首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagen is modified by hydroxylation and glycosylation of hydroxylysine residues. This glycosylation is initiated by the β1,O galactosyltransferases GLT25D1 and GLT25D2. The structurally similar protein cerebral endothelial cell adhesion molecule CEECAM1 was previously reported to be inactive when assayed for collagen glycosyltransferase activity. To address the cause of the absent galactosyltransferase activity, we have generated several chimeric constructs between the active human GLT25D1 and inactive human CEECAM1 proteins. The assay of these chimeric constructs pointed to a short central region and a large C-terminal region of CEECAM1 leading to the loss of collagen galactosyltransferase activity. Examination of the three DXD motifs of the active GLT25D1 by site-directed mutagenesis confirmed the importance of the first (amino acids 166-168) and second motif (amino acids 461-463) for enzymatic activity, whereas the third one was dispensable. Since the second DXD motif is incomplete in CEECAM1, we have restored the motif by introducing the substitution S461D. This change did not restore the activity of the C-terminal region, thereby showing that additional amino acids were required in this C-terminal region to confer enzymatic activity. Finally, we have introduced the substitution Q471R-V472M-N473Q-P474V in the CEECAM1-C-terminal construct, which is found in most animal GLT25D1 and GLT25D2 isoforms but not in CEECAM1. This substitution was shown to partially restore collagen galactosyltransferase activity, underlining its importance for catalytic activity in the C-terminal domain. Because multiple mutations in different regions of CEECAM1 contribute to the lack of galactosyltransferase activity, we deduced that CEECAM1 is functionally different from the related GLT25D1 protein.  相似文献   

2.
The NAD(P)H cytochrome b5 oxidoreductase, Ncb5or (previously named b5+b5R), is widely expressed in human tissues and broadly distributed among the animal kingdom. NCB5OR is the first example of an animal flavohemoprotein containing cytochrome b5 and chrome b5 reductase cytodomains. We initially reported human NCB5OR to be a 487-residue soluble protein that reduces cytochrome c, methemoglobin, ferricyanide, and molecular oxygen in vitro. Bioinformatic analysis of genomic sequences suggested the presence of an upstream start codon. We confirm that endogenous NCB5OR indeed has additional NH2-terminal residues. By performing fractionation of subcellular organelles and confocal microscopy, we show that NCB5OR colocalizes with calreticulin, a marker for endoplasmic reticulum. Recombinant NCB5OR is soluble and has stoichiometric amounts of heme and flavin adenine dinucleotide. Resonance Raman spectroscopy of NCB5OR presents typical signatures of a six-coordinate low-spin heme similar to those found in other cytochrome b5 proteins. Kinetic measurements showed that full-length and truncated NCB5OR reduce cytochrome c actively in vitro. However, both full-length and truncated NCB5OR produce superoxide from oxygen with slow turnover rates: kcat = approximately 0.05 and approximately 1 s(-1), respectively. The redox potential at the heme center of NCB5OR is -108 mV, as determined by potentiometric titrations. Taken together, these data suggest that endogenous NCB5OR is a soluble NAD(P)H reductase preferentially reducing substrate(s) rather than transferring electrons to molecular oxygen and therefore not an NAD(P)H oxidase for superoxide production. The subcellular localization and redox properties of NCB5OR provide important insights into the biology of NCB5OR and the phenotype of the Ncb5or-null mouse.  相似文献   

