These patients may benefit from a hematopoietic cell transplant wherein a relative donor is fully haplotype mismatched. Previously this procedure was limited by graft rejection, lethal graft-versus-host disease, and increased treatmentrelated toxicity. Recent approaches in haplo-identical transplantation have demonstrated significantly improved outcomes. Based on years of incremental preclinical research into this unique form of bone marrow transplant, a range of approaches have now been studied in patients in relatively large phase Ⅱ trials that will be summarized in this review.  相似文献   

6.
The development of laboratory tests for the diagnosis and monitoring of graft-vs-host disease (GVHD) is hampered by a lack of knowledge of minor histocompatibility Ags triggering alloresponses. We hypothesized that the unique molecular structure of the TCR could be used as a marker for the unidentified Ags and exploited for molecular monitoring of GVHD posttransplant. To identify alloreactive T cell clones, we performed in vitro allostimulation cultures for a cohort of patients undergoing hemopoietic stem cell transplantation and determined the sequence of the CDR3 of immunodominant alloreactive clones; 10 corresponding clonotypes restricted to activated T cells were identified. As an alternative method for the identification of alloreactive clones, molecular TCR analysis was applied to biopsies of GVHD-affected tissues. Culture- and biopsy-derived clonotypes were used to design sequence-specific quantitative PCR assays to monitor the levels of putative allospecific clonotypes in posttransplant blood samples and subsequent biopsies. Because of the rational design of the methods used to identify immunodominant clonotypes, we were able to follow the behavior of potentially GVHD-specific T cells during the transplant course. Based on our results, we conclude that molecular T cell diagnostics can be a powerful tool for monitoring immune responses posttransplantation.  相似文献   

7.
Corneal opacities are a leading cause of global blindness. They are conventionally treated by the transplantation of donor corneal tissue, which is, restricted by a worldwide donor material shortage and allograft rejection. Autologous adult stem cells with a potential to differentiate into corneal stromal keratocytes (CSKs) could offer a suitable choice of cells for regenerative cell therapy. Postnatal periodontal ligament (PDL) contains a population of adult stem cells, which has a similar embryological origin as CSK, that is cranial neural crest. We harvested PDL cells from young adult teeth extracted because of non‐functional or orthodontic reason and differentiated them towards CSK phenotype using a two‐step protocol with spheroid formation followed by growth factor and cytokine induction in a stromal environment (human amnion stroma and porcine corneal stroma). Our results showed that the PDL‐differentiated CSK‐like cells expressed CSK markers (CD34, ALDH3A1, keratocan, lumican, CHST6, B3GNT7 and Col8A2) and had minimal expression of genes related to fibrosis and other lineages (vasculogenesis, adipogenesis, myogenesis, epitheliogenesis, neurogenesis and hematogenesis). Introduction of PDL spheroids into the stroma of porcine corneas resulted in extensive migration of cells inside the host stroma after 14‐day organ culture. Their quiescent nature and uniform cell distribution resembled to that of mature CSKs inside the native stroma. Our results demonstrated the potential translation of PDL cells for regenerative corneal cell therapy for corneal opacities.  相似文献   

8.
Reconstitution of the T cell repertoire after allogeneic stem cell transplantation is a long and often incomplete process. As a result, reactivation of Epstein-Barr virus (EBV) is a frequent complication that may be treated by adoptive transfer of donor-derived EBV-specific T cells. We generated donor-derived EBV-specific T cells by stimulation with peptides representing defined epitopes covering multiple HLA restrictions. T cells were adoptively transferred to a patient who had developed persisting high titers of EBV after allogeneic stem cell transplantation for angioimmunoblastic T-cell lymphoma (AITL). T cell receptor beta (TCRβ) deep sequencing showed that the T cell repertoire of the patient early after transplantation (day 60) was strongly reduced and only very low numbers of EBV-specific T cells were detectable. Manufacturing and in vitro expansion of donor-derived EBV-specific T cells resulted in enrichment of EBV epitope-specific, HLA-restricted T cells. Monitoring of T cell clonotypes at a molecular level after adoptive transfer revealed that the dominant TCR sequences from peptide-stimulated T cells persisted long-term and established an EBV-specific TCR clonotype repertoire in the host, with many of the EBV-specific TCRs present in the donor. This reconstituted repertoire was associated with immunological control of EBV and with lack of further AITL relapse.  相似文献   

