首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of putrescine (Put) on responses of wheat (Triticum aestivum) seedlings or detached tillers at mid-milky stage to high temperature (HT) stress were investigated. The heat tolerant cv. PBW 343 exhibited higher content of antioxidants and activities of antioxidative enzymes, while lower content of lipid peroxides as compared to the heat-sensitive cv. HD 2329. HT elevated peroxidase (POX) and superoxide dismutase (SOD) activities, while diamine oxidase (DAO) and polyamine oxidase (PAO) activities were reduced in roots, shoots and developing grains. Application of Put under HT further enhanced POX and SOD activities along with increased content of ascorbate and tocophereol in grains. Invariably POX and SOD revealed higher activities in roots while CAT, DAO and PAO activities were higher in shoots. The content of lipid peroxides was increased in roots and shoots of HT stressed seedlings but less in Put-treated cv. PBW 343.  相似文献   

2.
Effect of high temperature stress on polyamine catabolism and antioxidant enzyme activity in relation to glutathione, ascorbate and proline accumulation was studied in five wheat (Triticum aestivum L.) genotypes (differently susceptible to temperature stress). High temperature significantly increased the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glutathione S-transferase (GST) in shoots of all genotypes. Higher activities of GPX in C 306, C 273 and APX in PBW 550, PBW 343 and PBW 534 demonstrate their important role in scavenging H2O2. Conversely, high temperature stress led to a significant decline in SOD, CAT, APX and GPX activities of roots with a subsequent increase in diamine oxidase (DAO) and polyamine oxidase (PAO) activities especially in PBW 550 and PBW 343. The concentration of ascorbic acid declined with the imposition of heat stress, however, polyamines responded to high temperature stress by increasing spermidine and spermine levels and decreasing putrescine levels. After exposure to high temperature, proline accumulation was significantly decreased in roots and increased in shoots though maximum concentration was achieved in C 306 genotype. Apparently, the wheat seedlings respond to high temperature mediated increase in reactive oxygen species (ROS) production by altering antioxidative defense mechanism and polyamine catabolism though differentially in five wheat genotypes. Among five genotypes studied, C 306 and C 273 seem to be better protected against temperature stress. The results suggested that shoots were more resistant against the destructive effects of ROS as is indicated by low levels of thiobarbituric acid reactive substances under high temperature stress.  相似文献   

3.
The mechanism imparting thermotolerance by salicylic acid (SA) and abscisic acid (ABA) is still unresolved using either spraying technique or in vitro conditions. Alternative way of studying these effects under near in vivo conditions is through the use of liquid culturing technique. Effects of SA and ABA (100 μM) on antioxidative enzymes, antioxidants and lipid peroxidation were studied in detached tillers of three wheat (Triticum aestivum L.) cultivars PBW 343, C 306 (heat tolerant) and WH 542 (heat susceptible) cultured in a liquid medium. Ears were subjected to heat shock treatment (45°C for 2 h) and then maintained at 25°C for 5 days. Heat shock treatment resulted in increased peroxidase (POD) activity, while superoxide dismutase (SOD) and catalase (CAT) activities were reduced compared to control. The decrease in CAT activity was more significant in susceptible cultivar WH 542. Concomitantly, content of α-tocopherol and lipid peroxides increased in heat-treated wheat ears, whereas contents of total ascorbate level were reduced. Following treatment with SA and ABA, activities of all three antioxidative enzymes increased in correspondence with an increase in ascorbate and α-tocopherol content. Apparently, lipid peroxide content was reduced by SA in heat tolerant cultivars (PBW 343 and C 306) whereas in susceptible cultivar it was decreased by ABA. The up-regulation of the antioxidant system by SA and ABA possibly contributes to better tolerance against heat shock-induced oxidative damage in wheat grains.  相似文献   

4.
The localization and activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.4.3.4) together with polyamine levels have been investigated in developing grains of barley (Hordeum vulgare L.). DAO (pH 7.5) is present mainly in vascular tissue and its neighbouring cells, namely chalazal cells and nucellar projection, while PAO (pH 6.0) is mainly localized in the chlorenchymatous cells of the crease and at the base of the vascular tissue. Activities of both these enzymes appear to be independently-regulated, as DAO activity increased steadily throughout grain development while PAO activity was higher during the early stages of grain filling, declined thereafter and again increased towards maturity. The maximum activities of DAO coincided with the maximum content of putrescine while the levels of PAO did not seem to be directly correlated with spermidine or spermine contents. Isoelectric focusing (IEF) of DAO and PAO activities revealed the presence of bands at 30 and 45 DPA. The possible involvement of DAO and PAO in the supply of H(2)O(2) to peroxidase-catalysed reactions in the chalazal cells during grain filling is discussed.  相似文献   

