共查询到20条相似文献,搜索用时 15 毫秒
1.
Rivera SL Vargas E Ramírez-Díaz MI Campos-García J Cervantes C 《Antonie van Leeuwenhoek》2008,94(2):299-305
Chromate-hypersensitive mutants of the Pseudomonas aeruginosa PAO1 strain were isolated using transposon-insertion mutagenesis. Comparison of the nucleotide sequences of the regions interrupted in the mutants with the PAO1 genome revealed that the genes affected in three mutant strains were oprE (ORF PA0291), rmlA (ORF PA5163), and ftsK (ORF PA2615), respectively. A relationship of these genes with chromate tolerance has not been previously reported. No other phenotypic changes were observed in the oprE mutant but its resistance to chromate was not fully restored by expressing the ChrA protein, which extrudes chromate ions from the cytoplasm to the periplasmic space. These data suggest that OprE participates in the efflux of chromate from the periplasm to the outside. Increased susceptibility of the rmlA mutant to the metals cadmium and mercury and to the anion-superoxide generator paraquat suggests a protective role of LPS against chromate toxicity. A higher susceptibility of the ftsK mutant to compounds affecting DNA structure (ciprofloxacin, tellurite, mitomycin C) suggests a role of FtsK in the recombinational repair of DNA damage caused by chromate. In conclusion, the P. aeruginosa genome contains diverse genes related to its intrinsic resistance to chromate. Systems pertaining to the outer membrane (OprE), the cell wall (LPS), and the cytoplasm (FtsK) were identified in this work as involved in chromate protection mechanisms. 相似文献
2.
Alanine racemases are ubiquitous, almost uniquely prokaryotic enzymes catalyzing the racemization between l- and d-alanine. The requirement for d-alanine as a necessary component of the bacterial cell wall makes this class of enzymes a logical target for the development of novel antibiotics. In an effort to better understand the structure and mechanism of these enzymes, we have cloned the two independent alanine racemases from Pseudomonas aeruginosa, an important opportunistic bacterial pathogen of humans and animals. The dadX(PA) and alr(PA) genes have been sequenced, overexpressed, and their activity was demonstrated by complementing d-alanine auxotrophs of Escherichia coli. Both gene products were purified to electrophoretic homogeneity, the enzymes were characterized biochemically, and preliminary crystals were obtained. 相似文献
3.
Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism, such as in DNA replication, repair, and
recombination, and is essential for cell survival. We characterized the single-stranded DNA (ssDNA)-binding properties of
Pseudomonas aeruginosa PAO1 SSB (PaSSB) by using fluorescence quenching measurements and electrophoretic mobility shift analysis (EMSA). Analysis of purified
PaSSB by gel filtration chromatography revealed a stable tetramer in solution. In fluorescence titrations, PaSSB bound 22–32 nucleotides (nt) per tetramer depending on salt concentration. Using EMSA, we characterized the stoichiometry
of PaSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined to be 29 ± 1 nt. Furthermore,
EMSA results indicated that the dissociation constants of PaSSB for the first tetramer were less than those for the second tetramer. On the basis of these biophysical analyses, the ssDNA
binding mode of PaSSB is expected to be noncooperative. 相似文献
4.
Gene organization and functional motif analyses of the 123 two-component system (2CS) genes in Pseudomonas aeruginosa PAO1 were carried out. In addition, NJ and ML trees for the sensor kinases and the response regulators were constructed, and the distances measured and comparatively analyzed. It was apparent that more than half of the sensor-regulator gene pairs, especially the 2CSs with OmpR-like regulators, are derivatives of a common ancestor and have most likely co-evolved through gene pair duplication. Several of the 2CS pairs, especially those with NarL-like regulators, however, appeared to be relatively divergent. This is supportive of the recruitment model, in which a sensor gene and regulator gene with different phylogenetic history are assembled to form a 2CS. Correlation of the classification of sensor kinases and response regulators provides further support for these models. Upon comparison of the phylogenetic trees comprised of sensors and regulators, we have identified six congruent clades, which represent the group of the most recently duplicated 2CS gene pairs. Analyses of the congruent 2CS pairs of each of the clades revealed that certain paralogous 2CS pairs may carry a redundant function even after a gene duplication event. Nevertheless, comparative analysis of the putative promoter regions of the paralogs suggested that functional redundancy could be prevented by a differential control. Both codon usage and G+C content of these 2CS genes were found to be comparable with those of the P. aeruginosa genome, suggesting that they are not newly acquired genes.Reviewing Editor: Dr. Martin Kreitman 相似文献
5.
