首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cytosol, nuclei, vacuoles, and mitochondria of the yeast Saccharomyces cerevisiae possess inorganic polyphosphates (polyPs). PolyP levels, spectra of polyP chain lengths, and their dependence on the growth phase are distinguished in the mentioned compartments. Inactivation of the PPX1 gene has no effect on the polyP metabolism under cultivation of the yeast in medium with glucose and 5–7 mM Pi. Inactivation of the PPN1 gene results in elimination of the high-molecular-mass exopolyphosphatases (∼120 to 830 kD) of the cytosol, nuclei, vacuoles, and mitochondria of S. cerevisiae suggesting that it is just PPN1 that encodes these enzymes. Expression of the low-molecular-mass exopolyphosphatase of ∼45 kD encoded by the PPX1 gene decreases under PPN1 inactivation as well. While PPN1 inactivation has negligible effect on polyP levels, it results in increase in the long-chain polyPs in all the compartments under study. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 11, pp. 1445–1450.  相似文献   

2.
Content and chain lengths of inorganic polyphosphates (polyP) as well as exopolyphosphatase activities were compared in cytosol and mitochondria of the yeast Saccharomyces cerevisiae during growth on glucose or ethanol under phosphate surplus. PolyP metabolism in cytosol and mitochondria was substantially dependent upon the carbon source. Acid-soluble polyP accumulated mainly in cytosol using either glucose or ethanol. The level of the accumulation was lower during growth on ethanol compared to that on glucose. Increase in polyP content in mitochondria was observed during growth on glucose, but not on ethanol. In cytosol the activity of exopolyphosphatase PPN1 was increased and the activity of exopolyphosphatase PPX1 was decreased independently of the carbon source under phosphate surplus conditions. Growth on ethanol caused exopolyphosphatase PPN1 to appear in the soluble mitochondrial fraction, while during growth on glucose only exopolyphosphatase PPX1 was present in this fraction.  相似文献   

3.
Purified fractions of cytosol, vacuoles, nuclei, and mitochondria of Saccharomyces cerevisiae possessed inorganic polyphosphates with chain lengths characteristic of each individual compartment. The most part (80–90%) of the total polyphosphate level was found in the cytosol fractions. Inactivation of a PPX1 gene encoding ~40-kDa exopolyphosphatase substantially decreased exopolyphosphatase activities only in the cytosol and soluble mitochondrial fraction, the compartments where PPX1 activity was localized. This inactivation slightly increased the levels of polyphosphates in the cytosol and vacuoles and had no effect on polyphosphate chain lengths in all compartments. Exopolyphosphatase activities in all yeast compartments under study critically depended on the PPN1 gene encoding an endopolyphosphatase. In the single PPN1 mutant, a considerable decrease of exopolyphosphatase activity was observed in all the compartments under study. Inactivation of PPN1 decreased the polyphosphate level in the cytosol 1.4-fold and increased it 2- and 2.5-fold in mitochondria and vacuoles, respectively. This inactivation was accompanied by polyphosphate chain elongation. In nuclei, this mutation had no effect on polyphosphate level and chain length as compared with the parent strain CRY. In the double mutant of PPX1 and PPN1, no exopolyphosphatase activity was detected in the cytosol, nuclei, and mitochondria and further elongation of polyphosphates was observed in all compartments.  相似文献   

4.
5.
Mutants of Saccharomyces cerevisiae with inactivated endopolyphosphatase gene PPN1 did not grow on lactate and ethanol, and stopped growth on glucose earlier than the parent strain. Their mitochondria were defective in respiration functions and in metabolism of inorganic polyphosphates. The PPN1 mutants lacked exopolyphosphatase activity and possessed a double level of inorganic polyphosphates in mitochondria. The average chain length of mitochondrial polyphosphates at the stationary growth stage on glucose was about 15-20 and about 130-180 phosphate residues in the parent strain and PPN1 mutants, respectively. Inactivation of the PPX1 gene encoding exopolyphosphatase had no effect on respiration functions and on polyphosphate level and chain length in mitochondria.  相似文献   

6.
Impaired synthetase function of the mitochondrial ATPase induced by mutation in the ATP22 gene results in decreased accumulation of inorganic polyphosphates in the stationary growth phase of the yeast Saccharomyces cerevisiae grown on glucose. The content of polyphosphates in the mutant strain in this phase is 2.5 times lower than in the parent strain. This difference is most pronounced for the acid-soluble polyP1 fraction and the alkali-soluble polyP3 fraction. Polyphosphate chain length in mutant cells is less than in the parent cells in both the acid-soluble polyP1 and in the salt-soluble polyP2 fractions. The mutation had no effect on polyphosphates content in the mitochondria.  相似文献   