5.
Pavlov V  Dimitrov O 《Amino acids》2000,18(4):399-405
Summary. Effects of testosterone (10 μg/100 g body weight) on polyamine-oxidizing enzyme activities in female rat uterus, liver and kidney were demonstrated. Testosterone-treated rats exhibited 2.07 fold (p < 0.002) higher uterine polyamine oxidase (PAO) activity and 1.93 fold (p < 0.02) higher diamine oxidase (DAO) activity, as compared to the controls. In the liver, testosterone caused an elevation in PAO (1.39 fold, p < 0.05), but not in DAO activity, whereas in kidney the hormone stimulated DAO (1.30 fold, p < 0.05), but not PAO activity. The effects observed suggest a possible role for testosterone in the modulation of polyamine levels in the female organs studied and especially in uterus. Received May 12, 1999, Accepted December 16, 1999  相似文献   

6.
Summary In the present study developmental patterns of renal polyamineoxidizing enzymes polyamine oxidase (PAO) and diamine oxidase (DAO) in male and female ICR mice were demonstrated. The effects of testosterone (10g/100g body weight) on renal PAO and DAO activities were also studied. The differences between sexes in both PAO and DAO activities were most clearly expressed in the immature kidney. At the age of 20 days PAO and DAO activities were 1.52 fold (p < 0.01) and 1.75 (p < 0.02) respectively higher in male mouse kidney than in female. Maturational processes reflected in significant increases in polyamine- oxidizing enzyme activities mainly in female mouse kidney, comparable with the gain in the kidney wet weight. Our data show that testosterone is able to influence renal PAO and DAO activities in addition to the well-known stimulation of polyamine biosynthesis. The hormonal effects were sex and age dependent. The influence of testosterone on renal PAO activity was mainly age dependent. The slight stimulation of renal PAO activity observed in 20- and 50-day old mice, 24h after testosterone administration, change with a decrease in the enzyme activity at the age of 70 days. The effects of testosterone on renal DAO activity were mainly sex dependent. Testosterone caused stimulation of DAO activity with a very close magnitude (nearly twice) in female mouse kidney, independently of the age of mice. In contrast, in male mice the hormone treatment resulted in a statistically significant increase in renal DAO activity at the age of 70 days (.1.3 fold, p < 0.05) only. It could be suggested that our data indicate the different contribution of renal PAO and DAO in androgen regulation of polyamine levels, depending on sex and the stage of the postnatal development.  相似文献   

7.
Content of polyamines and activities of antioxidative enzymes in response to stripe rust disease caused by Puccinia striiformis have been studied in two wheat (Triticum aestivum L.) cultivars PBW 343 (resistant) and HD 2329 (susceptible). Various infection stages ranging from traces to 100 % were collected. Infection leads to stimulation of peroxidase (POD), superoxide dismutase (SOD), catalase, diamine oxidase and polyamine oxidase activities along with increase in putrescine, spermidine and spermine content while ascorbate, tocopherol and chlorophyll content decreased in HD 2329 and no visible symptoms appeared in PBW 343. Histochemical localization pattern of POD and SOD activities revealed correlation with lignin deposition in cell walls.  相似文献   

8.
We previously gave a picture of the homeostatic characteristics of polyamine (PA) biosynthesis and conjugation in tobacco (Nicotiana tabacum) plant organs during development. In this work, we present the sites and regulation of PA catabolism related to cell division/expansion, cell cycle progression, and vascular development in the tobacco plant. Diamine oxidase (DAO), PA oxidase (PAO), peroxidases (POXs), and putrescine N-methyltransferase expressions follow temporally and spatially discrete patterns in shoot apical cells, leaves (apical, peripheral, and central regions), acropetal and basipetal petiole regions, internodes, and young and old roots in developing plants. DAO and PAO produce hydrogen peroxide, a plant signal molecule and substrate for POXs. Gene expression and immunohistochemistry analyses reveal that amine oxidases in developing tobacco tissues precede and overlap with nascent nuclear DNA and also with POXs and lignification. In mature and old tissues, flow cytometry indicates that amine oxidase and POX activities, as well as pao gene and PAO protein levels, coincide with G2 nuclear phase and endoreduplication. In young versus the older roots, amine oxidases and POX expression decrease with parallel inhibition of G2 advance and endoreduplication, whereas putrescine N-methyltransferase dramatically increases. In both hypergeous and hypogeous tissues, DAO and PAO expression occurs in cells destined to undergo lignification, suggesting a different in situ localization. DNA synthesis early in development and the advance in cell cycle/endocycle are temporally and spatially related to PA catabolism and vascular development.  相似文献   