3.
N-linked oligosaccharides devoid of glucose residues are transiently glucosylated directly from UDP-Glc in the endoplasmic reticulum. The reaction products have been identified, depending on the organisms, as protein-linked Glc1Man5-9GlcNAc2. Incubation of right side-sealed vesicles from rat liver with UDP-[14C]Glc, Ca2+ ions and denatured thyroglobulin led to the glucosylation of the macromolecule only when the vesicles had been disrupted previously by sonication or by the addition of detergents to the glucosylation mixture. Similarly, maximal glucosylation of denatured thyroglobulin required disruption of microsomal vesicles isolated from the protozoan Crithidia fasciculata. Treatment of the rat liver vesicles with trypsin led to the inactivation of the UDP-Glc:glycoprotein glucosyltransferase only when proteolysis was performed in the presence of detergents. The glycoprotein glucosylating activity could be solubilized upon sonication of right side-sealed vesicles in an isotonic medium, upon passage of them through a French press or by suspending the vesicles in an hypotonic medium. Moreover, the enzyme appeared in the aqueous phase when the vesicles were submitted to a Triton X-114/water partition. Solubilization was not due to proteolysis of a membrane-bound enzyme. The enzyme could also be solubilized from C. fasciculata microsomal vesicles by procedures not involving membrane disassembly. About 30% of endogenous glycoproteins glucosylated upon incubation of intact rat liver microsomal vesicles with UDP-[14C]GLc could be solubilized by sonication or by suspending the vesicles in 0.1 M Na2CO3. These and previous results show that the UDP-Glc:glycoprotein glucosyltransferase is a soluble protein present in the lumen of the endoplasmic reticulum. In addition, both soluble and membrane-bound glycoproteins may be glucosylated by the glycoprotein glucosylating activity.  相似文献   

4.
Protein localization within cells regulates accessibility for interactions with co-factors and substrates. The endoplasmic reticulum (ER) BiP co-factor ERdj4 is up-regulated by ER stress and has been implicated in ER-associated degradation (ERAD) of multiple unfolded secretory proteins. Several other ERdj family members tend to interact selectively with nascent proteins, presumably because those ERdj proteins associate with the Sec61 translocon that facilitates entry of nascent proteins into the ER. How ERdj4 selects and targets terminally misfolded proteins for destruction remains poorly understood. In this study, we determined properties of ERdj4 that might aid in this function. ERdj4 was reported to retain its signal sequence and to be resistant to mild detergent extraction, suggesting that it was an integral membrane protein. However, live cell photobleaching analyses of GFP-tagged ERdj4 revealed that the protein exhibits diffusion coefficients uncommonly high for an ER integral membrane protein and more similar to the mobility of a soluble luminal protein. Biochemical characterization established that the ERdj4 signal sequence is cleaved to yield a soluble protein. Importantly, we found that both endogenous and overexpressed ERdj4 associate with the integral membrane protein, Derlin-1. Our findings now directly link ERdj4 to the ERAD machinery and suggest a model in which ERjd4 could help recruit clients from throughout the ER to ERAD sites.  相似文献   

5.
The eta isoform of protein kinase C, isolated from a cDNA library of mouse skin, has unique tissue and cellular distributions. It is predominantly expressed in epithelia of the skin, digestive tract, and respiratory tract in close association with epithelial differentiation. We report here that this isoform is localized on the rough endoplasmic reticulum in transiently expressing COS1 cells and constitutively expressing keratinocytes. By the use of polyclonal antibodies raised against peptides of the diverse D1 and D2/D3 regions, we found that immunofluorescent signals were strongest in the cytoplasm around the nucleus and became weaker toward the peripheral cytoplasm. Under immunoelectron microscopic examination, electron-dense signals were located on the rough endoplasmic reticulum and on the outer nuclear membrane which is continuous with the endoplasmic reticulum membrane. However, no signals were detected in the nucleus, inner nuclear membrane, smooth endoplasmic reticulum, Golgi apparatus, mitochondria, or plasma membrane. Treatment of the cells in situ with detergents suggested association of the isoform of protein kinase C with intracellular structures. By immunoblotting, a distinct single band with an M(r) of 80,000 was detected in whole-cell lysate and in rough microsomal and crude nuclear fractions, all of which contain outer nuclear membrane and/or rough endoplasmic reticulum. We further demonstrated the absence of a nuclear localization signal in the pseudosubstrate sequence. The present observation is not consistent with the report of Greif et al. (H. Greif, J. Ben-Chaim, T. Shimon, E. Bechor, H. Eldar, and E. Livneh, Mol. Cell. Biol. 12:1304-1311, 1992).  相似文献   