7.
Inactivation of PPX1 encoding exopolyphosphatase PPX1 in Saccharomyces cerevisiae results in a change in the exopolyphosphatase spectrum in the yeast cells. In the PPX1-deficient strain, elimination of an 45 kD exopolyphosphatase is observed in the cytosol, and activity of an exopolyphosphatase with molecular mass of 830 kD increases fivefold. The latter activity differs greatly in properties from the low-molecular-mass enzyme of the parent strain. In the soluble fraction of the mutant mitochondria, exopolyphosphatase of 45 kD characteristic of the soluble mitochondrial fraction in the parent strain is eliminated, and exopolyphosphatase with a molecular mass of 440 to 830 kD is found. On PPX1 inactivation, a membrane-bound form of mitochondrial exopolyphosphatase is unaffected in its activity level and properties. Therefore, the membrane-bound exopolyphosphatase of mitochondria and the high-molecular-mass enzyme of the cytosol of S. cerevisiae are not encoded by the PPX1 gene, unlike the soluble low-molecular-mass exopolyphosphatase of mitochondria, which is probably a product of this gene with a posttranslational modification. In the PPX1 mutant, exopolyphosphatase properties in the cell as a whole undergo modifications including the ability to hydrolyze polyphosphates (polyP) with different polymer degree.  相似文献   

8.
Cells of the yeast Saccharomyces cerevisiae with a low content of polyphosphates (polyP) are characterized by disturbance of growth in medium with 0.5% glucose. The parent strain with polyP level reduced by phosphate starvation had a longer lag phase. The growth rate of strains with genetically determined low content of polyP due to their enhanced hydrolysis (CRN/pMB1_PPN1 Sc is a superproducer of exopolyphosphatase PPN1) or reduced synthesis (the BY4741 vma2Δ mutant with impaired vacuolar membrane energization) was lower in the exponential phase. The growth of cells with high content of polyP was accompanied by polyP consumption. In cells of strains with low content of polyP, CRN/pMB1_PPN1 Sc and BY4741 vma2Δ, their consumption was insignificant. These findings provide more evidence indicating the use of polyP as an extra energy source for maintaining high growth rate.  相似文献   

9.
Isolated mitochondria of Saccharomyces cerevisiae cells grown on glucose possess acid-soluble inorganic polyphosphate (polyP). Its level strongly depends on phosphate (P(i)) concentration in the culture medium. The polyP level in mitochondria showed 11-fold decrease under 0.8 mM P(i) as compared with 19.3 mM P(i). When spheroplasts isolated from P(i)-starved cells were incubated in the P(i)-complete medium, they accumulated polyP and exhibited a phosphate overplus effect. Under phosphate overplus the polyP level in mitochondria was two times higher than in the complete medium without preliminary P(i) starvation. The average chain length of polyP in mitochondria was of <15 phosphate residues at 19.3 mM P(i) in the culture medium and increased at phosphate overplus. Deoxyglucose inhibited polyP accumulation in spheroplasts, but had no effect on polyP accumulation in mitochondria. Uncouplers (FCCP, dinitrophenol) and ionophores (monensin, nigericin) inhibited polyP accumulation in mitochondria more efficiently than in spheroplasts. Fast hydrolysis of polyP was observed after sonication of isolated mitochondria. Probably, the accumulation of polyP in mitochondria depended on the proton-motive force of their membranes.  相似文献   

10.
The effect of cultivation time and concentration of inorganic phosphate (P(i)) in the culture medium on the accumulation of polyphosphates (polyP) and the activity of two cytosolic exopolyphosphatases of the yeast Saccharomyces cerevisiae was studied: an exopolyphosphatase of 40 kD encoded by PPX1 and a high molecular weight exopolyphosphatase encoded by another gene. Depletion of polyP in the cells on P(i) starvation is a signal factor for the accumulation of polyP after the subsequent addition of 5-20 mM P(i) and glucose to the cells or spheroplasts. A high activity of both exopolyphosphatases does not prevent the accumulation of polyP. The expression of the high molecular weight exopolyphosphatase is due to the acceleration of metabolism in cells that have reached the stage of growth deceleration on the addition of P(i) and glucose or complete culture medium. This process may occur independently from the accumulation of polyP. The activity of exopolyphosphatase PPX1 depends less on the mentioned factors, decreasing 10-fold only under conditions of phosphate surplus at the stationary growth stage.  相似文献   

11.
Partially purified endopolyphosphatase from cytosol of the yeast Saccharomyces cerevisiae with inactivated genes PPX1 and PPN1 encoding exopolyphosphatases was obtained with ion_exchange and affinity chromatography. The enzyme activity was estimated by decrease of polyphosphate chain length determined by PAGE. The enzyme cleaved inorganic polyphosphate without the release of orthophosphate (Pi) and was inhibited by heparin and insensitive to fluoride. Mg2+, Mn2+, and Co2+ (1.5 mM) stimulated the activity, and Ca2+ was ineffective. The molecular mass of the endopolyphosphatase determined by gel filtration was of ≈20 kDa.  相似文献   