9.
Polyamine levels and activities of enzymes of polyamine biosynthesis and catabolism were examined in the barley cultivar Delibes (Ml1al + Ml(Ab)) reacting hypersensitively to the powdery mildew fungus, Blumeria graminis f. sp. hordei (race CC220). Levels of free putrescine and spermine and of conjugated forms of putrescine, spermidine and spermine were greatly increased 1–4 d following inoculation of barley with the powdery mildew. These changes in polyamine levels were accompanied by elevated activities of the polyamine biosynthetic enzymes ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and S‐adenosylmethionine decarboxylase (AdoMetDC) and the polyamine catabolic enzymes diamine oxidase (DAO) and polyamine oxidase (PAO). Activities of two enzymes involved in conjugating polyamines to hydroxycinnamic acids, putrescine hydroxycinnamoyl transferase (PHT) and tyramine feruloyl‐CoA transferase (TFT) were also examined and were found to increase significantly 1–4 d after inoculation. The possibility that the increased levels of free spermine, increased polyamine conjugates, and increased DAO and PAO activities are involved in development of the hypersensitive response of Delibes to powdery mildew infection is discussed.  相似文献   

10.
茶多酚对盐胁迫下小麦幼苗叶片生理特性的影响   总被引:2,自引:0,他引:2  
以春小麦"陇春30号"为实验材料,主要研究了150 mmol/L NaCl和不同浓度(25 mg/L和100 mg/L)茶多酚(tea polyphenols, TP)单独或复合处理对小麦幼苗叶片叶绿素含量、叶绿素荧光参数及过氧化氢(H_2O_2)产生等生理特性的影响。结果表明:(1)150 mmol/L NaCl单独处理导致小麦幼苗叶片叶绿素含量及光适应下实际光量子产量[actual light quantum yield,Y(II)]、光化学淬灭(photochemical quenching, qP)、光合电子传递效率(photosynthetic electron transfer efficiency, ETR)均降低,非光化学淬灭(non-photochemical quenching, NPQ)增大;TP单独处理不影响这些指标。(2)盐胁迫诱导细胞壁过氧化物酶(cell wall-peroxidase, cw-POD)、二胺氧化酶(diamine oxidase, DAO)和多胺氧化酶(polyamine oxidase, PAO)活性显著增高;低浓度TP使cw-POD活性显著增大,而DAO和PAO活性无显著变化;不同的是,高浓度TP不影响cw-POD活性,却使DAO和PAO活性显著减小。(3)与NaCl单独处理相比,TP的添加导致NaCl处理下小麦幼苗叶片叶绿素含量增加,最大光化学效率(maximal photochemical efficiency,F_v/F_m)和ETR值增大,而NPQ值、H_2O_2含量及cw-POD、DAO和PAO三种酶活性均降低。总之,TP有效地缓解了盐胁迫诱导的小麦幼苗叶绿素含量的减少及对PS II光合电子传递效率和光化学反应速率的抑制,增强了植物的光合能力,与此同时降低了cw-POD、DAO和PAO活性,减少了H_2O_2的产生,从而缓解盐胁迫对小麦幼苗造成的伤害,提高小麦幼苗对盐环境的耐受性。  相似文献   

11.
High temperature is a common constraint during anthesis and grain-filling stages of wheat leading to huge losses in yield. In order to understand the mechanism of heat tolerance during monocarpic senescence, the present study was carried out under field conditions by allowing two well characterized Triticum aestivum L. cultivars differing in heat tolerance, Hindi62 (heat-tolerant) and PBW343 (heat-susceptible), to suffer maximum heat stress under late sown conditions. Senescence was characterized by measuring photosynthesis related processes and endoproteolytic activity during non-stress environment (NSE) as well as heat-stress environment (HSE). There was a faster rate of senescence under HSE in both the genotypes. Hindi62, having pale yellow flag leaf with larger area, maintained cooler canopy under high temperatures than PBW343. The tolerance for high temperature in Hindi62 was clearly evident in terms of slower green-leaf area degradation, higher stomatal conductance, higher stability in maximum PSII efficiency, Rubisco activity and Rubisco content than PBW343. Both the genotypes exhibited lower endopeptidase activity under HSE as compared to NSE and this difference was more apparent in Hindi62. Serine proteases are the predominant proteases responsible for protein degradation under NSE as well as HSE. Flag leaf of both the genotypes exhibited high-molecular-mass endoproteases (78 kDa and 67 kDa) isoforms up to full grain maturity which were inhibited by specific serine protease inhibitor in both the environments. In conclusion, the heat-tolerant Hindi62 exhibited a slower rate of senescence than the heat-susceptible PBW343 during HSE, which may contribute towards heat stability.  相似文献   