In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. 相似文献
6.
The ISlacZ/hah transposon carried by pIT2 and derived originally from Tn5 has been a popular system in the generation of random insertion
mutants of Pseudomonas aeruginosa. Using this system in the current study, two transconjugants were identified as conferring high levels of carbenicillin resistance.
Analyses by gene complementation tests and site-specific gene knockout experiments support the conclusion that carbenicillin
resistance in these two mutants is not due to the insertion of ISlacZ/hah transposon into the affected genes. Instead, the production of a TEM β-lactamase was detected, and integration of the
bla gene from pIT2 to the chromosome of the recipient strain was confirmed by polymerase chain reaction. This surprising event
was reproducible, with an estimated frequency among the transconjugants of 4% to 10%, and it may cause a potential complication
in the interpretation of mutant phenotypes without notice. 相似文献
7.
8.
Antipathogenic therapy is an outcome of the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer-dependent
virulent gene expression in bacterial pathogens. N-acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 and violacein pigment production in Chromobacterium violaceum. In the present study, the marine bacterial strain SS4 showed potential QSI activity in a concentration-dependent manner
(0.5–2 mg/ml) against the AHL-mediated violacein production in C. violaceum (33–86%) and biofilm formation (33–88%), total protease (20–65%), LasA protease (59–68%), LasB elastase (36–68%), pyocyanin
(17–86%) and pyoverdin productions in PAO1. The light and confocal laser scanning microscopic analyses confirmed the reduction
of the biofilm-forming ability of PAO1 when treated with SS4 extract. Furthermore, the antibiofilm potential was confirmed
through static biofilm ring assay, in which ethyl acetate extract of SS4 showed concentration-dependent reduction in the biofilm-forming
ability of PAO1. Thus, the result of this study clearly reveals the antipathogenic and antibiofilm properties of the bacterial
isolate SS4. Through 16S rDNA analysis, the strain SS4 was identified as Bacillus sp. (GenBank Accession Number: GU471751). 相似文献
9.
Pseudomonas aeruginosa causes acute and chronic infections in humans and these infections are difficult to treat due to the bacteria’s high-level
of intrinsic and acquired resistance to antibiotics. To address this problem, it is crucial to investigate the molecular mechanisms
of antibiotic resistance in this organism. In this study, a P. aeruginosa transposon insertion library of 17000 clones was constructed and screened for altered susceptibility to seven antibiotics.
Colonies grown on agar plates containing antibiotics at minimum inhibitory concentrations (MICs) and those unable to grow
at 1/2 MIC were collected. The transposon-disrupted genes in 43 confirmed mutants that showed at least a three-fold increase
or a two-fold decrease in susceptibility to at least one antibiotic were determined by semi-random PCR and subsequent sequencing
analysis. In addition to nine genes known to be associated with antibiotic resistance, including mexI, mexB and mexR, 24 new antibiotic resistance-associated genes were identified, including a fimbrial biogenesis gene pilY1 whose disruption resulted in a 128-fold increase in the MIC of carbenicillin. Twelve of the 43 genes identified were of unknown
function. These genes could serve as targets to control or reverse antibiotic resistance in this important human pathogen. 相似文献
10.
11.
Antibiotic synergy against biofilm-forming <Emphasis Type="Italic">Pseudomonas aeruginosa</Emphasis>
Eight antibiotics (aztreonam, ceftazidim, cefoperazon, cefepim, netilmicin, amikacin, ofloxacin and ciprofloxacin) exhibited
antimicrobial activity individually and/or in combinations against 20 wild-type biofilm-forming strains of Pseudomonas aeruginosa. The strains were less susceptible in biofilm; in 10 strains antibiotic synergy was observed for the combination of aztreonam
and ciprofloxacin. Synergy was also demonstrated in the case of β-lactams and aminoglycosides, β-lactams and fluoroquinolones,
aminoglycosides and fluoroquinolones, and for monobactams and β-lactams although the strains were resistant to the individual
antibiotics. Synergism or partial synergism was found with one or more antibiotic combinations against 32.4% of isolates. 相似文献
12.