12.
多聚磷酸相关蛋白结构及生物学功能   总被引:1,自引:0,他引:1  
多聚磷酸(polyphosphate,polyP)是由几个到数百个磷酸基通过高能磷酸酐键连接而成的链状多聚体,存在于所有细胞生物中.多聚磷酸相关蛋白包括多聚磷酸相关酶和多聚磷酸结合蛋白.多聚磷酸相关酶如多聚磷酸激酶(polyphosphate kinase,PPK)催化polyPn生成polyPn+1的可逆反应;外切聚磷酸酶(exopolyphosphatase,PPX)、内切聚磷酸酶(endopolyphosphatase,PPN)能将polyP水解成磷酸残基;多聚磷酸依赖的激酶将polyP的磷转移到生物小分子上,如葡萄糖和烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD),使其分别磷酸化为6 磷酸葡萄糖和烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADP).多聚磷酸结合蛋白可与多聚磷酸结合,发挥各种生物学功能.本文将简要介绍多聚磷酸相关蛋白的结构与主要生物学功能,以阐述多聚磷酸参与的细胞内生化过程.  相似文献   

13.
The effect of inactivation of the PPX1 and PPN1 genes encoding the yeast exopolyphosphatases on the activities of these enzymes and polyphosphate content in the cytosol of Saccharomyces cerevisiae was studied under Pi deficit and Pi excess in the cultivation medium. Under Pi deficit, exopolyphosphatase activity in strain CRN (with inactivated PPN1 gene) and in the parent strain CRY increased 3- and 1.5-fold, respectively. In the strain CRX (with inactivated PPX1 gene), exopolyphosphatase activity did not change under Pi deficit. Transfer from Pi-deficient to Pi-rich medium was accompanied by an ~1.7-fold increase of exopolyphosphatase activities in the cytosol preparations of strains CRY, CRX, and CRN. In the cytosol of the double mutant, exopolyphosphatase activity was practically absent under all of the above cultivation conditions. The content of polyphosphates in the cytosol preparations of all strains under study substantially decreased under Pi deficit. Transfer from Pi-deficient to Pi-rich medium was accompanied by polyphosphate over-accumulation only in the cytosol preparations of stains CRX and CNX, where their levels increased ~1.3 and 3.5-fold, respectively. No over-accumulation was observed in the parent strain CRY and in the PPN1-deficient strain CRN. These data suggest that the exopolyphosphatases encoded by the PPX1 and PPN1 genes are not involved in polyphosphate synthesis.  相似文献   

14.
15.
Inorganic polyphosphate (polyP) is a biopolymer of phosphoanhydride-linked orthophosphate residues. PolyP is involved in multiple cellular processes including mitochondrial metabolism and cell death. We used artificial membranes and isolated mitochondria to investigate the role of the polyP in mitochondrial ion transport and in activation of PTP. Here, we found that polyP can modify ion permeability of de-energised mitochondrial membranes but not artificial membranes. This permeability was selective for Ba2+ and Ca2+ but not for other monovalent and bivalent cations and can be blocked by inhibitors of the permeability transition pore – cyclosporine A or ADP. Lower concentrations of polyP modulate calcium dependent permeability transition pore opening. Increase in polyP concentrations and elongation chain length of the polymer causes calcium independent swelling in energized conditions. Physiologically relevant concentrations of inorganic polyP can regulate calcium dependent as well calcium independent mitochondrial permeability transition pore opening. This raises the possibility that cytoplasmic polyP can be an important contributor towards regulation of the cell death.  相似文献   

16.
A comparative study of energy metabolism in two strains Saccharomyces cerevisiae (the initial strain no. 73 and laser-irradiated mutant strain Y-503) was performed. In all growth phases, the rates of oxygen consumption by cells of Y-503 were higher than in the initial strain. The maximum (threefold) increase in the rate of oxygen consumption was observed in the linear phase. The effects of respiratory chain inhibitors rotenone, antimycin A, and cyanide on cellular and mitochondrial respiration were identical. There are two sites of energy coupling in the respiratory chain of mitochondria in S. cerevisiae no. 73 and Y-503, and electron flow is mainly mediated by cytochrome oxidase. The data suggest that the higher respiratory activity ofS. cerevisiaeY-503 cells in comparison with no. 73 is associated with greater amounts of mitochondria and total surface area of coupling mitochondrial membranes, which appears to be a factor contributing to the high physiological and biochemical activity of this strain.  相似文献   