6.
Monoclonal antibodies have been produced against soluble human milk galactosyltransferase of a blood group O donor. After initial screening by radioimmunoassay, fourteen hybridomas were further characterized by enzyme-linked immunosorbent assay, immunoblotting of purified enzyme following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, enzyme activity modification, and enzyme localization in HeLa cells by immunofluorescence. Of these fourteen clones, seven had titers between 1500 and 7800 as estimated by ELISA. In general, the titer correlated with staining intensity on immunoblots and in immunofluorescence. In the presence of monoclonal antibody, enzyme activity was usually slightly enhanced or stabilized. Subcloning yielded four monoclonal antibody preparations designated as GT2/24/108, GT2/36/118, GT2/61/14, and GT2/77/22, which belong to Ig class G2b, G3, M, and G1, respectively. They all recognized the enzyme in purified form or in defatted milk as a single, broad band on electrophoresis-immunoblotting and produced a concise juxtanuclear fluorescence typical for the Golgi apparatus in HeLa cells.  相似文献   

7.
Cell-to-cell movement of beet yellows closterovirus requires four structural proteins and a 6-kDa protein (p6) that is a conventional, nonstructural movement protein. Here we demonstrate that either virus infection or p6 overexpression results in association of p6 with the rough endoplasmic reticulum. The p6 protein possesses a single-span, transmembrane, N-terminal domain and a hydrophilic, C-terminal domain that is localized on the cytoplasmic face of the endoplasmic reticulum. In the infected cells, p6 forms a disulfide bridge via a cysteine residue located near the protein's N terminus. Mutagenic analyses indicated that each of the p6 domains, as well as protein dimerization, is essential for p6 function in virus movement.  相似文献   

8.
Herp is a stress-response protein localized in the endoplasmic reticulum (ER) membrane. Herp was proposed to improve ER-folding, decrease ER protein load, and participate in ER-associated degradation (ERAD). Intra-muscle-fiber ubiquitinated multiprotein-aggregates containing, among other proteins, either amyloid-beta (Abeta) or phosphorylated tau are characteristic of sporadic inclusion-body myositis (s-IBM). ER stress and proteasome inhibition appear to play a role in s-IBM pathogenesis. We have now studied Herp in s-IBM muscle fibers and in ER-stress-induced or proteasome-inhibited cultured human muscle fibers. In s-IBM muscle fibers: (i) Herp was strongly immunoreactive in the form of aggregates, which co-localized with Abeta, GRP78, and beta2 proteasome subunit; (ii) Herp mRNA and protein were increased. In ER-stress-induced cultured human muscle fibers: (i) Herp immunoreactivity was diffusely increased; (ii) Herp mRNA and protein were increased. In proteasome-inhibited cultured human muscle fibers: (i) Herp immunoreactivity was in the form of aggregates; (ii) Herp protein was increased, but its mRNA was not. Accordingly, in s-IBM muscle fibers: (i) increase of Herp might be due to both ER-stress and proteasome inhibition; (ii) co-localization of Herp with Abeta, proteasome, and ER-chaperone GRP78 could reflect its possible role in processing and degradation of cytotoxic proteins in ER.  相似文献   

9.
We used immunocytochemical and fluorescence assays to investigate the subcellular location of the protein encoded by Down syndrome critical region gene 2 (DSCR2) in transfected cells. It was previously suggested that DSCR2 is located in the plasma membrane as an integral membrane protein. Interestingly, we observed this protein in the endoplasmic reticulum (ER) of cells. We also studied whether the truncated forms of DSCR2 showed different subcellular distributions. Our observations indicate that DSCR2 probably is not inserted into the membrane of the endoplasmic reticulum since the fragments lacking the predicted transmembrane (TM) helices remained associated with the ER. Our analyses suggest that, although DSCR2 is associated with the endoplasmic reticulum, it is not an integral membrane protein and it is maintained on the cytoplasmic side of the ER by indirect interaction with the ER membrane or with another protein.  相似文献   