9.
As costly stem cell treatments progress from experimental concepts toward licensed products and routine procedures, governmental and private payers grapple with shrinking budgets to cover more lives. We describe efforts underway in the US to create mechanisms for reimbursement of cell therapies and discuss other reimbursement-related issues for the stem cell community.  相似文献   

10.
Yu J  Ren X  Cao S  Li H  Hao X 《Cytotherapy》2008,10(4):331-339
Background Previous studies have shown that activated haplo-identical peripheral blood stem cell (haplo-PBSC) treatment exerts an anti-tumor effect on patients with metastatic solid tumors. The purpose of this study was to test the hypothesis that fetal-maternal microchimerism enhances the beneficial effect of the haplo-PBSC treatment for cancer. Methods Twenty-five patients with advanced-stage solid tumors refractory to standard chemotherapy were treated with haplo-PBSC donated by parents or children. Fetal-maternal microchimerism status was determined using nested polymerase chain reaction typing using sequence-specific primers (PCR-SSP). Clinical outcomes, including therapeutic response by measuring tumor size changes using CT scanning and survival times, were evaluated. The donor-recipient mixed lymphocyte response (MLR) was detected using an MTT proliferation assay. Cytokine production was determined using an ELISA method. Results Six patients receiving maternal-child transplants were fetal-maternal microchimerism positive (+). The mean survival time of patients with the microchimerism(+) haplo-PBSC treatment was 30.17+/-5.32 months (median 17 months), which was significantly longer than that of patients with negative (-) microchimerism (mean 16.95+/-3.29 months, median 8 months; P=0.043). The therapeutic response rate was significantly higher in microchimerism(+) patients (83.3%) than that in microchimerism(-) patients (36.8%) (P=0.047). Furthermore, suppression of donor-recipient MLR and increased production of a T-helper type 1 (Th1) type cytokine, interferon (IFN)-gamma, were found in microchimerism(+) patients after haplo-PBSC treatment. Discussion This small study suggests that fetal-maternal microchimerism is associated with a statistically significant improvement in anti-tumor effect of activated haplo-PBSC treatment. Further study is required to elucidate the mechanism for this observation.  相似文献   

11.
Background aimsHuman umbilical cord blood-derived stromal cells (hUCBDSC) comprise a novel population of CD34+ cells that has been isolated in our laboratory. They have been shown previously not only to be non-immunogenic but also to exert immunosuppressive effects on xenogenic T cells in vitro. This study investigated the role of hUCBDSC in immunomodulation in an acute graft-versus-host disease (GvHD) mouse model after haplo-identical stem cell transplantationMethodsAcute GvHD was induced in recipient (B6 × BALB/c)F1 mice by irradiation (750 cGy) followed by infusion of bone marrow cells and splenocytes from donor C57BL/6 mice. hUCBDSC were co-transplanted in the experimental group. The survival time, body weight and clinical and histopathologic scores were recorded after transplantation. The expression of surface markers [major histocompatibility complex (MHC) I, MHC II, CD80 and CD86] on CD11c+ dendritic cells (DC), and the percentage of CD4+ regulatory T cells (Treg), in the spleens of recipient mice were examined by flow cytometryResultsThe survival time was significantly prolonged, and the clinical and histopathologic scores were reduced in mice co-transplanted with hUCBDSC. The expression levels of the surface markers on DC were significantly lower in mice transplanted with hUCBDSC compared with those without. The proportion of CD4+ Treg in the spleen was also increased in mice transplanted with hUCBDSCConclusionsThese results from a GvHD mouse model are in agreement with previous in vitro findings, suggesting that hUCBDSC possess immunosuppressive properties and may act via influencing DC and CD4+ Treg.  相似文献   