12.
Tang W  Newton RJ 《Plant cell reports》2005,24(10):581-589
Polyamines have been demonstrated to play an important role in adventitious root formation and development in plants. Here, we present a detailed analysis of influence of exogenously added polyamines on adventitious root development and its relationship to cold tolerance in Virginia pine (Pinus virginia Mill.). Our results demonstrated that polyamines putrescine (Put), spermidine (Spd), and spermine (Spm) at 0.001 mM improve rooting frequency and promote root elongation. Put, Spd, and Spm at 0.01–1 mM decrease rooting frequency and reduce root elongation root elongation. Measurements of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.4.3.4) activities showed that higher DAO and PAO enzyme activities were obtained when high concentrations of polyamines were applied and when plantlets were treated for 5–7 week at 4°C and 16°C. Survival rate of plantlets increased with the treatment of polyamines at low temperature. Polyamines increased mitotic index of cells in root tips of regenerated plantlet cultured on medium containing 0.001 μM Put, Spd, or Spm, but did not increase mitotic index in tissues of needle tips of the same plantlets. These results demonstrated that polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine plantlets.  相似文献   

13.
We have identified two types of invertases, one bound ionically and the other covalently to the particulate fraction in grains of heat tolerant C 306 and heat susceptible WH 542 cultivars of wheat (Triticum aestivum L.). The cell walls contained a high level of invertase activity, of which 79.2–72.8% was extractable by 2 M NaCl and 14.9–21.1% by 0.5% EDTA in C 306 and WH 542, respectively. The NaCl-released invertase constituted the predominant fraction. Using 5–100 mM sucrose and pH range of 4.0–7.0, the apparent Michaelis constant (K m, enzyme substrate affinity measure) of enzyme ranged from 5.73 to 16.06 mM for C 306 and from 6.08 to 19.86 mM for WH 542. The V max (maximum catalytic rate) values at these pH were higher in C 306 (0.63–11.04 μg sucrose hydrolysed min−1) than WH 542 (0.51–8.73 μg sucrose hydrolysed min−1). By employing photo-oxidation and by studying the effect of pH on K m and V max, the involvement of histidine and α-carboxyl groups at the active site of the enzyme was indicated. The two cultivars also showed differential response in terms of thermodynamic properties of the enzyme i.e. energy of activation (E a), enthalpy change (ΔH) and entropy change (ΔS). NaCl-released invertase showed differential response to metal ions in two cultivars suggesting their distinctive nature. Mn2+, Cu2+, Hg2+, Mg2+, Zn2+ and Cd2+ were strong inhibitors in WH 542 as compared to C 306 while K+, Ca2+ were stimulators in both the cultivars. Overall the results suggest that genetic differences exist in wall bound invertase properties of wheat grains as evident in its altered kinetic behaviour.  相似文献   

14.
The potential role of diamine oxidase (DAO) and polyamine oxidase (PAO) in relation to polyamines was investigated in epicotyls, roots and leaf blades at 3 and 6 days after gibberellic acid (GA) application in barley (Hordeum vulgare L.) seedlings of cvs. Maythorpe (non-mutant parent) and Golden Promise (semi-dwarf mutant). There was a significant increase in epicotyl and leaf-blade elongation rates in GA-treated seedlings of cv. Maythorpe as compared to cv. Golden Promise. DAO and PAO were detectable in all segments of the leaf blade, but the highest activities were present in basal segments. These enzymes, which are thought to have a role in the elimination of cellular polyamines, increased in activity following GA application compared to controls. Application of 10−6 M GA to the first leaf, significantly increased endogenous bound putrescine (Put) levels in both the epicotyl and leaf blade of cv. Maythorpe. In contrast, there was only a slight increase in cv. Golden Promise. Levels of soluble Put increased in roots and leaf blades of both cultivars following GA treatment but the effect was greatest in leaves of cv. Maythorpe. It is suggested that polyamines may play a role in GA-induced epicotyl and leaf-blade elongation in barley.  相似文献   