Young-Joon Lee Hye-Jeong Jang In-Young Chung You-Hee Cho 《Journal of microbiology (Seoul, Korea)》2018,56(8):534-541
Non-mammalian infection models have been developed over the last two decades, which is a historic milestone to understand the molecular basis of bacterial pathogenesis. They also provide small-scale research platforms for identification of virulence factors, screening for antibacterial hits, and evaluation of antibacterial efficacy. The fruit fly, Drosophila melanogaster is one of the model hosts for a variety of bacterial pathogens, in that the innate immunity pathways and tissue physiology are highly similar to those in mammals. We here present a relatively simple protocol to assess the key aspects of the polymicrobial interaction in vivo between the human opportunistic pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, which is based on the systemic infection by needle pricking at the dorsal thorax of the flies. After infection, fly survival and bacteremia over time for both P. aeruginosa and S. aureus within the infected flies can be monitored as a measure of polymicrobial virulence potential. The infection takes ~24 h including bacterial cultivation. Fly survival and bacteremia are assessed using the infected flies that are monitored up to ~60 h post-infection. These methods can be used to identify presumable as well as unexpected phenotypes during polymicrobial interaction between P. aeruginosa and S. aureus mutants, regarding bacterial pathogenesis and host immunity. 相似文献
13.
IN 1969, after carbenicillin had been in use for three years in this unit, highly resistant strains of Pseudomonas aeruginosa were isolated for the first time1. Because these resistant strains included, from their first appearance, representatives of two unrelated types, it seemed likely that the resistance was transferable; this hypothesis was supported by experiments showing the transfer of carbenicillin resistance between Ps. aeruginosa and Escherichia coli K12 in vitro and in vivo2–4;. The resistant Ps. aeruginosa produced a penicillinase (β lactamase) similar to that normally produced by some strains of Enterobacteria and different from that normally produced by Ps. aeruginosa2,3, so it seemed likely that the Ps. aeruginosa had initially acquired resistance by the transfer of an R factor from a carbenicillin-resistant member of the Enterobacteriaceae colonizing the same burn. This hypothesis is now supported by a study on strains of Enterobacteria and Ps. aeruginosa isolated in a number of hospitals. We have also found evidence suggesting that Ps. aeruginosa which has acquired this R factor may not show resistance until it has been exposed repeatedly to carbenicillin. 相似文献
14.
Smita Dube Kamna Nanda Reema Rani Namrata Jit Kaur Jatin Kumar Nagpal Dilip J. Upadhyay Ian A. Cliffe Kulvinder Singh Saini Kedar P. Purnapatre 《World journal of microbiology & biotechnology》2010,26(9):1623-1629
Multi-drug resistant Pseudomonas aeruginosa (MDRPA) are emerging as a major threat in the hospitals as they have become resistant to current antibiotics. There is an
immediate requirement of drugs with novel mechanisms as the pipeline of investigational drugs against these organisms is lean.
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme that catalyzes the first committed step of bacterial cell wall
biosynthesis is an ideal target for the discovery of novel antibiotics against Gram negative pathogens as they have only one
copy of murA gene in its genome. We have performed biochemical characterization and comparative kinetic analysis of MurA from E. coli and P. aeruginosa. Both enzymes were active at broad range of pH with temperature optima of 37°C. Metal ions did not enhance the activity of
both enzymes. These enzymes had an apparent affinity constant (K
m
) for its substrate UDP-N-acetylglucosamine 36 ± 5.2 and 17.8 ± 2.5 μM and for phosphoenolpyruvate 0.84 ± 0.13 μM and 0.45 ± 0.07 μM
for E. coli and P. aeruginosa enzymes respectively. Both the enzymes showed 5–7 fold shift in IC50 for the known inhibitor fosfomycin upon pre-incubation with the substrate UDP-N-acetylglucosamine. This observation was used
to develop a novel rapid sensitive high throughput assay for the screening of MurA inhibitors. 相似文献
15.
Ahmad Ali-Ahmad Olivier Bornet Firas Fadel Yves Bourne Florence Vincent Christophe Bordi Françoise Guerlesquin Corinne Sebban-Kreuzer 《Biomolecular NMR assignments》2017,11(1):25-28
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen. It can infect vulnerable patients such as those with cystic fibrosis or hospitalized in intensive care units where it is responsible for both acute and chronic infection. The switch between these infections is controlled by a complex regulatory system involving the central GacS/GacA two-component system that activates the production of two small non-coding RNAs. GacS is a histidine kinase harboring one periplasmic detection domain, two inner-membrane helices and three H1/D1/H2 cytoplasmic domains. By detecting a yet unknown signal, the GacS histidine-kinase periplasmic detection domain (GacSp) is predicted to play a key role in activating the GacS/GacA pathway. Here, we present the chemical shift assignment of 96 % of backbone atoms (HN, N, C, Cα, Cβ and Hα), 88 % aliphatic hydrogen atoms and 90 % of aliphatic carbon atoms of this domain. The NMR-chemical shift data, on the basis of Talos server secondary structure predictions, reveal that GacSp consists of 3 β-strands, 3 α-helices and a major loop devoid of secondary structures. 相似文献
16.