10.
The expression of the ischemia-responsive protein (irp94) was enhanced by endoplasmic reticulum (ER) stress inducing drugs such as brefeldin A (BFA), calcium ionophor A23187, dithiothreitol (DTT) and tunicamycin in fisher rat thyroid epithelial cell line (FRTL-5 cells). In particular, irp94 mRNA expression was increased dose dependently by tunicamycin, and there was increased irp94 expression when the cells were incubated with the thyroid-stimulating hormone (TSH) together.  相似文献   

11.
Retrograde vesicular transport from the Golgi to the ER requires the Dsl1 tethering complex, which consists of the three subunits Dsl1, Dsl3, and Tip20. It forms a stable complex with the SNAREs Ufe1, Use1, and Sec20 to mediate fusion of COPI vesicles with the endoplasmic reticulum. Here, we analyze molecular interactions between five SNAREs of the ER (Ufe1, Use1, Sec20, Sec22, and Ykt6) and the Dsl1 complex in vitro and in vivo. Of the two R-SNAREs, Sec22 is preferred over Ykt6 in the Dsl-SNARE complex. The NSF homolog Sec18 can displace Ykt6 but not Sec22, suggesting a regulatory function for Ykt6. In addition, our data also reveal that subunits of the Dsl1 complex (Dsl1, Dsl3, and Tip20), as well as the SNAREs Ufe1 and Sec20, are ER-resident proteins that do not seem to move into COPII vesicles. Our data support a model, in which a tethering complex is stabilized at the organelle membrane by binding to SNAREs, recognizes the incoming vesicle via its coat and then promotes its SNARE-mediated fusion.  相似文献   

12.
13.
Protein O-linked fucosylation is an unusual glycosylation associated with many important biological functions such as Notch signaling. Two fucosylation pathways synthesizing O-fucosylglycans have been reported on cystein-knotted proteins, that is, on epidermal growth factor-like (EGF-like) domains and on thrombospondin Type 1 repeat (TSR) domains. We report here the molecular cloning and characterization of a novel beta1,3-glucosyltransferase (beta3Glc-T) that synthesizes a Glcbeta1,3Fucalpha- structure on the TSR domain. We found a novel glycosyltransferase gene with beta1,3-glycosyltransferase (beta3GT) motifs in databases. The recombinant enzyme expressed in human embryonic kidney 293T (HEK293T) cells exhibited glucosyltransferase activity toward fucose-alpha-para-nitrophenyl (Fucalpha-pNp). Thin-layer chromatography (TLC) analysis revealed that the product of the recombinant enzyme migrated to the same position as did the product of endogenous beta3Glc-T of Chinese hamster ovary (CHO) cells. The two products could be digested by beta-glucosidase from almond and by exo-1,3-beta-glucanase from Trichoderma sp. These results strongly suggested that the product has the structure of Glcbeta1-3Fuc. Therefore, we named this novel enzyme beta3Glc-T. Immunostaining revealed that FLAG-tagged beta3Glc-T is an enzyme residing in the endoplasmic reticulum (ER) via retention signal, "REEL," which is a KDEL-like sequence, at the C-terminus. The TSR domain expressed in Escherichia coli was first fucosylated by the recombinant protein O-fucosyltransferase 2 (POFUT2), after which it became an acceptor substrate for the recombinant beta3Glc-T, which could apparently transfer Glc to the fucosylated TSR domain. Our results suggest that a novel glycosyltransferase, beta3Glc-T, contributes to the elongation of O-fucosylglycan and that this occurs specifically on TSR domains.  相似文献   