17.
BackgroundCalcium signaling plays a key role in the regulation of multiple processes in mammalian mitochondria, from cellular bioenergetics to the induction of stress-induced cell death. While the total concentration of calcium inside the mitochondria can increase by several orders of magnitude, the concentration of bioavailable free calcium in mitochondria is maintained within the micromolar range by the mitochondrial calcium buffering system. This calcium buffering system involves the participation of inorganic phosphate. However, the mechanisms of its function are not yet understood. Specifically, it is not clear how calcium-orthophosphate interactions, which normally lead to formation of insoluble precipitates, are capable to dynamically regulate free calcium concentration. Here we test the hypothesis that inorganic polyphosphate, which is a polymerized form of orthophosphate, is capable to from soluble complexes with calcium, playing a significant role in the regulation of the mitochondrial free calcium concentration.MethodsWe used confocal fluorescence microscopy to measure the relative levels of mitochondrial free calcium in cultured hepatoma cells (HepG2) with variable levels of inorganic polyphosphate (polyP).ResultsThe depletion of polyP leads to the significantly lower levels of mitochondrial free calcium concentration under conditions of pathological calcium overload. These results are coherent with previous observations showing that inorganic polyphosphate (polyP) can inhibit calcium-phosphate precipitation and, thus, increase the amount of free calcium.ConclusionsInorganic polyphosphate plays an important role in the regulation of mitochondrial free calcium, leading to its significant increase.General significanceInorganic polyphosphate is a previously unrecognized integral component of the mitochondrial calcium buffering system.  相似文献   

18.
The yeast Saccharomyces cerevisiae accumulates the high levels of inorganic polyphosphates (polyPs) performing in the cells numerous functions, including phosphate and energy storage. The effects of vacuolar membrane ATPase (V-ATPase) dysfunction were studied on polyP accumulation under short-term cultivation in the Pi–excess media after Pi starvation. The addition of bafilomycin A1, a specific inhibitor of V-ATPase, to the medium with glucose resulted in strong inhibition of the synthesis of long-chain polyP and in substantial suppression of short-chain polyP. The addition of bafilomycin to the medium with ethanol resulted in decreased accumulation of high-molecular polyP, while the accumulation of low-molecular polyP was not affected. The levels of polyP synthesis in the mutant strain with a deletion in the vma2 gene encoding a V-ATPase subunit were significantly lower than in the parent strain in the media with glucose and with ethanol. The synthesis of the longest chain polyP was not observed in the mutant cells. The synthesis of only the low-polymer acid-soluble polyP fraction occurred in the cells of the mutant strain. However, the level of polyP1 was nearly tenfold lower than compared to the cells of the parent strain. Both bafilomycin A1 and the mutation in vacuolar ATPase subunit vma2 lead to a considerable decrease of cellular polyP accumulation. Thus, the defects in ΔμH+ formation on the vacuolar membrane resulted in the decrease of polyP biosynthesis in S. cerevisiae.  相似文献   

19.
The content of different fractions of inorganic polyphosphates (polyP) was studied in Saccharomyces cerevisiae VKM Y-1173 growing on a complete medium with glucose under hypoxia and active aeration as well as on ethanol. The highest growth rate was observed for aerobic fermentation, while the yield of biomass was maximal for cultivation on ethanol. In the mid-log growth phase, the amount of poly P was maximal in the cells grown on glucose under hypoxia and minimal on ethanol. In this latter case, the content of different poly P fractions changed unevenly: polyP3, polyP4, and polyP1 decreased by approximately 60%, 45%, and 30%, respectively; the salt-soluble polyP2 remained at almost the same level; while polyP5 abruptly increased 10-to 15-fold. These findings demonstrate that the metabolic pathways for poly P fractions are different. A significant drop in the amount of the main poly P fractions accompanied by a decrease of the poly P average chain length in the presence of carbon and Pi sources in the medium is evidence of active involvement of poly P as additional energy sources in the flows of energy in actively growing yeast cells.  相似文献   

20.
Inorganic polyphosphate (polyP) is a naturally occurring polyanion made of ten to several hundred orthophosphates (Pi) linked together by phosphoanhydride bonds. PolyP is ubiquitously present in all organisms from bacteria to humans. Specific physiological roles of polyP vary dramatically depending on its size, concentration, tissue and subcellular localization. Recently we reported that mitochondria of ventricular myocytes contain significant amounts (280 ± 60 pmol/mg of protein) of polyP with an average length of 25 orthophosphates, and that polyP is involved in Ca2+-dependent activation of the mitochondrial permeability transition pore (mPTP). Here we extend our study to demonstrate the involvement of mitochondrial polyP in cardiac cell death. Furthermore, we show that polyP levels depend on the activity of the respiratory chain and are lower in myocytes from failing hearts. We conclude that polyP is a dynamically regulated macromolecule that plays an important role in mPTP-dependent cell death pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号