Background
Pseudomonas aeruginosa is a common pathogen in chronic respiratory tract infections. It typically makes a biofilm, which makes treatment of these infections difficult. In this study, we investigated the inhibitory effects of N-acetylcysteine (NAC) on biofilms produced by P. aeruginosa. 相似文献17.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献
18.
Planktonic and biofilm cells of a clinical urinary isolate of P. aeruginosa were compared in vitro for their ability to adhere to uroepithelial cells, interaction with macrophages, and for production of virulence factors like extracellular proteinase, elastase, hemolysin, phospholipase C and pyochelin. Biofilm cells showed increased adherence to UECs, which was coupled with reduced uptake and intracellular killing by macrophages. Overall there was a decrease in production of extracellular products by biofilm cells. Comparing the two cell forms for their ability to establish infection in an ascending model of acute pyelonephritis, significant enhancement of renal bacterial load, as well as more pronounced renal pathology developed with biofilm cells. 相似文献
19.
Tarun Kumar Verinder Wahla Piyush Pandey R. C. Dubey D. K. Maheshwari 《World journal of microbiology & biotechnology》2009,25(2):277-285
Biological control of the cyst forming nematode Heterodera cajani was studied on sesame using plant growth promoting rhizobacteria (PGPR) Pseudomonas aeruginosa LPT3 and LPT5. Based on plant growth promoting attributes, two fluorescent pseudomonads, LPT3 and LPT5 were evaluated for their efficacy against cyst forming nematode Heterodera cajani that parasitize Sesamum indicum. Pseudomonas aeruginosa LPT5 produced IAA, HCN, chitinase, glucanase and siderophore, and also solubilized inorganic phosphate in vitro. Moreover, LPT5 resulted in mortality of second stage juveniles of H. cajani, which was 13% higher as compared to P. aeruginosa LPT3. Interestingly, when both strains were inoculated together for the management of H. cajani on Sesamum indicum the population of H. cajani was reduced significantly, in field trial. Approximately 60% reduction in cyst and juveniles population was recorded with LPT5 coated seeds, while LPT3 resulted in 49% reduction in cyst and juvenile population as compared to control. Plants grown with seeds bacterized with LPT5 and reduced doses of urea, diammonium phosphate (DAP), muriate of potash (K) and gypsum gave maximum increase in yield, in comparison to that of plants raised under the influence of recommended or full doses of the chemical fertilizers. Pseudomonas aeruginosa LPT5 also showed excellent root colonization. 相似文献
20.
Li Y Kawakami N Ogola HJ Ashida H Ishikawa T Shibata H Sawa Y 《Applied microbiology and biotechnology》2011,90(6):1953-1962
l-aspartate dehydrogenase (EC 1.4.1.21; l-AspDH) is a rare member of amino acid dehydrogenase superfamily and so far, two thermophilic enzymes have been reported.
In our study, an ORF PA3505 encoding for a putative l-AspDH in the mesophilic bacterium Pseudomonas aeruginosa PAO1 was identified, cloned, and overexpressed in Escherichia coli. The homogeneously purified enzyme (PaeAspDH) was a dimeric protein with a molecular mass of about 28 kDa exhibiting a very
high specific activity for l-aspartate (l-Asp) and oxaloacetate (OAA) of 127 and 147 U mg−1, respectively. The enzyme was capable of utilizing both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine
dinucleotide phosphate (NADP) as coenzyme. PaeAspDH showed a T
m value of 48°C for 20 min that was improved to approximately 60°C by the addition of 0.4 M NaCl or 30% glycerol. The apparent
K
m values for OAA, NADH, and ammonia were 2.12, 0.045, and 10.1 mM, respectively; comparable results were observed with NADPH.
The l-Asp production system B consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and E. coli fumarase, achieved a high level of l-Asp production (625 mM) from fumarate in fed-batch process with a molar conversion yield of 89.4%. Furthermore, the fermentative
production system C released 33 mM of l-Asp after 50 h by using succinate as carbon source. This study represented an extensive characterization of the mesophilic
AspDH and its potential applicability for efficient and attractive production of l-Asp. Our novel production systems are also hopeful for developing the new processes for other compounds production. 相似文献