15.
Soluble invertase from mid-milky stage grains of two wheat (Triticum aestivum L.) varieties, namely Kalyansona and PBW 343 was isolated and purified by employing ammonium sulphate precipitation, gel filtration on Sephadex G-150 and DEAE-cellulose column chromatography. Invertase from Kalyansona exhibited greater heat stability (50 °C) compared to PBW 343 (35 °C). By employing photo-oxidation and chemical modification methods, and by studying the effect of pH on Km and Vmax, the involvement of histidine, sulphydryl and α-carboxyl groups in the active site of the enzyme was indicated. The enzyme was completely inhibited by HgCl2 and DTNB. ZnSO4, MgSO4, KCl, CaCl2, EDTA and pyridoxine were strong inhibitors in PBW 343 but not in Kalyansona. The two varieties also showed differential response in respect to thermodynamic properties of the enzyme, i.e. energy of activation (Ea), enthalpy change (ΔH) and entropy change (ΔS). Overall the results suggest that genetic differences exist in soluble invertase properties of wheat grains and that the thermal adaptation of the enzyme is reflected in its altered kinetic behaviour.  相似文献   

16.
Polyamines play an important role in the plant response to adverse environmental conditions including salt and osmotic stresses. In this investigation, the responses of polyamines to salt-induced oxidative stress were studied in callus cultures and plantlets in Virginia pine (Pinus virginiana Mill.). Our results demonstrated that polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation. Among different polyamines used in this study, putrescine (Put) is more effective in increasing the activities of ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD), reducing the activities of acid phosphatase and V-type H+-ATPase, and decreasing lipid peroxidation in Virginia pine, compared to both spermidine (Spd) and spermine (Spm). When 2.1 mM Put, Spd, and Spm were separately added to the medium, higher diamine oxidase (DAO) and polyamine oxidase (PAO) activities were observed in callus cultures and plantlets, compared to the concentrations of 0.7 and 1.4 mM. The activities of these two enzymes produce hydrogen peroxide (H2O2), which may act in structural defense as a signal molecule and decreasing the protection of polyamines against salt-induced oxidative damage in Virginia pine.  相似文献   

17.
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片鸟氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

18.
Wheat (Triticum aestivum L.) cvs. HD 2285 (relatively tolerant) and WH 542 (susceptible) were exposed to ambient and elevated temperature (3–4 °C higher) in open top chambers during post anthesis period. The grain yield components were determined at the time of maturity. In order to elucidate the basis of differential tolerance of these cultivars, the excised developing grains (20 d after anthesis) of ambient grown plants were incubated at 15, 25, 35 and 45 °C for 2 h and then analysed for the activities of soluble starch synthase (SSS), granule bound starch synthase (GBSS), kinetic parameters of SSS and content of heat shock protein (HSP 100). The elevated temperature during grain development significantly decreased grain growth in WH 542 whereas no such decrease was observed in HD 2285. High temperature tolerance of HD 2285 was found to be associated with higher catalytic efficiency (Vmax/Km) of SSS at elevated temperature and higher content of HSP 100.  相似文献   

19.
Rooting of wild-type tobacco (Nicotiana tabacum cv. Xanthi) shoots raised in vitro was promoted by polyamines in the absence of any other growth regulator and was inhibited by two inhibitors of polyamine metabolism. The auxin insensitive and recalcitrant to rooting rac mutant shoots did not respond to the same treatments. The activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC), diamine oxidase (DAO), polyamine oxidase (PAO) and transglutaminases (TGases), and the titres of free and conjugated polyamines were estimated in the whole shoots and the basal parts of the stems of both tobaccos in the course of multiplication in vitro. The rac shoots grew at a lower rate. The wild-type rooted from the 7th day without special treatment. During the second week of culture, the shoots of both tobaccos were actively growing and showed an increase in ADC, ODC, DAO, PAO and TGase activities. Afterwards all these activities declined. These changes were concomitant with an increase in the polyamine contents (free and conjugated). Biosynthesis and oxidation of polyamines apparently occurred simultaneously and seemed directly correlated. In the basal part of the mutant stems however, the accumulation of free and conjugated putrescine as well as the transient increase in biosynthetic enzyme activities were delayed compared to the wild-type. These results are discussed in relation to growth behaviour and to root formation.  相似文献   

20.
γ-氨基丁酸对低氧胁迫下甜瓜幼苗多胺代谢的影响   总被引:1,自引:0,他引:1  
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片乌氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号