12.
Idiotypic vaccination as a treatment for a B cell lymphoma   总被引:6,自引:0,他引:6  
To develop a model for the active immunotherapy of human B cell malignancy we vaccinated tumor-bearing animals with a well defined tumor associated Ag, the idiotypic Ig. The tumor used was the mouse B cell lymphoma BCL1, a highly malignant tumor in which transfer of a single tumor cell to a syngeneic mouse is capable of causing disease and eventual death. Varying doses (10(2) to 10(4] of BCL1 cells were given to mice on day 0 of the experiment, and treatment by active immunization was initiated on day 3. Immunization with purified, tumor-derived, idiotypic IgM (BCL1 IgM) coupled to keyhole limpet hemacyanin (KLH) was highly effective in treating mice challenged with 10(2) or 10(3) BCL1 cells, but less effective in mice that had received 10(4) tumor cells. Immunization with unconjugated BCL1 IgM showed no signficant therapeutic benefit. Coupling of the IgM to KLH led to higher levels of anti-idiotypic antibody after immunization; however, the higher levels were probably not responsible for the control of the malignancy as there was no correlation in healthy immunized animals between the levels of anti-idiotypic antibody, measured immediately before tumor challenge, and survival. This lack of correlation is due to the emergence of variant tumors in such protected mice. A more significant factor in the therapeutic advantage of KLH conjugation could be that immunization with BCL1 IgM-KLH led to an earlier induction of the anti-idiotypic response than immunization with BCL1 IgM and, as the BCL1, lymphoma divides rapidly, the speed of induction of the immune response may be important in outstripping tumor cell growth. Mice with BCL1 tumour showed some evidence of immunosuppression as indicated by a reduced ability to mount an immune response against KLH. Although it is not possible to model spontaneous human lymphoma accurately, the generation of a functional anti-idiotypic response capable o eliminating a malignant animal lymphoma in situ opens up the possibility of a limited trial of active immunotherapy in selected human patients.  相似文献   

13.
Tumours employ a variety of immune-evasion and suppression mechanisms to impair development of functional tumor-specific T cells and subvert T cell-mediated immunity in the tumour microenvironment. Adoptive T cell therapy (ACT) aims to overcome these barriers and overwhelm tumor defenses with a bolus of T cells that were selectively expanded ex vivo. Although this strategy has been effective in liquid tumors and melanomas, many tumors appear to be resistant to ACT. Several factors are thought to play into this resistance, including poor engraftment and persistence of transferred cells, tumour cell heterogeneity and antigen loss, poor immune cell recruitment and infiltration into the tumour, and susceptibility to local immunosuppression in the tumor microenvironment. Oncolytic viruses (OV) have been identified as powerful stimulators of the anti-tumour immune response. As such, OVs are inherently well-positioned to act in synergy with ACT to bolster the anti-tumour T cell response. Further, OV vaccines, wherein tumour-associated antigens are encoded into the viral backbone, have proven to be remarkable in boosting antigen-specific T cell response. Pre-clinical studies have revealed remarkable therapeutic outcomes when OV vaccines are paired with ACT. In this scenario, OV vaccines are thought to function in a “push and pull” manner, where push refers to expanding T cells in the periphery and pull refers to recruiting those cells into the tumour that has been rendered amenable to T cell attack by the actions of the OV. In this review, we discuss barriers that limit eradication of tumors by T cells, highlight attributes of OVs that break down these barriers and present strategies for rational combinations of ACT with OV vaccines.  相似文献   