14.
Excessive demands on the protein-folding capacity of the endoplasmic reticulum (ER) cause irremediable ER stress and contribute to cell loss in a number of cell degenerative diseases, including type 2 diabetes and neurodegeneration. The signals communicating catastrophic ER damage to the mitochondrial apoptotic machinery remain poorly understood. We used a biochemical approach to purify a cytosolic activity induced by ER stress that causes release of cytochrome c from isolated mitochondria. We discovered that the principal component of the purified pro-apoptotic activity is the proto-oncoprotein CRK (CT10-regulated kinase), an adaptor protein with no known catalytic activity. Crk(-/-) cells are strongly resistant to ER-stress-induced apoptosis. Moreover, CRK is cleaved in response to ER stress to generate an amino-terminal M(r)~14K fragment with greatly enhanced cytotoxic potential. We identified a putative BH3 (BCL2 homology 3) domain within this N-terminal CRK fragment, which sensitizes isolated mitochondria to cytochrome c release and when mutated significantly reduces the apoptotic activity of CRK in vivo. Together these results identify CRK as a pro-apoptotic protein that signals irremediable ER stress to the mitochondrial execution machinery.  相似文献   

15.
16.
Oxidizing conditions must be maintained in the endoplasmic reticulum (ER) to allow the formation of disulfide bonds in secretory proteins. Here we report the cloning and characterization of a mammalian gene (ERO1-L) that shares extensive homology with the Saccharomyces cerevisiae ERO1 gene, required in yeast for oxidative protein folding. When expressed in mammalian cells, the product of the human ERO1-L gene co-localizes with ER markers and displays Endo-H-sensitive glycans. In isolated microsomes, ERO1-L behaves as a type II integral membrane protein. ERO1-L is able to complement several phenotypic traits of the yeast thermosensitive mutant ero1-1, including temperature and dithiothreitol sensitivity, and intrachain disulfide bond formation in carboxypeptidase Y. ERO1-L is no longer functional when either one of the highly conserved Cys-394 or Cys-397 is mutated. These results strongly suggest that ERO1-L is involved in oxidative ER protein folding in mammalian cells.  相似文献   

17.
Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1(-) Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1(-) cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised.  相似文献   

18.
19.
Rer1p, a yeast Golgi membrane protein, is required for the retrieval of a set of endoplasmic reticulum (ER) membrane proteins. We present the first evidence that Rer1p directly interacts with the transmembrane domain (TMD) of Sec12p which contains a retrieval signal. A green fluorescent protein (GFP) fusion of Rer1p rapidly cycles between the Golgi and the ER. Either a lesion of coatomer or deletion of the COOH-terminal tail of Rer1p causes its mislocalization to the vacuole. The COOH-terminal Rer1p tail interacts in vitro with a coatomer complex containing alpha and gamma subunits. These findings not only give the proof that Rer1p is a novel type of retrieval receptor recognizing the TMD in the Golgi but also indicate that coatomer actively regulates the function and localization of Rer1p.  相似文献   

20.
The neuronal ceroid lipofuscinoses (NCLs) are severe inherited neurodegenerative disorders affecting children. In this disease, lysosomes accumulate autofluorescent storage material and there is death of neurons. Five types of NCL are caused by mutations in lysosomal proteins (CTSD, CLN1/PPT1, CLN2/TTPI, CLN3 and CLN5), and one type is caused by mutations in a protein that recycles between the ER and ERGIC (CLN8). The CLN6 gene underlying a variant of late infantile NCL (vLINCL) was recently identified. It encodes a novel 311 amino acid transmembrane protein. Antisera raised against CLN6 peptides detected a protein of 30 kDa by Western blotting of human cells, which was missing in cells from some CLN6 deficient patients. Using immunofluorescence microscopy, CLN6 was shown to reside in the endoplasmic reticulum (ER). CLN6 protein tagged with GFP at the C-terminus and expressed in HEK293 cells was also found within the ER. Investigation of the effect of five CLN6 disease mutations that affect single amino acids showed that the mutant proteins were retained in the ER. These data suggest that CLN6 is an ER resident protein, the activity of which, despite this location, must contribute to lysosomal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号