14.
《Cytotherapy》2022,24(8):841-849
B cell acute lymphocytic leukemia (B-ALL) patients who have relapsed after hematopoietic stem cell transplantation (HSCT) have a poor prognosis, and there is currently no standard approach available. Chimeric antigen receptor (CAR)-T cells induce high rates of initial response and long-term remission among patients with B-cell malignancies, especially B-ALL. Meanwhile, sequential infusion of CAR19/22 T cells has been proven to be effective at preventing tumor immune escape. In the present study, we retrospectively analyzed 23 B-ALL patients who relapsed after allogeneic (allo)-HSCT and underwent sequential infusion of CAR19/22 T cells, including nine donor-derived and 14 recipient-derived, in our center from July 2016 to July 2020, to evaluate the safety and efficacy of the cocktail of two single-specific CAR-T cells in B-ALL patients relapsed after transplantation. Except for one patient refusing evaluation, the remaining 22 patients achieved minimal residual disease (MRD)-negative complete remission within 30 days after CAR-T infusion. Most toxicities were slight and reversible. The estimated 12-month progression-free survival (PFS) rate was 59.2% (95% confidence interval [CI], 35.9% to 76.5%), and the estimated 12-month overall survival (OS) rate was 67.4% (95% CI, 43.2% to 83.1%). Only two patients had CD19-negative recurrence. In addition, early recurrence after transplantation, graft-versus-host disease (GVHD) and severe infection after CAR-T infusion were poor prognostic factors. Our results indicate that sequential infusion of CAR19/22 T cells is safe and effective for relapsed ALL patients after HSCT. This trial was registered at www.chictr.org.cn as #ChiCTR-OPN-16008526.  相似文献   

15.
Cellular immune therapy for severe autoimmune diseases can now be considered when such patients are refractory to conventional treatment. The use of autologous stem cell transplantation (ASCT) to treat human autoimmune diseases has been initiated following promising results in a variety of animal models. Anecdotal observations have been made of autoimmune disease remission in patients who have undergone allogeneic bone marrow transplantation as a result of coincidental haematological malignancies. The possibility of inducing immunological self-tolerance by ASCT is particularly attractive as a means for treating juvenile idiopathic arthritis (JIA). In this disease, ASCT restores self-tolerance both through a cell-intrinsic mechanism, involving the reprogramming of autoreactive T cells, and through a cell-extrinsic mechanism, involving a renewal of the immune balance between CD4+CD25+ regulatory T cells and other T cells. This review describes the clinical results of ASCT performed for this disease and the possible underlying immunological mechanisms.  相似文献   

16.
The postulated almost unlimited potential of transplanted hematopoietic stem cells (HSCs) to transdifferentiate into cell types that do not belong to the hematopoietic system denotes a complete paradigm shift of the hierarchical hemopoietic tree. In several studies during the last few years, donor cells have been identified in almost all recipient tissues after allogeneic HSC transplantation (HSCT), supporting the theory that any failing organ could be accessible to regenerative cell therapy. However, the putative potential ability of the stem cells to cross beyond lineage barriers has been questioned by other studies which suggest that hematopoietic cells might fuse with non-hematopoietic cells and mimic the appearance of transdifferentiation. Proof that HSCs have preserved the capacity to transdifferentiate into other cell types remains to be demonstrated. In this review, we focus mainly on clinical studies addressing plasticity in humans who underwent allogeneic HSCT. We summarize the published data on non-hematopoietic chimerism, donor cell contribution to tissue repair, the controversies related to the methods used to detect donor-derived non-hematopoietic cells and the functional impact of this phenomenon in diverse specific target tissues and organs.  相似文献   

17.
Cell replacement and restorative therapies show great promise for the treatment of various diseases and traumas. Various types of stem cells that are rather different in terms of biological properties are evaluated as potential sources for cell therapy. Mesenchymal stem cells (MSCs) display relatively high proliferative activity and high level of plasticity and can be differentiated not only into cells of mesenchymal lineage, but also neurons. Among the MSC populations, the population of endometrial stem cells, including that present in the menstrual blood, is readily available. In the current review, we analyze the biological properties of the menstrual blood stem cells and the possibilities of using them as a potential source for cell therapy.  相似文献   

18.
Mesenchymal stem cells-conditioned media (MSCs-CM) contains several growth factors and cytokines, thus may be used as a better alternative to stem cell therapy, which needs to be elucidated. The present study was conducted to evaluate the therapeutic potential of caprine, canine, and guinea pig bone marrow-derived MSCs-CM in excision wound healing in a guinea pig model. MSCs were obtained from bone marrow, expanded ex vivo and characterized as per ISCT criteria. CM was collected assayed by western blot to ascertain the presence of important secretory biomolecules. Quantitative estimation by enzyme-linked immunosorbent assay was done for a vascular epidermal growth factor (VEGF) and interleukin-6 (IL-6) in caprine MSCs-CM and optimum time for collection of CM was decided as 72 hr. CM from all the species was lyophilized by freeze-drying method. Full-thickness (2 × 2 cm2) excision skin wounds were created in guinea pigs (six animals in each group) and respective lyophilized CM mixed with laminin gel was applied topically at weekly interval. On Day 28, histopathological examinations of healed skin were done by hemotoxylin and eosin staining. MSCs were found to secrete important growth factors and cytokines (i.e., VEGF, transforming growth factor-β1, fibroblast growth factor-2, insulin-like growth factor-1, stem cell factor, and IL-6) as demonstrated by immunohistochemistry and western blot assay. It was found that allogenic and xenogenic application of CM significantly improved quality wound healing with minimal scar formation. Thus, MSCs-CM can be used allogenically as well as xenogenically for quality wound healing.  相似文献   

19.
Wang J  Zhang Q  Zhou R  Chen B  Ouyang J 《PloS one》2012,7(3):e33388

Background and Objectives

Several trials have generated conflicting results about the results of high-dose chemotherapy followed by autologous stem cell transplantation (HDCT) for primary breast cancer. This meta-analysis summarizes the available evidence from all suitable studies.

Design and Methods

Prospective, randomized trials with HDCT as a first-line therapy for primary breast cancer were included in this meta-analysis. The primary outcome of interest for our analysis was survival (disease-free survival and overall survival); secondary endpoints included treatment-related mortality (TRM) and second (non-breast) cancers. We used a median age of 47, a PR positive rate of 50% and a premenopausal rate of 70% as cutoff values to complete the subgroup analyses, which were pre-planned according to the prepared protocol.

Results

Fourteen trials with 5747 patients were eligible for the meta-analysis. Compared with non-HDCT, non-significant second (non-breast) cancers (RR = 1.28; 95% CI = 0.82–1.98) and higher TRM (RR = 3.42; 95% CI = 1.32–8.86) were associated with HDCT for primary breast cancer. A significant DFS benefit of HDCT was documented (HR = 0.89; 95% CI = 0.79–0.99). No difference in OS (overall survival) was found when the studies were pooled (HR = 0.91; 95% CI = 0.82–1.00, p = 0.062). In subgroup analysis, age and hormone receptor status had a significant interaction with prolonged DFS and OS.

Conclusions

HDCT has a benefit on DFS and OS compared to SDC in some special patients with high-risk primary breast cancer.  相似文献   

20.
Adoptive T cell transfer is a potentially effective strategy for treating cancer and viral infections. However, previous studies of cancer immunotherapy have shown that T cells expanded in vitro fall into an exhausted state and, consequently, have limited therapeutic effect. One way to overcome this obstacle is to use induced pluripotent stem cells (iPSCs) as a cell source for making effector T cells. In recent years, there have been several reports on generating effector T cells suitable for adoptive immunotherapy. The reported findings suggest that using iPSC technology, it may be possible to stably derive large numbers of juvenile memory T cells targeted to cancers or viruses. In this review, we describe a strategy for applying iPSC technology to immunotherapy and the characteristics of T cells derived from iPSCs. We also discuss how these technologies can be applied clinically in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号